ПЕРЕДАЧИ ЗУБЧАТЫЕ ЦИЛИНДРИЧЕСКИЕ ЭВОЛЬВЕНТНЫЕ ВНЕШНЕГО ЗАЦЕПЛЕНИЯ

Расчет геометрии

Cilindrical involute external gear pairs. Calculation of geometry

ГОСТ 16532-70

Постановлением Государственного комитета стандартов Совета Министров СССР от 30 декабря 1970 г. № 1848 срок введения установлен

c 01.01.72

Настоящий стандарт распространяется на зубчатые передачи с постоянным передаточным отношением, зубчатые колеса которых соответствуют исходным контурам с равными делительными номинальными толщиной зуба и шириной впадины, с делительной прямой, делящей глубину захода пополам; без модификации и с модификацией головки.

Стандарт устанавливает метод расчета геометрических параметров зубчатой передачи, а также геометрических параметров зубчатых колес, приводимых на рабочих чертежах в соответствии

c ΓΟCT 2.403-75.

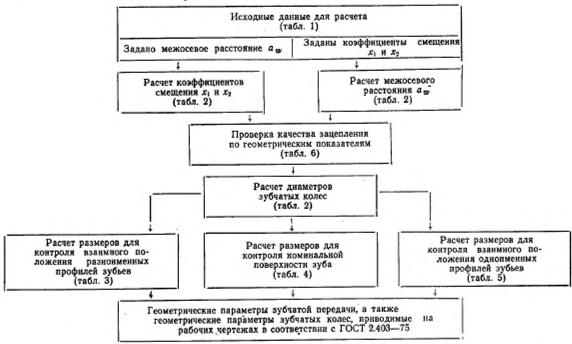
1. ОБЩИЕ ПОЛОЖЕНИЯ

Принципиальная схема расчета геометрии приведена на чертеже.

1.2. Термины и обозначения, примененные в настоящем стандарте, соответствуют LOCL

16530-70 a FOCT 16531-70.

1.3. Наименования параметров, приводимых на рабочих чертежах зубчатых колес в соответствии с ГОСТ 2.403-75, а также межосевое расстояние зубчатой передачи, выделены в таблицах настоящего стандарта полужирным шрифтом.


1.4. При отсутствии в обозначениях параметров индексов «1» и «2», относящихся соответствен-

по к шестерне п колесу, имеется в виду любое зубчатое колесо передачи.
1.5. При отсутствии дополнительных указаний везде, где упоминается профиль зуба, имеется в виду главный торцовый профиль зуба, являющийся эвольвентой основной окружности днаметpa do.

1.6. Расчетом определяются номинальные размеры зубчатой передачи и зубчатых колес.

1.7. Расчет некоторых геометрических и кинематических параметров, применяемых в расчете зубчатой передачи на прочность, приведен в приложении 5.

2. РАСЧЕТ ГЕОМЕТРИЧЕСКИХ ПАРАМЕТРОВ

Таблица-1

		Исходные данные для рас	счета
	Наименование параме	rpa	Обозначение
Число зуб	ьев	шестерии	z ₁
		колеса	22
Модуль			
Угол накл	эна		β
	Угол профиля		α
ρ.	Коэффициент высоты головки		. h _a *
- E	Коэффициент граничной высоть		h _I *
Нормальный кскодный контур	Коэффициент радиального зазо	pa	c* .
100	Линия модификации головки		
Top	Коэффициент высоты модифика	вции головки .	h.
	Коэффициент глубины модифии	гации головки	Δ*
Межосево	расстояние		a _w
Козффици	ент смещения	у шестерии	X ₁
1/034 durin	an amendania	у колеса	x2

Примечания:

^{1.} Межосевое расстояние а входит в состав исходных данных, если его значение задано.

Коэффициенты смещения x₁ и x₂ входят в состав исходных данных, если значение межосевого расстояния
при не задано.
 При исходном контуре по ГОСТ 13755—81 величины x₁ и x₂ рекомендуется выбирать с учетом приложений 2 и 3.

Таблица 2

-		Расчет осн	ювных геометрических параметров	
Навыснование п	е раметра	Обозначение	Расчетиме формулы и	указания
	Расчет коэфф	экциентов см	ещения x ₁ и x ₂ при заданном межосевом рас	стояния аш
1. Делительное м стояние	ежосевое рас-	а	$a = \frac{(z_1 + z_2)m}{2\cos\beta}$	
2. Угол профиля		αį	$tg \alpha_t = \frac{tg \alpha}{\cos \beta}$	При α = 20° (вилючая исходные контуры по ГОСТ 13755—81 и ГОСТ 9587—70) упрощеный
3. Угол зацепления	8	a _{tw}	$\cos a_{\ell w} = \frac{a}{a_w} \cos a_{\ell}$	расчет х _п , о ₂ н угла зацепления прямозубой
4. Қоэффициент су ний	уммы смеще-	x2	$x_{2} = \frac{(z_{1} + z_{2}) (\operatorname{inv} \alpha_{fw} - \operatorname{inv} \alpha_{f})}{2 \operatorname{tg} \alpha}$	передачи приведен в табл. 1 приложения 1
5. Коэффициент смещения	у шестерии	x ₁	При исходном контуре по ГОСТ 1 $x_5 = x_1 + x_2$ на составляющие x_1 и x_2 рекоме	3755—81 разбивку значения идуется производить с уче-
	у колеса	, X9	том приложений 2 и 3	
	Расчет межо	евого расстоя	иния $a_{_{\mathfrak{D}}}$ при заданных коэффициентах смеще	ия x ₁ и x ₂
6. Қозффициент с ний	уммы смеще-	x ₁	$x_{\Sigma} = x_1 + x_2$	
7. Угол профиля		aį	$tg \alpha_f = \frac{tg \alpha}{\cos \beta}$	При α=20° (включая исходные контуры по ГОСТ 13755—81 и ГОСТ
8. Угол зацепления		a _{fw}	$inv a_{for} = \frac{2x_0 tg \alpha}{z_1 + z_1} + inv a_f$	9587—70) упрощенный расчет α _w . α _l и угла зацепления прямозубой передачи α _w приведен в
9. Межосевое расс	тояние	a _w	$a_{\mathbf{w}} = \frac{(z_1 + z_2)m}{2\cos\beta} \cdot \frac{\cos\alpha_t}{\cos\alpha_{tw}}$	табл. 1 приложения 1
		Pa	счет днаметров зубчатых колес	L
 Делительный диаметр 	шестерин	d ₁	$d_1 = \frac{z_1 m}{\cos \beta}$	
	колеса	d ₂	$d_2 = \frac{z_2 m}{\cos \beta}$,
11. Передаточное	число	u	$u = \frac{z_2}{z_1}$	
12. Начальный диаметр	шестерни	d _{w1}	$d_{w1} = \frac{2a_w}{u+1}$	
	колеса	d_{w1}	$d_{wz} = \frac{2a_w \mu}{u+1}$	
13. Қоэффициент мого смещения	воспринимае-	y	$y = \frac{a_w - a}{m}$	
 Коэффициент го смещения 	уравнительно-	Δy	$\Delta y \leftarrow x_{\Sigma} - y$	

Наименование п	архметра	Обозначение	Расчетные формулы ч	унизапий:
15. Диаметр вер- шин зубьев	шестерия	dai	$d_{\mathcal{A}} = d_1 - 2(h_a^{\dagger} + x_1 - \Delta y)m$	В обоснованных слу- чаях допускается изме-
	колеса	d _{a3}	$d_{\alpha 8}, \ d_3 + 2(h_{\alpha}^* + x_t - \Lambda y)m$	нение величии диамет- ров
16. Диаметр впадин	шестерни	d_{f1}	· d_{fi} - d_{i} - $2(h_{a}^{*} + \epsilon^{*} - x_{i})m$	Размеры являются справочными
	колеса	d_{j_2}	$d_{fz} = d_{z} - 2(h_{a}^{*} + c^{*} - x_{2})m$	

3. При $x_2=0$ получаем $\alpha_{tw}=a_t$, $a_w=a$, $d_w=d$, y=0 и $\Delta y=0$.

Таблица 3

Наименование парэметра	Обозначение	Раслетные формулы и указа	HISH
	асчет постоя	иной хорды и высоты до постоянной хорды	
1. Постоянная хорда	₹c	$\overline{s_c} = \left(\frac{\pi}{2} - \cos^2 \alpha + x \sin 2\alpha\right) m$ Должно выполняться условие $\begin{array}{c} \rho_s > \rho_{\rho} \\ \\ \beta_s = \rho_{\rho} \end{array}$ Здесь: $\begin{array}{c} \rho_s = \rho_{\sigma} \\ \\ \rho_s = \rho_{\sigma} \\ \\ \rho_s = \rho_{\sigma} \end{array}$ раднус кривняны разносменных профикатовную хорду $\begin{array}{c} \rho_s = 0.5 \left(\frac{d_0}{d_0} \log \alpha_t + \overline{s_c} \frac{\cos \beta_0}{\cos \alpha}\right), \\ \\ \rho_s = 0.5 \left(\frac{d_0}{d_0} \log \alpha_t + \overline{s_c} \frac{\cos \beta_0}{\cos \alpha}\right), \\ \\ \rho_{\sigma} = \rho_{\sigma} \end{array}$ глаба. 4, п. 1, $\rho_{\rho} = \rho_{\sigma} \\ \\ \rho_{\sigma} = \rho_{\sigma}$	При $\alpha = 20^{\circ}$ (вилючая исходные контуры по ГОСТ 13755—81 в ГОСТ 9587—70) упрощений расчет $s_{\mathcal{L}}$ и $h_{\mathcal{L}}$ приведев в табл. 2 приложения 1
2. Высота до постоянной хорды	\overline{h}_c	$\overline{h_c} = 0.5(d_a - d - \overline{s}_c \operatorname{tg} \alpha)$	
		Расчет длины общей нормали	
3. Угол профиля в точке на концентрической окружности диаметра $d_X = d + 2 \kappa m$	a _x	$\cos \alpha_x = \frac{z\cos \alpha_t}{z + 2x\cos\beta}$ При $\frac{z\cos\alpha_t}{z + 2x\cos\beta} > 1 \text{ следу}$	ет приним ать 2 ∞ ▶3

Примечания: 1. Для прямозубых нередач $\beta=0^\circ$, тогда a=0.5 (z_1+z_2) m, $\alpha t=a$, d=zm. 2. При $\alpha=a_{\mathfrak{w}}$ получаем $a_{\mathfrak{w}}=\alpha_I$, $x_3=0$, $d_{\mathfrak{w}}=d$, y=0 и $\Delta y=0$.

^{4.} Указания, относящиеся к днаметрам вершин зубьев и впадин зубчатых колес, окончательно обрабатываемых только зуборезным долбяком, даны в приложении 4.

Продолжение табл. 3

Наименование параметра	Обозначение	Расчетные формулы и указания
4. Расчетное число зубьев в длине общей нормали	2 _W ,	$z_{Wf} = \frac{z}{\pi} \left(\frac{\operatorname{tg} \alpha_x}{\cos \beta_b} - \frac{2x \operatorname{tg} \alpha}{z} - \operatorname{inv} \alpha_t \right) + 0.5 ,$
		где β _ф — по табл. 4, п. 11
5. Длина общей нормали	W .	$W-[\pi(z_W-0,5)+2x \operatorname{tg}\alpha+z \operatorname{inv}\alpha_\ell] m \cos\alpha,$
		где z_W — округленное до ближайшего целого числа значение z_W , Должно выполняться условне
		ρρ<ρ₩<ρ₀ Здесь:
		ρρ — по табл. 4, п. 3;
		 р — радиус кривизны разновменных профилей зубьев в точках, определяющих длину общей нормали
16		$\rho_{W} = \frac{0.5 \text{ W}}{\cos \beta_b}$
		$ ho_a$ — раднус кривизны профиля зуба в точке на окружности вершин $ ho_a = 0.5 d_a \sin \alpha_a$,
		где α_a — по табл. 4, п. 2. Если имеется притупление продольной кромки зуба, в неравенство вместо ρ_a следует подставлять значение радиуса кривизны профиля зуба в точке притупления ρ_k
	,	$\rho_k = 0,5d_k \sin a_k,$
		где d k и а k — по табл. 4, п. 2.
" 1		При модификации головки в неравенство вместо ρ_a следует подставлять значение ρ_s ,
		где ру — по табл. 4, п. 5. Если условие левой части неравенства не выполняется, следует пере-
		считать значение W при увеличенном значении z . Если условие правой
1 //		части неравенства не выполняются, следует пересчитать значение W при уменьшениюм значении z gr .
		При увеличении или уменьшении числа зубьев в длине общей норма-
		ли $z_{\overline{W}}$ на один зуб длина общей нормали \overline{W} соответственно увеличивается или уменьшается на шаг зацепления ρ_a , где ρ_a — по табл. 5, п. 5.
		Для косозубых зубчатых колес должно выполняться дополнительное условие
		$W < \frac{b}{\sin \beta_b}$,
		где b — ширина венца.
		При α = 20° (включая исходные контуры по ГОСТ 13755—81 и ГОСТ 9587—70) упрощенный расчет № приведен в табл. 2 приложения 1
	I	I have been a second of the se

Расчет толщины по хорде и высоты до хорды

6. Угол профиля в точке на концентрической окружности за-данного диаметра d _y	α _y	$\cos \alpha_y = -\frac{d}{d_y} \cos \alpha_t$
7. Окружная толщина на за- данном диаметре d _y	Sty	$s_{ty} = d_y \left(\frac{\frac{\pi}{2} + 2x \operatorname{tg} \alpha}{z} + \operatorname{inv} \alpha_t - \operatorname{inv} \alpha_y \right)$

Наименование параметра	Обозначение	Расчетные формулы и указания
8. Угол наклона линии зуба со- осной цилиндрической поверхно- сти диаметра d _y	βу	$tg \beta_y = -\frac{d_y}{d} tg \beta$
9. Половина угловой толщины зуба эквивалентного зубчагого колеса, соответствующая концентрической окружности диаметра $\frac{d_y}{\cos^2\beta_y}$	ψуυ	$\psi_{y\psi} \equiv \frac{s_{ty}}{\sqrt{d_y}} \cos^3 \beta_y$
10. Толщина по хорде	s ,	$\overline{s_y} = d_y \frac{\sin \psi_{yv}}{\cos^2 \beta_y}$
11. Высота до хорды	R _{ay}	$\overline{h_{ay}} = 0.5[d_a - d_y + \frac{d_y}{\cos^2 \beta_y} (1 - \cos \phi_{yy})]$
	Pace	ет размера по роликам (шарикам)
12. Днаметр ролнка (шарика)	D	При $\alpha=20^\circ$ (вилючая исходные контуры по ГОСТ 13755—81 и ГОСТ 9587—70) рекомендуется принимать $D\approx 1.7~m$ (для роликов допускается выбирать ближайшее значение по ГОСТ 2475—62)
13. Угол профиля в точке на концентрической окружности зуб- чатого колеса, проходящей через центр ролика (шарика)	αD	$\operatorname{inv} \alpha_D = \frac{D}{zm \cos \alpha} + \operatorname{inv} \alpha_t - \frac{\pi}{2} - 2x \operatorname{tg} \alpha$
14. Днаметр концентрической окружности зубчатого колеса, проходящей через центр ролнка (шарика)	d_D	$d_D = d \frac{\cos a_t}{\cos a_D}$ Должно выполняться условие $\rho_M < \rho_{\sigma}$ Здесь: $\rho_M = \text{раднус кривизны разноименных профилей зубьев в точках контакта поверхности ролика (шарика) с главными поверхностими зубьев \rho_M = 0,5 (d_b \text{tg } a_D - \frac{D}{\cos^2 \beta_b}), где d_b = \text{по табл. 4, п. 1,} \beta_b = \text{по табл. 4, п. 11.} Если имеется притупление продольной кромки зуба, в неравенство вместо \rho_\alpha следует подставлять значение раднуса кривизны профиля зуба в точке притупления \rho_k \rho_k = 0,5d_k \sin \alpha_k, где d_k и \alpha_k = \text{по табл. 4, п. 2.} При модификации головки в неравенство вместо \rho_\alpha следует подставлять значение \rho_{\mathcal{S}}, где d_k и \alpha_k = \text{по табл. 4, п. 5}$

Продолжение табл. 3

Наименование параметра	Обозначение	Расчетные формулы и указа	HRS
15. Размер по роликам (шари- кам) прямозубых и косозубых зубчатых колес с четным числом зубьев (в торцовом сечении)	м	$M = d_D + D$	Должно выполняться условие $d_D + D > d_A$, $d_D - D > d_f$,
16. Размер во роликам (шари- кам) прямозубых зубчатых колес с нечетным числом зубьев (в торцовом сечении)	m	$M = d_D \cos \frac{90^{\circ}}{z} + D$	
17. Минимальный размер по роликам (шарикам) косозубых зубчатых колес с нечетным чис- лом зубьев, а также с четным чи- слом зубьев при β>45°		$M = \frac{d_D}{2 \text{tg } \beta_D} \sqrt{\lambda^2 + 4 \text{tg}^2 \beta_D \cos^2 \left(\frac{90^\circ}{z} + \frac{\lambda}{2}\right)} + L$ rae	Должно выполняться
		$tg \beta_D = \frac{\cos \alpha_t tg \beta}{\cos \alpha_D}$	условне
		и д — корень уравнения	$d_D + \frac{D}{\cos \beta_D} > d_d$
	4	$\sin_{\alpha}(\gamma + \lambda) \operatorname{tg}^{\alpha} \beta_{\mathcal{D}} - \lambda = 0,$	$d_D = \frac{D}{\cos \beta_D} > d_f$
	1 7 %	где $\gamma = 0$ — для зубчатых колес с четным числом зубьев;	$d_D = \frac{D}{\cos \beta_D} > d_f$
		$\gamma = \frac{180^{\circ}}{z}$ — для зубчатых колес с нечетным числом зубьев	
		Упрощенное определение λ приведенов табл. 2 приложения 1	
		Минимальный размер по роликам (шарикам) косозубых зубчатых колес с четным числом зубыев при β<45° совпадает с размером в торцовом сечении	1
y ×		Расчет нормальной голщины	1
	s _n	$s_a = \left(\frac{\pi}{2} + 2x \operatorname{tg} \alpha\right) m$	1

Примечание, Выбор метода контроля настоящим стандартом не регламентируется.

	метра	Обраначение	Расчетные формулы и указання	
		Расчет разм	еров для контроля торцового профиля зуба	
1. Основной диаме	етр	db	$d_b = d \cos a_t$	
2. Угол профиля ке на окружности в		a _a	$\cos a_a = \frac{d_b}{d_a}$	
			Если имеется притупление продольной к рассчитать угол профиля зуба в точке притуформулу вместо $d_{\mathcal{L}}$ следует подставлять диленных кромок $d_{\mathcal{R}}$, принимаемый по констру	упления с.≱. Для этого и вметр окружности притуп
3. Радиус кри- визим активного профиля зуба в нижней точке	шестерни	901	$g_{\rho z} = a_w \sin a_{\ell w} = 0.5 d_{\delta z} \operatorname{tg} a_{\sigma z}$	Формула справедлива если верхняя точка ак тивного профиля сопря женного зубчатого коле са совпадает с точкой профиля на его окруж ности вершин.
	колеса	991	$\rho_{p2} = a_w \sin a_{tw} - 0.5 d_{b1} \log a_{a1}$	Если имеется притуп ление продольной кром ки зуба, то вместо α_{a1} и α_{a2} следует подстав лять соответственно α_{a3} и α_{a4}
4. Угол развернут		٧,	$v_p = \frac{2\rho_p}{d}$	
го профиля зуба в н	ижней точке	1000	$v_{\rho} = \frac{1}{d_b}$	
	Попол			
	Допол	нительный ра	счет ври модификации головки исходного контура	
5. Раднус кривиз зуба в начальной т кации головки	ны профиля	PÆ	р $_{g}=0,5d\sin\alpha_{t}+rac{h_{a}^{*}-h_{g}^{*}}{\sin\alpha_{t}}$	+ x -m
зуба в начальной т кации головки 6. Угол развернут	ны профиля гочке модифи- гости профиля	PÆ	일이 들어가는 이번 가는 사람들이 살아가는 것이 없다면 되었다.	+ x -m
зуба в начальной т кации головки 6. Угол развернут зуба, соответствую	ны профиля гочке модифи- гости профиля начальщий начальщий головки	9 <i>8</i>	$p_g = 0,5d \sin \alpha_t + \frac{h_a^* - h_g^*}{\sin \alpha_t}$	+ x -m
зуба в начальной т кации головки 6. Угол развернут зуба, соответствую ной точке модифика: 7. Днаметр окруж	ны профиля гочке модифи- тости профиля начальщий начальщии головки кности моди- кности моди- модификации исходного	9 <i>8</i>	$\rho_{g} = 0.5d \sin \alpha_{t} + \frac{h_{a}^{*} - h_{g}^{*}}{\sin \alpha_{t}}$ $\gamma_{g} = \frac{2\rho_{g}}{d_{b}}$	Формулы справедли вы, если линия модифи-
зуба в начальной т кации головки 6. Угол развернут зуба, соответствую ной точке модифика: 7. Днаметр окруж фикации головок зуб 8. Угол «линии головки торцового контура в начально	ны профиля гочке модифи- гости профиля начальщии головки кности моди- бьев модификации исходного ой точке мо-	PS YE dg	$\rho_{g} = 0.5d \sin \alpha_{f} + \frac{h_{a}^{*} - h_{g}^{*}}{\sin \alpha_{f}}$ $\nu_{g} = \frac{2\rho_{g}}{d_{b}}$ $d_{g} = \sqrt{-d_{b}^{2} + 4\rho_{g}^{2}}$	Формулы справедля-
зуба в начальной т кации головки 6. Угол развернут зуба, соответствую ной точке модифика: 7. Днаметр окруж фикации головок зуб- 8. Угол «линии головки торцового контура в начально дификации 9. Днаметр основати эвольвенты, явл	ны профиля гочке модифи- тости профиля начальщии головки модификации о исходного ой точке мо- ной одружно- яющейся ли- оловки зуба пубина моди-	es dg atm d _{bM}	$p_{g} = 0,5d \sin \alpha_{f} + \frac{h_{a}^{*} - h_{g}^{*}}{\sin \alpha_{f}}$ $\gamma_{g} = \frac{2\rho_{g}}{d_{b}}$ $d_{g} = \sqrt{-d_{b}^{2} + 4\rho_{g}^{2}}$ $tg \alpha_{f,M} = \frac{\Delta^{*}}{h_{g}^{*} \cos \beta} + tg \alpha_{f}$	Формулы справедли вы, если линия модифи- кация головии исход-
зуба в начальной т кации головки 6. Угол развернут зуба, соответствую ной точке модифика: 7. Днаметр окруж фикации головок зуб 8. Угол «линии головки торцового контура в начально дификации 9. Днаметр основа сти эвольвенты, явл ней модификации горцового 10. Нормальная г фикации горцового	ны профиля гочке модифи- тости профиля начальщии головки модификации о исходного ой точке мо- ной одружно- яющейся ли- оловки зуба пубина моди-	PS dg α _{tM} d _{bM} Δ _{×t}	$\rho_{\mathcal{S}} = 0,5d \sin \alpha_{\ell} + \frac{h_{a}^{*} - h_{g}^{*}}{\sin \alpha_{\ell}}$ $\gamma_{\mathcal{S}} = \frac{2\rho_{\mathcal{S}}}{d_{b}}$ $d_{\mathcal{S}} = \sqrt{-d_{b}^{2} + 4\rho_{g}^{2}}$ $\log \alpha_{\ell,M} = \frac{\Delta^{*}}{h_{g}^{*} \cos \beta} + \log \alpha_{\ell}$ $d_{b,M} = d \cos \alpha_{\ell,M}$ $\Delta_{a\ell} \approx \frac{d_{b} - d_{b,M}}{2\bar{d}_{b,M}} \left(\sqrt{-d_{a}^{2} - d_{b,M}^{2}} - \sqrt{-d_{g}^{2} - d_{b,M}^{2}}\right)$ Если имеется притупление продольной кром-	Формулы справедли вы, если линия модифи- кация головии исход-
зуба в начальной т кации головки 6. Угол развернут зуба, соответствую ной точке модифика: 7. Днаметр окруж фикации головок зуб 8. Угол «линии головки торцового контура в начально дификации 9. Днаметр основа сти эвольвенты, явл ней модификации горцового 10. Нормальная г фикации горцового	ны профиля гочке модифи- гости профиля ощий начальщии головки кности моди- кности модификации исходного ой точке мо- ной одружно- яющейся ли- оловки зуба профиля го-	PS dg atM dbM $\Delta_{\times t}$	$\rho_{g} = 0,5d \sin \alpha_{f} + \frac{h_{a}^{*} - h_{g}^{*}}{\sin \alpha_{f}}$ $\gamma_{g} = \frac{2\rho_{g}}{d_{b}}$ $d_{g} = \sqrt{-d_{b}^{2} + 4\rho_{g}^{2}}$ $\log \alpha_{fM} = \frac{\Delta^{*}}{h_{g}^{*} \cos \beta} + \log \alpha_{f}$ $d_{bM} = d \cos \alpha_{fM}$ $\Delta_{af} \approx \frac{d_{b} - d_{bM}}{2d_{bM}} \left(\sqrt{-d_{a}^{2} - d_{bM}^{2}} - \sqrt{-d_{g}^{2} - d_{bM}^{2}}\right)$	Формулы справедли вы, если линия модифи- кация головии исход-

Таблица 5

Расчет размеров для контроля взаимного положения одноименных профилей	зубьев	
---	--------	--

Наименование параметра	Обозначение	Расчетные формулы и указания
. Шаг зацепления	ρα	$p_{\alpha} = \pi m \cos \alpha$
. Осевой шаг	PX	$p_x = \frac{nm}{\sin \beta}$
. Ход	P2	$p_z = zp_z$

Таблица 6

Наименование параметра	Обозначение	•	Расчетиме формулы и указания	

1. Коэффициент смещения

$$x_{\min} = h_I^* - h_a^* = \frac{z \sin^2 \alpha_I}{2 \cos \beta}$$

При $\dot{x}>x_{\min}$ подрезание зуба исходной производящей рейкой отсутствует. При $\alpha=20^\circ$ и $\dot{h}_I^*-\dot{h}_a^*=1$ (включая исходный контур по ГОСТ 13755—81), упрощенный расчет x_{\min} приведен в табл. 3 приложения 1

Проверка отсутствия интерференции зубьев

Раднус кривизны в гранич-ной точке профиля зуба

$$\rho_t = 0,5d \sin \sigma_t = \frac{h_t^* - h_a^* - x}{\sin \alpha_t} m$$

При $\rho_i \ll \rho_p$ интерференция зубьев отсутствует Здесь ρ_p — по табл. 4, п. 3.

		При подрезании зуба рℓ <0
	п	роверка коэффициента перекрытия
3. Қоэффициент торцового пе- рекрытия	***	$s_a = \frac{z_1 \lg a_{o1} + z_2 \lg a_{o2} - (z_1 + z_2) \lg a_{fw}}{2\pi},$
		где α_{a1} и α_{a2} — по табл. 4, п. 2.
		Формула справедлива, если отсутствует интерференция зубъев и верхняя точка активного профиля совпадает с точкой профиля на ок- ружности вершин.
		Если имеется притупление продольной кромки зуба, то вместо α_{a1} и α_{a2} следует соответственно подставлять α_{a1} и α_{a2} , где α_{a1} и α_{a2} — по табл. 4., п. 2.
		Для прямозубых передач рекомендуется $e_{\alpha} > 1,2$.
; · · · · ·		Для косозубых передач рекомендуется $\epsilon_{a} > 1,0$.
1		При $\alpha = 20^\circ$ и $h_a^* = 1$ (включая исходные контуры по ГОСТ
		13755—81 и ГОСТ 9587—70), упрощенный расчет ε_{α} передачи без смещения приведен в табл. 3 приложения 1
4. Коэффициент осевого пере- крытия	*9	$\epsilon_{eta} = rac{b_w}{ ho_X}$ где b_w — рабочая ширина венца,
		р _х — по табл. 5, п. 2. Рекомендуется в _в ≥ 1,0

Наименование параметра	Обозначение	Расчетные формуды и указания
5. Коэффициент перекрытия	•1	$\epsilon_{\gamma} = \epsilon_{\alpha} + \epsilon_{\beta}$
i		
Допол	нительный ра-	счет при модификации головки исходного контура
 Угол профиля зуба в на- чальной точке модификации го- ловки 	a _g	$\cos \alpha_{\mathcal{S}} = \frac{d_b}{d_{\mathcal{S}}} \ ,$ где d_b и $d_{\mathcal{S}}$ — по табл. 4, пл. 1 и 7.
7. Часть коэффициента торцо- вого перекрытия, определяемая участками торцовых профилей зубьев, совпадающими с главны- ми профилями	*aM	$\varepsilon_{aM}=rac{z_1 \log a_{g_1}+z_2 \log a_{g_2}-(z_1+z_2) \log a_{fer}}{2\pi}$ При исходиом контуре по ГОСТ 13755—81 в нем приведены допустимые значения ε_{aM}
8. Угол наклона линки верши-	Проверка но	рмальной толщины на поверхности вершин $\operatorname{tg}\beta_{\sigma} = -\frac{d_{\sigma}}{d} - \operatorname{tg}\beta$
ны зуба	ra .	$\lg \beta_a = \frac{1}{d} \lg \beta$
9. Нормальная толщина на по- верхности вершин	s _{na}	$s_{na} = d_a \left(\frac{\frac{\pi}{2} + 2x \operatorname{tg} \alpha}{z} + \operatorname{inv} \alpha_t - \operatorname{inv} \alpha_a \right) \cos \beta_a.$
		Рекомендуется $s_{na} > 0.3m$ при однородной структуре материала зубьев и $s_{na} > 0.4m$ при поверхностиом упрочвении зубьев. При $\alpha = 20^\circ$ и $h_a^{\sigma} = 1$ (включая исходные контуры по ГОСТ 13755—81 и ГОСТ 9587—70), если притупление продольных кромок ме учитывается, упрощенный расчет s_{na} приведен в табл. 3 приложения і

Примечания:

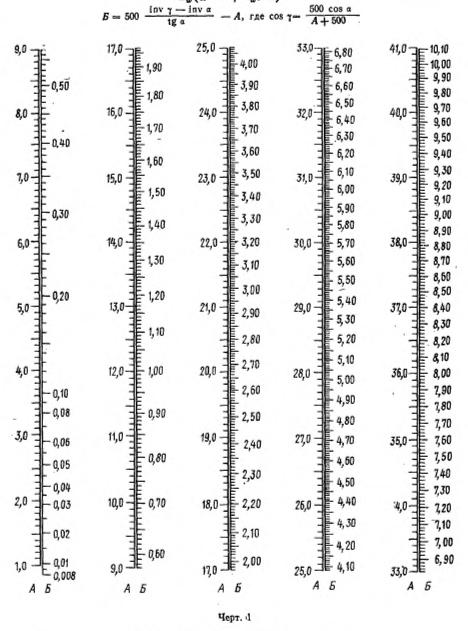
1. При $\alpha=20^\circ$ и $h_a^*=1$ (включая исходные контуры по ГОСТ 13755—81 и ГОСТ 9587—70) проверки коэффициента торцового перекрытия и нормальной толщины на поверхности вершии производятся по приложению 3. По этому же приложейию при $\alpha=20^\circ$ и $h_I^*-h_a^*=1$ (включая исходный контур по ГОСТ 13755—81) производится проверка отсутствия интерференции зубьев и проверка отсутствия подрезания зуба.
2. Дополнительные указания, относящиеся к проверкам отсутствия подрезания зуба и интерференции зубьев зубчатых колес, окончательно обрабатываемых голько зуборезным долбяком, приведены в приложения 4.

ПРИЛОЖЕНИЕ I Рекомендуемое

УПРОЩЕННЫЯ РАСЧЕТ ГЕОМЕТРИЧЕСКИХ ПАРАМЕТРОВ

Таблица 1

Наименование параметра	Обозначение	Расчетвые формулы и указания
Расчет коэффиці	ента суммы см	пещений x_{Σ} при заданном межосевом расстоянин a_{w}
1. Қозффициент восприянмае- мого смещения	y	$y = \frac{a_w}{m} - \frac{z_1 + z_1}{2\cos\beta}$
2. Вспомогательная величена	A	$A = \frac{1000 \ y \cos \beta}{z_1 + z_2}$
	Б	Определяется по номограмме на черт. 1
	, μ	Определяется по графику на черт. 2 Если β=0, то μ=0
3. Коэффициент уравнительно- о смещения	Δy	$\Delta y = \left(\frac{B}{1000} - \mu\right) \frac{z_1 + z_8}{\cos \beta}$
4. Қоэффициент суммы смеще-	х,	$x_{\Sigma} = y + \Delta y$
Расчет межо	евого расстоя	иня a_{00} при заданных коэффициентах смещения x_1 и x_2
 Коэффициент суммы смеще- ий 	. x ₂	$x_2 = x_1 + x_2$
6. Вспомогательная величина	В	$B = \frac{1000x_0 \cos \beta}{z_1 + z_3}$
	Г	Определяется по номограмме на черт. 3
	٧ .	Определяется по графику на черт. 4 Если β=0, то ν=0
7. Коэффициент уравнительного мещения	Δy	$\Delta y = \left(\frac{\Gamma}{1000} - \nu\right) \frac{z_1 + z_3}{\cos \beta}$
8. Коэффициент воспринимае- юго смещения	y	$y = x_{\vec{1}} - \Delta y$
9. Межосевое расстояние	a _w .	$a_w = \left(\frac{z_1 + z_2}{2 \cos \beta} + y\right) m$
Pacuer	vrza sauenzes	иня прямозубой передачи се и угла профиля се,
10. Вспомогательная величина	В	$B = \frac{1000x_2}{z_1 + z_2}$
11. Угол зацепления прямозу- юй передачи	a _{es}	Определяется по номограмме на черт. 5
12. Угол профиля	σt	Определяется по номограмме на черт. 6 Если $\beta = 0$, то $\alpha_{\ell} = \alpha$


Таблица 2

$9687-70$), проверку условия $\rho_s > \rho_p$ производить не требуется. Здесь: $\rho_s = 0$ табл. 3, л. 1 настоящего стандарта, $\rho_p = 0$ табл. 4, л. 3 настоящего стандарта. При исклолом коитуре по ГОСТ 13755—81 с модификацией го ки $h_g^* = 0.45$ и $x > 0$ проверку условия $\rho_s > \rho_p$ производить не третом. Здесь $\rho_g = 0$ по табл. 4, л. 5 настоящего стандарта определяется по табл. 4, л. 5 настоящего стандарта определяется по табл. 4. $\frac{1}{2}$ выраженной кормания общей нормания общей нормания общей нормания общей нормания общей нормания общей нормания $\sigma_s = 0$, то $\sigma_s = 0$. Определяется по табл. 5. $\sigma_s = 0$, то $\sigma_s = 0$, то $\sigma_s = 0$. Определяется по табл. 6. $\sigma_s = 0$, то $\sigma_s = 0$. Определяемая дробаей частью $\sigma_s = 0$, то $\sigma_s = 0$. Определяемая дробаей частью $\sigma_s = 0$, то $\sigma_s = 0$. Определяемая дробаей частью $\sigma_s = 0$, то $\sigma_s = 0$. Определяемая дробаей частью $\sigma_s = 0$, то $\sigma_s = 0$. Определяемая дробаей частью $\sigma_s = 0$, то $\sigma_s = 0$. Определяемая дробаей частью $\sigma_s = 0$, то $\sigma_s = 0$. Определяемая дробаей частью $\sigma_s = 0$, то $\sigma_s = 0$. Определяемая дробаей частью $\sigma_s = 0$, то $\sigma_s = 0$. Определяемая дробаей частью $\sigma_s = 0$, то $\sigma_s = 0$. Определяемая дробаей частью $\sigma_s = 0$, то $\sigma_s = 0$. Определяемая дробаей частью $\sigma_s = 0$, то $\sigma_s = 0$. Определяемая дробаей частью $\sigma_s = 0$, то $\sigma_s = 0$. Определяемая дробаей частью $\sigma_s = 0$. Определяемая др	Наименование параметра	Обозначение	Расчетные формулы и указания
2. Постоянная хорда 2. Постоянная хорда 3. Расстоянне постоянной хорты от делиговной вкружности, выражение в долях модуля 3. Расстояние постояной хорты от делиговной вкружности, выражения хорды от делиговной окружности, выражения хорты от делиговной окружности, выражения общей нормани, определяемая целой частью z_T величины z_K , выраженная в долях ходуля 5. Условное число зубьев 2. Часть длины общей нормани, определяемая пелой частью z_T величины z_K , выраженная в долях модуля 7. Часть длины общей нормани, определяемая целой частью z_T величины z_K , выраженная в долях модуля 8. Часть длины общей нормани, определяемая смещением исолюго хонтурь, выраженная в долях модуля 8. Часть длины общей нормани, определяемая пелой частью сымчины z_K , выраженная в долях модуля 8. Часть длины общей нормани, определяемая смещением исолюго хонтурь, выраженная в долях модуля 9. Длина общей нормани z_K , выраженная в долях модуля 9. Длина общей нормани z_K , выраженная в долях модуля 9. Длина общей нормани z_K , выраженная в долях модуля 9. Длина общей нормани z_K , выраженная в долях модуля 9. Длина общей нормани z_K , выраженная в долях модуля 10. При z_K долях модуля 11. Турь долях модуля 11. Турь долях модуля 12. Турь долях модуля 13. Расстоящего стандарта, проверку долях модуля и долях модуля долях модуля долях модуля долях модуля долях модуля, долях долях долях модуля долях дол		Расчет постоя	иной хорды и высоты до постоянной хорды
Если значения \overline{s}_c^* находится в пределах, определяемых по так при $h_f^* - h_a^* > 1$ (включая исходине жонтуры по ГОСТ 13755—81 и 1 9587—70), проверку условия $\rho_s > \rho_p$ производить не требуется. Здесь: $\rho_s = \text{по табл. 4. п. 3 настоящего стандарта.}$ При исходимо контуре по ГОСТ 13755—81 с модификацией ги ки $h_g^* = 0.45$ и $x > 0$ проверку условия $\rho_s > \rho_g$ производить не тестя. Здесь $\rho_g = 0.0$ табл. 4. п. 5 настоящего стандарта. При исходимо контуре по ГОСТ 13755—81 с модификацией ги ки $h_g^* = 0.45$ и $x > 0$ проверку условия $\rho_s > \rho_g$ производить не тестя. Здесь $\rho_g = 0.0$ то табл. 4. п. 5 настоящего стандарта определяемой в модули $h_g^* = 0.5$ на $r > 0.0$ проверку условия $\rho_s > 0.0$ проверку услови услов	1. Постоянная хорда, выраженная в долях модуля		Определяется по табл. 4
при $h_L^* = h_a^* > 1$ (включая исходные жонтуры по ГОСТ 13755—81 и I 9687—70), проверку условия $\rho_x > \rho_p$ производить не требуется. Здесь: $\rho_x = 0$ табл. 4, п. 3 настоящего стандарта, $\rho_p = 0$ табл. 4, п. 3 настоящего стандарта. При исходном контуре по ГОСТ 13755—81 с модификацией г ки $h_d = 0.45$ и $x > 0$ проверку условия $\rho_x > \rho_d$ производить не требуется. Здесь $\rho_x = 0.05$ долях модуля $h_d = 0.45$ и $h_d =$	2. Постоянная хорда	-s _c	$\overline{s}_c = \overline{s}_c^* m$
при $h_L^* = h_a^* > 1$ (включая исходные жонтуры по ГОСТ 13755—81 и I 9687—70), проверку условия $\rho_x > \rho_p$ производить не требуется. Здесь: $\rho_x = 0$ табл. 4, п. 3 настоящего стандарта, $\rho_p = 0$ табл. 4, п. 3 настоящего стандарта. При исходном контуре по ГОСТ 13755—81 с модификацией г ки $h_d = 0.45$ и $x > 0$ проверку условия $\rho_x > \rho_d$ производить не требуется. Здесь $\rho_x = 0.05$ долях модуля $h_d = 0.45$ и $h_d =$			Если значения з находятся в пределах, определяемых по табл.
$\begin{array}{cccccccccccccccccccccccccccccccccccc$			при $h_I^* = h_a^* > 1$ (включая исходные контуры по ГОСТ 13755—81 и ГОСТ 9587—70), проверку условия $\rho_S > \rho_B$ производить не требуется.
При исходяюм контуре по ГОСТ 13755—81 с модификацией гихи $h_{x}^{*} = 0.45$ и $x > 0$ проверку условия $\rho_{x} > \rho_{x}$ производить не тустех. 3. Расстояние постоянной хорты от делительной окружности, выраженной окружности, америменное в долях модуля 4. Высота до постоянной хорты $h_{x}^{*} = 0.45$ и $h_{x}^{*} = 0.5$ ($d_{x} - d_{x}^{*} - d_{x}^{*} = 0.45$ и $d_{x} - d_{x}^{*} = 0.45$			р ₃ — по табл. 3, п. 1 настоящего стандарта,
хи $h_{g}^{*}=0.45$ и х>0 проверку условия $\rho_{g}>\rho_{g}$ производить не тременное в долях модуля 4. Высота до постоянной хор- им Б. Условное число зубьев 5. Условное число зубьев 6. Часть длины общей норма- и, определяемая пелой частью габли в долях модуля 7. Часть длины общей норма- и, определяемая доблой частью габли в долях модуля 7. Часть длины общей норма- и, определяемая доблой частью габли в долях модуля 8. Часть длины общей норма- и, определяемая доблой частью габли в долях модуля 8. Часть длины общей норма- и, определяемая мещением ис- одного контура, выраженная в до- их модуля 9. Длина общей нормали W W W ECAN ЗНАЧЕНЬ И W W ECAN ЗНАЧЕНЬ И ECAN ЗНАЧЕНЬ И ECAN ЗНАЧЕНЬ И ECAN ЗНАЧЕНЬЯ В ДО- В В В В В В В В В В В В В			Pp — по табл. 4, п. 3 настоящего стандарта.
3. Расстояние постоянной хор- пім от делительной окружности, выражению в долях модуля 4. Вмеота до постоянной хор- пім от делительной окружности, выражению в долях модуля 5. Условию число зубьев 2 $_K$ 3. Рассит длины общей нормани, определяемая пелой частью z_T величины z_K , выраженияя в долях модуля 7. Часть длины общей нормани, определяемая дробной частью величины z_K , выраженияя в донях модуля 8. Часть длины общей нормани, определяемая дробной частью величины z_K , выражения в донях модуля 8. Часть длины общей нормани, определяемая смещением исодиного контура, выражения в донях модуля 9. Длина общей нормали 9. Длина общей нормали 10			ки $h_g = 0.45$ и $x>0$ проверку условия $\rho_s > \rho_g$ производить не требу-
а. Высота до постоянной кор- ды 4. Высота до постоянной кор- ды 5. Условное число зубьев 2			
Расчет дляны общей нормали 5. Условное число зубьев z_K $z_K = Kz$ Здесь K определяется по табл. 5. Если $\beta = 0$, то $z_K = z$ Определяется по табл. 6. Если $\beta = 0$, то $z_T = z$ 7. Часть дляны общей нормали, определяемая дробной частью выполнях модуля 8. Часть дляны общей нормали, определяемая в донах модуля 8. Часть дляны общей нормали, определяемая смещением истодиного контура, выраженная в донах модуля 9. Длина общей нормали w_X^* w_X	ды от делительной окружности,	$\overline{h}_{\Delta}^{\star}$	Определяется по табл, 4.
Расчет дляны общей нормали 5. Условное число зубьев z_K $z_K = Kz$ 3 десь K определяется по табл. 5. Если $\beta = 0$, то $z_K = z$ 6. Часть дляны общей нормани, определяемая целой частью выдолях модуля w_n^* Определяется по табл. 6. 7. Часть дляны общей нормани, определяемая дробной частью выдолях модуля w_n^* $w_n^* = 0.0140 (z_K - z_T)$ 8. Часть дляны общей нормани, определяемая смещением исодиног контура, выраженная в долях модуля $w_n^* = 0.6840x$ 9. Дляна общей нормали $w_n^* = 0.6840x$ 9. Дляна общей нормали $w_n^* = 0.6840x$ 10 дина общей нормани $w_n^* = 0.6840x$ <td></td> <td>-h_c</td> <td>$\overline{h}_c = 0.5(d_a - d) - \overline{h}_{\Delta}^* m$</td>		-h _c	$\overline{h}_c = 0.5(d_a - d) - \overline{h}_{\Delta}^* m$
5. Условное число зубьев $z_K = Kz$ Здесь K определяется по табл. 5. Если $\beta = 0$, то $z_K = z$ Здесь K определяется по табл. 5. Если $\beta = 0$, то $z_K = z$ Определяется по табл. 6. Если $\beta = 0$, то $z_T = z$ w_T^*			Расчет длины общей нормали
6. Часть длины общей нормания, определяется по табл. 6. Если $\beta=0$, то $z_T=z$ 7. Часть длины общей нормания, определяемая дробной частью вединяем z_K , выраженная в донях модуля 8. Часть длины общей нормани, определяемая смещением искодного контура, выраженная в донях модуля 9. Длина общей нормали W	5. Условиюе число зубьев	z _K	Здесь К определяется по табл. 5.
Если $\beta=0$, то $z_T=z$ Если $\beta=0$, то $z_T=z$ Если $\beta=0$, то $z_T=z$ Т. Часть длины общей нормана, определяемая дробной частью выпачения z_K , выраженная в донях модуля 8. Часть длины общей нормани, определяемая смещением истодного контура, выраженная в долях модуля 9. Длина общей нормали Т. Часть длины общей нормани, определяемая смещением истодного контура, выраженная в долях модуля Т. Часть длины общей нормани, определяемая смещением истодного контура, выраженная в долях модуля Т. Часть длины общей нормани z_K , выраженная в донях модуля Т. Часть длины общей нормани z_K , выраженная в донях модуля Т. Часть длины общей нормани z_K , выраженная в донях модуля Т. Часть длины общей нормания z_K , выраженная в донях модуля Т. Часть длины общей нормания z_K , выраженная в донях модуля Т. Часть длины общей нормания z_K , выраженная в донях модуля Т. Часть длины общей нормания z_K , выраженная в донях модуля Т. Часть длины общей нормания z_K , выраженная в донях модуля Т. Часть длины общей нормания z_K , выраженная в донях модуля Т. Часть длины общей нормания z_K , выраженная в донях модуля Т. Часть длины общей нормания z_K , выраженная в донях модуля Т. Часть длины общей нормания z_K , выраженная в донях модуля Т. Часть длины общей нормания z_K , выраженная в донях модуля Т. Часть длины общей нормания z_K , выраженная в донях модуля Т. Часть длины общей нормания z_K , выраженная в донях модуля Т. Часть длины общей нормания z_K , выраженная в донях модуля Т. Часть длины общей нормания z_K , выраженная в донях модуля Т. Часть длины общей нормания z_K , выраженная в донях модуля Т. Часть длины общей нормания z_K , выраженная в донях модуля Т. Часть длины z_K , выраженная в донях модуля Т. Часть длины z_K , выраженная в донях модуля Т. Часть длины z_K , выраженная в донях модуля Т. Часть длины z_K , выраженная в донях модуля Т. Часть длины z_K , выраженная в донях модуля z_K , выраженная z			ECAN $\beta = 0$, to $z_K = z$
евиячения z_K , выраженная в до- пях модуля 8. Часть длины общей норма- ня, определяемая смещением ис- подного контура, выраженная в долях модуля 9. Длина общей нормали	и, определяемая целой частью z_T величины z_K , выраженная	W_T^*	
евиячения z_K , выраженная в до- пях модуля 8. Часть длины общей норма- ня, определяемая смещением ис- подного контура, выраженная в долях модуля 9. Длина общей нормали	7. Часть длины общей норма-	nz*	W* - 0.0140 / >
ях модуля 8. Часть длины общей нормани, определяемая смещением истодного контура, выраженная в долях модуля 9. Длина общей нормали	и, определяемая дробной частью	w _n	
и, определяемая смещением истодного контура, выраженная в колях модуля 9. Длина общей нормали $W = (W_T^* + W_A^* + W_A^*) m$ Если значения W_T^* находятся в пределах, определяемых таб. при $h_a^* = 1, h_I^* - h_a^* > 1$ (включая исходные контуры по Голям, приведенным в табл. 2 п. 15 настоящего стандарта, проверку ловия $\rho_\rho < \rho_W < \rho_Q$ производить не требуется.	그렇게 하는 그 생생님 모든 그렇게 했다. 이 그리는 이번 사람들이 하지 않는데 하는데 하는데 하는데 하는데 하는데 하는데 하는데 하는데 하는데 하		Ecan $\beta = 0$, to $W_n = 0$
Если значения W_T^* находятся в пределах, определяемых таблира $h_a^* = 1, h_1^* - h_a^* > 1$ (включая неходиме контуры по Го 13755—81 и ГОСТ 9587—70) и значении d_A рассчитанном по формам, приведенным в табл. 2 п. 15 настоящего стандарта, проверку ловия $\rho_P < \rho_{BP} < \rho_{AP}$ производить не требуется.	и, определяемая смещением ис- кодного контура, выраженная в	W _x	$\boldsymbol{\mathcal{W}}_{x}^{\bullet} = 0,6840x$
при $h_a^*=1, h_t^*=h_a^*>1$ (включая исходные контуры по Го 13755—81 и ГОСТ 9587—70) и значении d_a рассчитанном по фолам, приведенным в табл. 2 п. 15 настоящего стандарта, проверку ловия $\rho_{\rho}<\rho_{W}<\rho_{a}$ производить не требуется.	9. Длина общей нормали	W	$W = (W_T^* + W_n^* + W_x^*) m$
при $h_a^*=1, h_t^*=h_a^*>1$ (включая исходные контуры по Го 13755—81 и ГОСТ 9587—70) и значении d_a рассчитанном по фолам, приведенным в табл. 2 п. 15 настоящего стандарта, проверку ловия $\rho_{\rho}<\rho_{W}<\rho_{a}$ производить не требуется.			Если значения W_T^* находятся в пределах, определяемых табл. 6
Здесь:			при $h_a^*=1, h_l^*-h_a^*>1$ (включая исходные контуры по ГОСТ 13755—81 и ГОСТ 9587—70) и значении d_a рассилтанном по формулам, приведенным в табл. 2 п. 15 настоящего стандарта, проверку ус-
р _р — по табл. 4, п. 3 настоящего стандарта,			
р _и н р _и — по табл. 3, п. 5 настоящего стандарта,			

Продолжение табл. 2

			Продолжение табл. 2
Наименованне параметра 9. Длина общей нормали		Обозначение	Расчетные формулы и указания
		W .	При исходиом контуре по ГОСТ 13755—81 с модификацией головки $h_g^*=0.45$ проверку условия $\rho_W < \rho_g$ производить не требуется. Здесь ρ_g по табл. 4, л. 5 настоящего стандарта. Для косозубых зубчатых колес должно выполняться дополнительное условие $W < \frac{b}{\sin \beta_b} \;,$ где b — ширина венця, β_b — по табл. 4, л. 11 настоящего стандарта.
Расчет	вспомогательно	ой величины	 для вычисления размера по роликам косозубых зубчатых колес с нечетным числом зубьев
10. Вспомогательн	вничина ка	λ	Определяется по графику на черт. 7.
Расчет	некоторых	геометриче	Таблица 3 ских показателей, определяющих качество зацепления
Наименование п	параметра	Обозначение	Расчетные формулы и указания
		Расчет	коэффициента наименьшего смещения
1. Коэффициент смещения	наименьшего	Xmin	Определяется по графику на черт. 8.
	Расче	т коэффициен	та торцового перекрытия передачи без смещения
2. Составляю- щая коэффициента перекрытия пере-	шестерин	£01	Определяется по графику на черт. 9, если значення d_{a1} и d_{a2} рассчитаны по формулам, приведенным в табл. 2, п. 15 настоящего стандарта и притупление продольных кромок зубыев не учитывается
дачи без смеще- ния, определяе- мая начальными головками зубьев	колеса	e _{a2}	
3. Коэффициент т рекрытия передачи (£*	$s_a = s_{a1} + s_{a2}$
		Расчет норы	нальной толщины на поверхности вершин
4. Эквивалентное число зубьев		z _v	$z_v = \frac{z}{\cos^3 \beta}$
			(округляется до ближайшего целого числа) Если $\beta = 0$, то $z_v = z$
5. Окружная толщина зуба на окружности вершин эквивалент- ного зубчатого колеса, выражен- ная в долях модуля		s*************************************	Определяется по номограмме на черт. 10
6. Нормальная тол верхности вершии	пцяна на по-	s _{na}	s _{na} ≈s [*] _{av} m

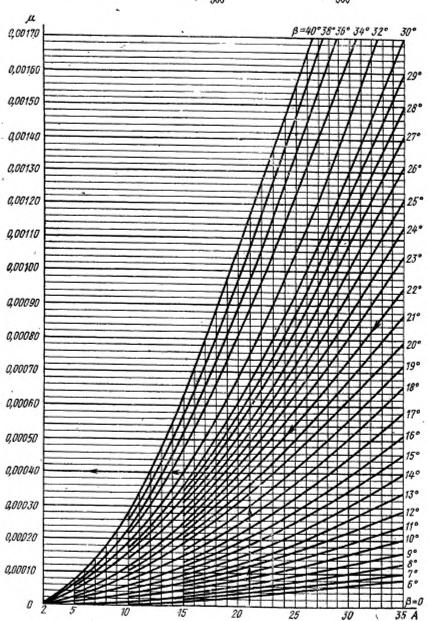
Номограмма для определення вспомогательной величины B при заданном межосевом расстоянии $a_{w}(\alpha=20^{\circ}, a_{w}>a)$

Пример. Дано:

 $z_1 = 9$, $z_2 = 26$, m = 6 MM, $\beta = 22^\circ$, $a_w = 118$ MM.

Расчет:

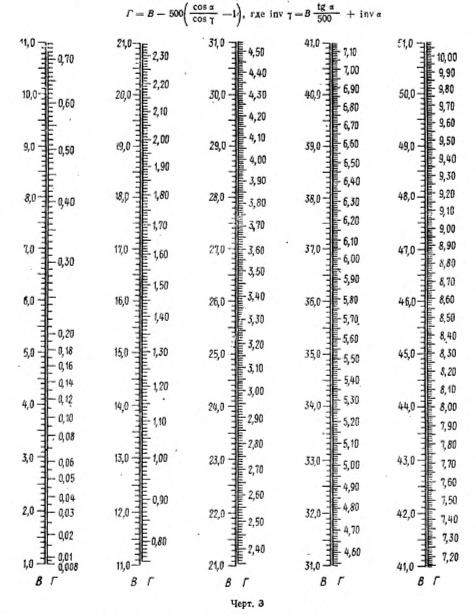
$$y = \frac{a_{yy}}{m} - \frac{z_1 + z_2}{2\cos \beta} = \frac{118}{6} - \frac{9 + 26}{2 \cdot 0.927} = 0.792$$


$$A = \frac{1000y \cos \beta}{z_1 + z_2} = \frac{1000 \cdot 0.792 \cdot 0.927}{35} = 20.97$$

По номограмме определяем B=2,92.

График для определения вспомогательной величины μ в зависимости от A и β (α=20°)

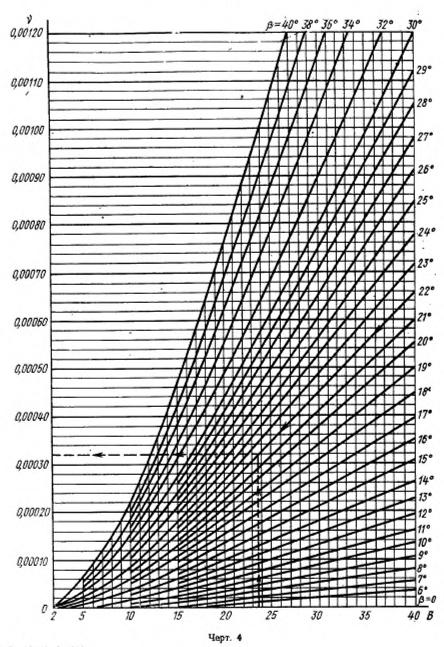
$$\mu = \frac{\ln \alpha_w - \ln \alpha}{2 \lg \alpha} - \frac{\ln \alpha_{\ell w} - \ln \alpha_{\ell}}{2 \lg \alpha_{\ell}},$$


$$r_{\text{ZP}} = \frac{\cos \alpha_w}{1 + \frac{A}{500}}; \qquad \cos \alpha_{\ell w} - \frac{\cos \alpha_{\ell}}{1 + \frac{A}{500}}$$

Черт. 2

^{*}Пример. Дано: A=20.97, $\beta=22^\circ$. По графику определяем $\mu=0.00040$ (см. пунктир)

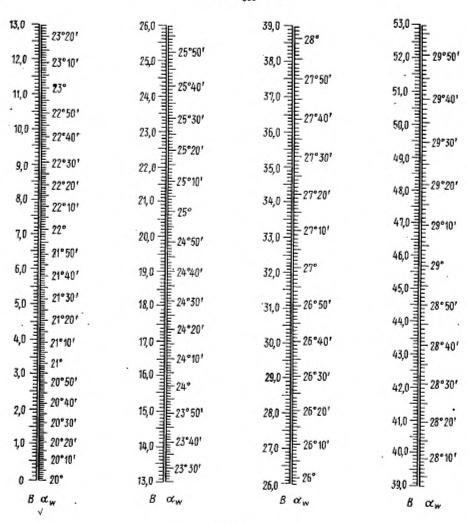
Номограмма для определения вспомогательной величины Г при заданном коэффициенте суммы смещений $x_{\rm B}$ ($\alpha = 20^{\circ}, x_{\rm E} > 0$)


 $z_1=9; z_2=26; m=6 \text{ mm}; \beta=22^\circ; 1000x_1 \cos \beta$ $x_1 = 0.587$; $x_2 = 0.300$. $1000 \cdot 0.887 \cdot 0.927$ Пример. Дано: -23,49В Pacuer: $z_1 + z_2$ 35

По номограмме определяем $\Gamma = 2.83$.

График для определения вспомогательной величины ν в зависимости от B и β ($\alpha = 20^{\circ}$)

$$x = 0.5 \left(\frac{\cos \alpha_t}{\cos \alpha_{tw}} - \frac{\cos \alpha}{\cos \alpha_{w}} \right)$$
, rate inv $\alpha_{tw} = B \frac{\text{tg } \alpha_t}{500} + \text{inv } \alpha_t$;

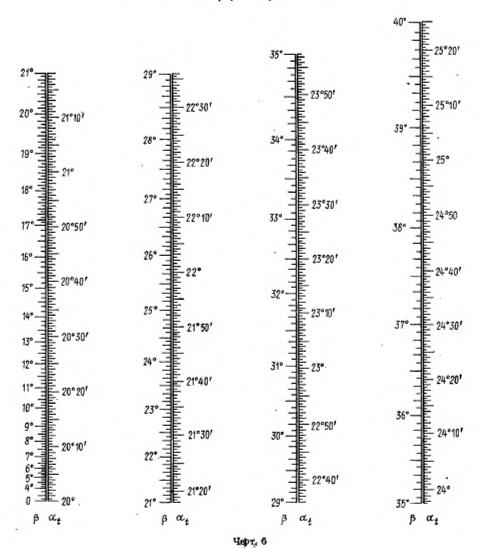

inv $\alpha_{w} = B \frac{\text{tg } \alpha}{500} + \text{inv } \alpha$

Пример. Дано: B=23, 49, $\beta=22^\circ$. По графику определяем $\nu=0,00032$ (см. пунктир).

Номограмма для определения величины α_w в зависимости от x_2 и z_1+z_2 ($\alpha\!=\!20^\circ, x_2^-\!>\!0$)

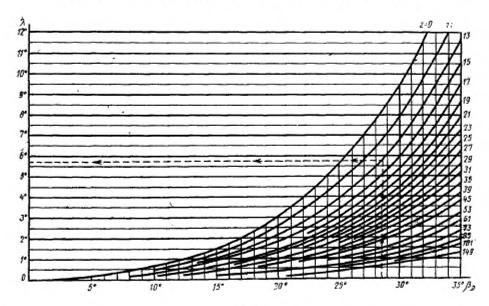
$$inv \alpha_w = B \frac{tg \alpha}{500} + inv \alpha$$

Черт. 5


Пример. Дано: $z_1+z_2=50$, $x_\Sigma=1,154$.

Расчет:

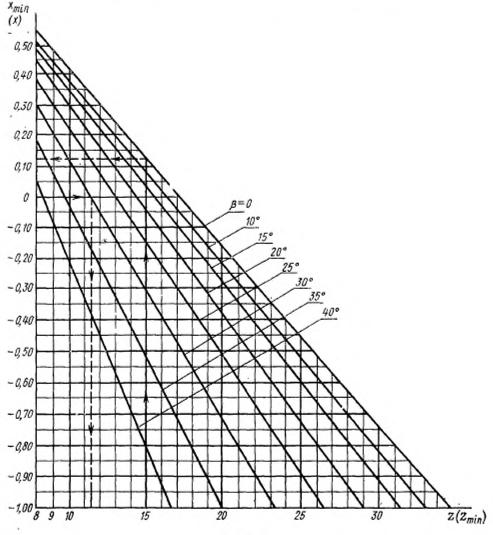
$$B = \frac{1000x_{1}}{z_{1} + z_{2}} = \frac{1000 \cdot 1,154}{50} = -23,08.$$


По номограмме определяем α_w =25°27′.

Номограмма для определения величины α_i в зависимости от β ($\alpha = 20^\circ$)

Пример. Дано: $\beta = 22^\circ$. По номограмме определяем $\alpha_I = 21^\circ 26^\prime$.

График для определения величины λ в зависимости от z и β .


Черт, 7

. Пример. Дано: $z=13,~\beta_D=28^{\circ}40'.$ По графику определяем $\lambda-5^{\circ}45'$ (см. пунктир).

График для определения величины x_{\min} в зависимости от z и β или z_{\min} — от x и β (α —20°, h_l^* — h_a^* = 1) $x_{\min} = h_l^* - h_a^* - \frac{z \sin^2 \alpha_l}{2 \cos \beta}$

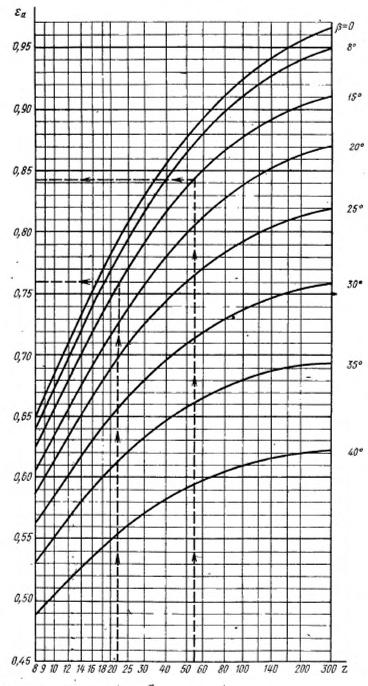
$$x_{\min} = h_1^* - h_a^* - \frac{z \sin^2 \alpha_t}{2 \cos \beta}$$

$$z_{\min} = \frac{2(h_t^* - h_a^* - x)\cos\beta}{\sin^2 a_t}$$
 (округляется до ближайшего большего целого числа)

Черт. 8

Примеры. 1. Дано: z=15, β=0.

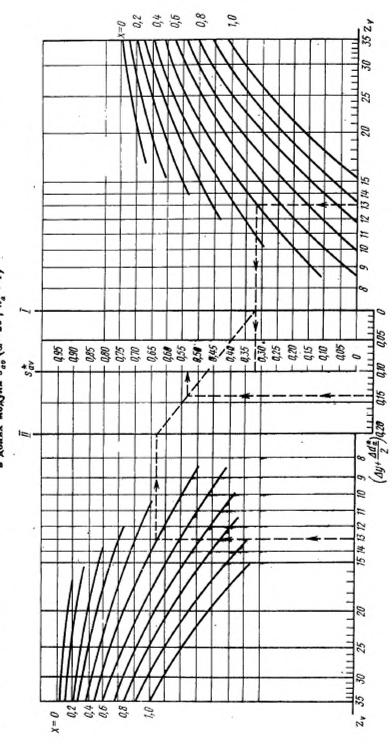
. Дано: z=0, p=0.


По графику определяем $x_{\min}=0,12$ (см. пунктир).

2. Дано: x=0, $\beta=30^\circ$.

По графику определяем наименьшее число зубьев $z_{\min}=0,12$ (см. пунктир).

График для определения величины ϵ_{a1} и ϵ_{a2} передачи (без смещения в зависимости от z и β (α = 20°, h_a^* = 1)


$$a_a = -\frac{z}{2\pi} (\operatorname{tg} a_a - \operatorname{tg} a_{tw})$$

Черт. 9

Пример. Дано: $z_1=22,\ z_2=55,\ \beta=15^\circ.$ По графику при z_1 и β определяем $s_{a1}=0.76$ (см. пунктир), при z_2 и β определяем $s_{a2}=0.84$ (см. пунктир).

Номограмма для определения окружной толщины зуба на окружности вершин эквивалентного зубчатого колеса, выраженной в долях модуля s_{av} ($lpha=20^\circ$, $h_a=1$)

в табл. 2, п. 15 вастоящего стандарта, выраженная в доляк модуля Δd_a^a — величина изменения дивметра вершии, рассчитанного по формуле, приведенной при уменьшении d_a эта величина положительная, при уменьшении d_a эта величина положительная, при увеличения — отрицательная). Yepr. 10 Примеры.

 Δd_a^{Δ} 1. Дано: $z_v=13$; x=0.5; $(\Delta_y+rac{\Delta d_a^{\Delta}}{2})=0$,14 . На правой н левой частях номограмиd по значениям $z_v=13$ и x=0.5 находим точки на осях I и II

 Δd_a соедивяем их прямой и по значениям ($\Delta_y + \frac{\Delta d_a}{2}$) — 0,14 получаем величину $s_{av}^{\ \ \ }$ =0,54 (см. вунитир).

 $\Delta d_a^{\Delta d_a}$ 2. Дано: $z_p=13; x=0.5; (\Delta_p+\frac{\Delta d_a^2}{2})=0$. Пользуясь правой частью вомотраммы и продолжая пунктир за ось I_r получаем величину $s_{ap}^*=0.32$ (см. пунктир)

Таблица 4

Значения постоянной хорды s_c^* и расстояния ее от делительной окружности h_{Δ}^* , выраженные в долях модуля $(\alpha = 20^\circ)$

$$\overline{s}_c^* = \frac{\pi}{2} \cos^2 \alpha + x \sin 2 \alpha$$

$$\overline{h}_{\Delta}^{\bullet} = 0,5 \overline{s}_{\sigma}^{\bullet} \operatorname{tg} \alpha$$

x	F.	$\overline{b}_{\Delta}^{\bullet}$. *	30	¯ħ _Δ *	x	300	To A
-0,50	1,0657	0,1940	0,00	1,3870	0,2524 .	0,50	1,7084	0,3109
-0,49	1,0721	0,1951	0,01	1,3935	0,2536	0,51	1,7149	0,3121
-0,48	1,0785	0,1963	0,02	1,3999	0,2548	0,52	1,7213	0,313
-0.47	1,0850	0,1975	0,03	1,4063	0,2559	0,53	1,7277	0,314
-0,46	1,0914	0,1986	0.04	1,4128	0,2571	0,54	1,7341	0,3150
-0,45	1,0978	0,1998	0,05	1,4192	0,2583	0.55	1,7406	0.316
-0.44	1,1042	0,2010	0,06	1,4256	0,2594	0,56	1,7470	0,317
-0,43	1,1107	0,2021	0,07	1,4320	0,2606	0,57	1,7534	0,319
-0,42	1,1171	0.2033	0.08	1,4385	0,2618	0.58	1,7599	0,320
-0,41	1.1235	0,2045	0.09	1,4449	0,2630	0.59	1,7663	0,3214
-0,40	1,1299	0,2057	0,10	1,4513	0,2641	0,60	1,7727	0,322
0,39	1,1364	0,2068	0,11	1,4578	0,2653	0,61	1,7791	0,323
0.38	1,1428	0,2080	0,12	1,4642	0,2665	0,62	1,7856	0,3249
-0,37	1,1492	0,2092	0,13	1,4706	0,2676	0,63	1,7920	0,326
-0,36	1,1557	0,2103	0,14	1,4770	0,2688	0,64	1,7984	0,327
-0,35	1,1621	0,2115	0,15	1,4835	0,2700	0,65	1,8049	0,328
-0,34	1,1685	0,2127	0,16	1,4899	0,2711	0,66	1,8113	0,329
-0,33	1,1749	0,2138	0,10	1,4963	0,2723	0,67	1,8177	0,330
-0,32	1,1814	0,2150	0,18	1,5028	0,2735	0.68	1,8241	0,331
-0,32	1,1878	0,2162	0,19	1,5092	0,2747	0,69	1,8306	0,333
-0,30	1,1942	0,2174	0,19	1,5156	0,2758	0,70	1,8370	0,334
-0,29	1,2007	0,2185	0,21	1,5220	0,2770	0,71	1,8434	0,335
-0,29 -0,28	1,2071	0,2197	0,22	1,5285	0,2782	0,72	1,8498	0,336
-0,27 -0,26	1,2135 1,2199	0,2209	0,23 0,24	1,5413	0,2805	0,73 0,74	1,8627	0,337
-0,25	1,2264	0.2232	0,25	1.5477	0.2817	0.75	1,8691	0,340
-0,24	1,2328	0,2244	0,26	1,5542	0,2828	0.76	1,8756	0,341
-0,23	1,2392	0,2255	0,27	1,5606	0,2840	0,77	1,8820	0,342
-0.22	1,2457	0,2267	0,28	1,5670	0,2852	0,78	1,8884	0,343
-0,21	1,2521	0,2279	0,29	1,5735	0,2864	0,79	1,8948	0,344
-0,20	1,2585	0,2291 0,2302	0,30	1,5799	0,2875 0,2887	0,80	1,9013	0,346
-0,19 -0,18	1,2649	0,2302	0,31 0,32	1,5927	0,2899	0,82	1,9141	0,348
0,10	1,2778	0,2326	0,33	1,5992	0.2910	0,83	1,9206	0,349
-0,17 -0,16	1,2842	0.2337	0,34	1,6056	0,2922	0,84	1,9270	0,350
-0,15	1,2906	0,2349	0,35	1,6120	0,2934	0,85	1,9334	0,351
-0,14	1,2971	0,2361	0,36	1,6185	0,2945	0,86	1,9398	0,353
-0,13	1,3035	0,2372	0,37	1,6249	0,2967 0,2969	0,87	1,9463 1,9527	0,354
-0,12 -0,11	1,3099	0,2384 0,2396	0,38	1,6377	0,2981	0,89	1,9591	0,356
-0,10	1,3228	0,2408	0,40	1,6442	0,2992	0,90	1,9655	0,357
-0.09	1,3292	0.2419	0,41	1,6506	0,3004	0,91	1,9720	0,358
-0,08	1,3356	0.2431	0.42	1,6570	0,3016	0,92	1,9784	0,360
-0.07	1,3421	0,2443	0,43	1,6635	0.3027	0,93	1,9848	0,361
-0,06	1,3485	0,2454	0,44	1,6699	0,3039	0,94	1,9913	0,362
-0,05	1,3549	0,2466	0,45	1,6763	0,3051	0,95	1,9977	0,363
-0,04	1,3614	0,2478	0,46	1,6827 1,6892	0,3062	0,96	2,0041 2,0105	0,364
-0,03 -0,02	1,3678	0,2490	0,48	1,6956	0,3086	0,98	2,0170	0,300
-0,02	1,3806	0,2513	0.49	1,7020	0,3098	0,99	2,0234	0,368
0,01	1,0000	,	٠,	.,	.,	1.00	2,0298	0,369

Таблица 5

Значения коэффициента K ($\alpha = 20^{\circ}$)

$$K = \frac{\text{inv } a_t}{\text{inv } a}$$

	K	9	K] ,	K	β	K
β .	. ^	-					54.50
3900'	1,0283	16900'	1,1192	24°00′	1,2933	32°00′	1,5952
910'	1,0295	16010/	1,1219	24°10′	1,2980	32°10′	1,6033
920'	1,0308	16°20′	1,1246	24°20′	1,3029	32°20′	1,6116
°30′	1,0321	16°30′	1,1274	24°30′	1,3078	32°30′	1,6200
°40′	1,0334	16°40′	1,1302	24°40′	1,3127	32°40′	1,6285
°50′	1,0347	16°50′	1,1330	24°50′	1,3177	32°50′	1,6371
900'	1,0360	17°00′	1,1358	25°00′	1,3227	33°00′	1,6457
P10'	1,0374	17010	1,1387	25°10′	1,3278	33°10′	1,6546
°20′	1,0388	17°20′	1,1416	25°20'	1,3330	33°20′	1,663
9°30′	1,0402	17°30′	1,1446	25°30′	1,3382	33°30′ 33°40′	1,672
9°40'	1,0417	17°40′	1,1476	25°40′	1,3435	33°50′	1,681
°50′	1,0432	17°50′	1,1507	25°50′	1,3486	1	1,690
0°00′	1,0447	18°00′	1,1538	26°00′	1,3542	34°00′	1,699
0910' •	1,0462	18º10/	1,1569	26°10′	1,3597	34°10′	1,709
9°20′	1,0478	18°20′	1,1600	26°20′	1,3652	34°20′ 34°30′	1,718
0°30′	1,0494	18°30′	1,1632	26°30′	1,3708	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	1,728
0°40′	1,0510	18°40′	1,1664	26°40′	1,3765	34°40′ 34°50′	1,738
0°50′	1,0527	18°50'	1,1697	26°50′	1,3822	35°00′	1,747
1°00′	1,0544	19900/	1,1730	27°00′	1,3880	35°10′	1,757
1°10′	1,0561	19°10′	1,1764	27°10′	1,3938	35°20′	1,768
1°20'	1,0578	19°20′	4,1798	27°20′	1,3997	35°30′	1,778
1°30′	1,0596	19°30′	1,1832	27°30′	1,4057	35°40′	1,788
1040/	1,0614	19°40′	1,1867	27°40′	1,4117	35°50′	1,798
1950/	1,0632	19°50′	1,1902	27°50′	1,4178	36°00′	1,809
2°00′	1,0651	20°00′	1,1938	28°00′	1,4240	36°10′	1,820
2010'	4,0670	20°10′	1,1974	28°10′	1,4303	36°20′	1,830
2°20′	1,0689	20°20′	1,2010	28°20′	1,4366	36°30′	1,841
2°30′	1,0708	20°30′	1,2047	28°30′	1,4429		1,852
2°40′	1,0728	20°40′	1,2085	28°40′	1,4494	36°40′	1,864
2°50′	1,0748	20°50′	1,2123	28°50′	1,4559	36°50⁄	1,878
3°00′	1,0769	21°00′	1,2161	29°00′	1,4626	37°00′	. 1,886
3°10′	1,0790	21°10′	1,2200	29°10′	1,4693	37°10′ 37°20′	1,898
3°20′	1,0811	21°20′ -	1,2239	29°20′ 29°30′	1.4760 1.4828	37°30′	1,922
3°30′ 3°40′	1,0854	21°40′	1,2319	29°40'	1,4897	37°40′ 37°50′	1,934
3°50′ 4°00′	1,0876	21°50′ 22°00′	1,2360 1,2401	29°50′ 30°00′	1,4967 1,5038	38°00′	1,956
4910	1,0921	22°10′	1,2442	30°10′	1,5109	38°10′ 38°20′	1,971
4°20′ 4°30′	1,0944	22°20′ 22°30′	1,2484 1,2527	30°20′ 30°30′	1,5182	38°30′	1,996
4040	1,0991	22°40′	1,2670	30°40'	1,5329	38°40′ 38°50′	2,009
4°50′ 15°00′	1,1015	22°50′ 23°00′	1,2614 1,2658	30°50′ 31°00′	1,5404	39°00′	2,03
5°10'	1,1064	23°10'	1,2702	31°10′	7,5556	39°10′ 39°20′	2,049
5°20'	1,1089	23°20′ 23°30′	1,2747	31°20′ 31°30′	1,5633 1,5712	39°30′	2,076
5940	1,1140	23°40'	1,2839	31°40′	1,5791	39°40′ 39°50′	2,090
15°50′	1,1166	23°50′	1,2880	31°50′	1,5871	40°00′	2,118

Таблица б

Значения части длины общей нормали W 🔭 , выраженной в долях модуля (α=20°) z_w z_w ·T W_T^* . x r_{τ} 8 От 0,55 до 0,80 4,5402 2 10,8367 От -0,50 до 0 9 От 0,50 до 0,80 2 4.5542 36 0 до 0,65 13,7888 Ca-6 10 2 CB. 0.65 go 1.00 16,7409 От 0,40 до 0,80 4,5683 4 10,8507 От 0,35 до 0,65 4,5823 2 От -0,50 до -0.0511 -0.05 до 3 37 0.60 13,8028 Св 0,65 до 0,90 7.5344 CB. 6 16,7549 4,5963 2 Cs. 0,60 до 1,00 От 0,30 до 0,50 12 4 От -0.50 до -0,10 10.8647 Св. 0.50 до 1,00 7.54843 5 38 Св. -0,10 до 0,50 13,8168 От 0,25 до 0,40 4.6103 2 13 6 Св. -0.50 до 1,00 16,7689 Св. 0.40 до 1,00 7,5624 3 От --0,50 до 0.20 10,8787 4 От 0.20 до 0.30 4.6243 2 14 13,8308 5 Св. -0,20 до 0,40 Св 0.30 до 1,00 $\bar{3}$ 39 7.5764 6 0.40 до 1,00 16,7829 CB. 4,6383 От 0,15 до 0,20 2 15 От -0,50 до -0.2510,8927 Св. 0,20 до 1,00 7,5904 3 0,35 5 40 -0,25 до 13,8448 CB. От 0,05 до 0,15 4,6523 2 16 0,35 до 6 1,00 16,7969 Ca. 3 Св. 0,15 до 1,00 7,6044 4 -0.50 до 10,9067 Or -0.30От 0 до 0,90 7,6184 3 17 -0,30 до 5 0.2513,8588 41 CB. Св. 0.90 до 1,00 10,5705 6 1,00 16,8109 CB. 0,25 до Or 0 до 0,75 7,6324 3 4 18 От -0,50 до --0.3510.9207 Св. 0,75 до 1,00 10,5845 4 5 0,20 13,8728 42 CB. -0,35 до От −0,05 до 0,65 7.6464 3 6 CB. 0,20 до 1,00 16,8249 19 0,65 go 1,00 10,5985 4 От -0,50 до 0.40 10.9347 От -0,10 до 0,55 7,6604 3 13,8868 5 43 -0,40 до 0.15 20 CB. 0,55 go 1,00 10,6125 6 CB. 0.80 16,8389 CB. 0.15 AO 7 OT -0,15 до 0,45 7,6744 3 Cs. 0,80 до 1,00 19,7910 21 0,45 go 1,00 10,6265 4 CB. Or -0,50 до 0,45 10.9487 От -0.25 до 0.35 7,6884 3 44 CB. --0.45 до 0,05 13,9008 5 22 0.05 до 0.75 6 0,35 до 1,00 10,6405 Cs. 16,8529 CB. 1,00 19,8050 7,7024 CB. 0,75 AO От -0,30 до 0,30 3 23 -0,50 до 0 13,9148 5 Ca. 0,30 до 1,00 Or -10,6545 4 до 0,65 6 45 16,8669 От -0,35 до 0,20 CB. 7,7165 3 24 0,65 до 1,00 Çв. 19,8190 7 0,20 до 1,00 10.6686 CB. -0,05 13.9289 5 -0,50 до -Ot Or -0,35 до 0,15 7,7305 3 25 -0,05 до 0.55 16,8810 8 46 Ca. -CB. 0,15 до 1,00 10,6826 0,55 до 1,00 19,8331 Ca. OT --0,40 go 0,05 7,7445 3 От -0,50 до 0.10 13,9429 5 26 0,05 до 0,80 CB. 10.6956 0.50 6 47 16.8950 -0.10 до CB. CB. 0.80 go 1.00 13,6487 5 7 0,50 до 1,00 19,8471 CB. От -0,45 до 0 7,7585 3 13,9569 5 Ōτ **—0,50 до** 0,20 27 до 0,70 10,7106 CB. 48 0,40 16,9090 6 -0,20 до CB. 0,70 до 1,00 13,6627 CB. 19,8611 1,00 7 0,40 AO Cв, От -0,50 до -0.057,7725 3 -0.50 до 13,9709 5 Ot -0.25 --0.05 до 28 0,60 CB. 10.7246 0,35 6 49 16,9230 Cs. -0.25 no 0.60 до 1,00 13,6767 5 Ca. 0,35 до 1,00 19,8751 7 CB, -0.50 до -0,10 7,7865 Or 3 0,30 5 OT -0,50 до 13,9849 29 Св. -0.10 до 0,50 10,7886 50 Св. -0,30 до 0.25 16,9370 6 0,50 до 1.00 13,6907 5 Co. 1,00 7 0,25 до 19,8891 Ca. От -0,50 до 0,20 7.8005 3 От -0,50 до 0.35 13,9989 Б 30 CB. -0,20 до 0,45 10.7526 0,20 16,9510 6 51 -0,35 до CB. 5 CB. 0,45 до 1,00 13,7047 0,20 до 1,00 19,9031 7 Co. -0,50 до 0,25 7,8145 3 Oт 5 OT -0.50 до 0,40 14,0129 31 Cn. -0,25 до 0,35 10,7666 4 52 Св. -0,40 до 6 0,15 16,9650 0,35 до 1,00 CB. 13,7187 0,80 19,9171 7 0.15 до CB. <u>От</u> – 0.50 до 3 0.30 7.8285 1,00 22,8692 8 0.80 до Cв. -0,30 до 0,25 32 10,7806 Cв. 14,0269 5 От -0,50 до 0,45CB. 0,25 до 1,00 13,7327 5 16,9790 53 -0,45 до 0,05 6 Cs. Ōτ -0.50 до 0,35 7,8425 3 0.05 до 19,9311 7 CB. 0,70 33 0.20 CB. 0.35 до 10,7946 22,8832 8 0,70 до 1,00 CB. 13,7467 0,20 Ao 1,00 CB. 16,9930 6. От -0,50 до 0 0.50 до Ōτ 0.40 7,8565 3 7 0 до 0,65 0,65 до 1,00 54 19.9451 Св. 34 0.15 10,8086 CB. -0.40 до 8 Ca. 22,8972 CB. 0,15 до 1,00 13,7607 5 6 От -0,50 до -0.0517,0071 0.50 до 0.45 7,8706 3 OT -Св. -0,05 до 19,9592 7 0.55 55 0,05 4 1,00 22,9113 0,45 до 10,8227 CB. Cs. 0,55 до 35 0,05 до 0,75 13,7748 5 Cs. 0,75 до 1,00 16,7269

Продолжение табл. 6

' 7.	*	w _T	z w	* _T	x	w _T *	**
50	От —0,50 до —0,10 Св. —0,10 до 0,50 Св. 0,50 до 1,00	17,0211 19,9732 22,9253	6 7 8	77	От —0.50 до —0.30 Св.—0.30 до 0.25 Св. 0.25 до 1.00	23,2194 26,1715 29,1236	8 9 10
67	От —0,50 до —0,20 Св. —0,20 до 0,40 Св. 0,40 до 1,00	17,0351 19,9872 22,9393	6 7 · 8	78 -	От —0,50 до —0,35 Св. —0,35 до 0,20 Св. 0,20 до 0,85	23,2334 26,1855 29,1376	8 9 10 11
58	От —0,50 до —0,25 Св. —0,25 до 0,35 Св. 0,35 до 1,00	17,0491 20,0012 22,9533	6 7 8	79	Св. 0,85 до 1,00 От -0,50 до -0,40 Св0,40 до 0,15	32,0897 23,2474 26,1995 29,1516	8 9 10
59	От —0,50 до —0,30 Св. —0,30 до 0,25 Св. 0,25 до 1,00	17,0631 20,0152 22,9673	6 7 8		Св. 0,15 до 0,75 Св. 0,75 до 1,00 От -0,50 до 0,05	32,1037 26,2135	11 9 10
60	От —0,50 до —0,35 Св. —0,35 до 0,20 Св. 0,20 до 1,00	17,0771 20,0292 22,9813	6 7 8	80	Св. 0,05 до 0,70 Св. 0,70 до 1,00 От —0,50 до 0 Св. 0 до 0,60	29,1656 32,1177 26,2276	9
61	От —0,50 до —0,40 Св. —0,40 до 0,15 Св. 0,15 до 0,80	17,0911 20,0432 22,9953	6 7 8 9	82	Св. 0,50 до 1,00 От -0,50 до -0,05	29,1797 32,1318 26,2416	11 9 10
62	Св. 0,80 до 1,00 От -0,50 до -0,45 Св0,45 до 0,05 Св. 0,05 до 0,70	25,9474 17,1051 20,0572 23,0093	6 7 8	83	Св. —0,05 до 0,55 Св. 0,55 до 1,00 От —0,50 до —0,10 Св. —0,10 до 0,45	29,1937 32,1458 26,2556 29,2077	9 10
63	Св. 0,70 до 1,00 От —0,50 до 0 Св. 0 до 0,60	25,9614 20,0712 23,0233	7 6	84	Св. 0,45 до 1,00 От -0,50 до -0,20 Св0,20 до 0,40	32,1598 26,2696 29,2217	9 10
64	Св. 0,60 до 1,00 От —0,50 до —0,05 Св. —0,05 до 0,55	25,9754 20,0852 23,0373	- 9 7 8	- 85	Св. 0,40 до 1,00 От -0,50 до -0,25 Св0,25 до 0,35	32,1738 26,2836 29,2357-	9 10
65	Св. 0,55 до 1,00 От -0,50 до -0,10 Св0,10 до 0,45	25,9894 20,0992 23,0513	9 7 8	86	Св. 0,35 до 1,00 От -0,50 до -0,30 Св0,30 до 0,25	32,1678 26,2976 29,2497	9 10
66	Св. 0,45 до 1,00 От —0,50 до —0,20 Св —0,20 до 0,40	26,0034 20,1132 23,0653	7 8	87	Св. 0,25 до 1,00 От -0,50 до -0,35 Св0,35 до 0,20	32,2018 26,3116 29,2637 -	9 10
67	Св. 0,40 до 1,00 От -0,50 до -0,25 Св0,25 до 0,35	26,0174 20,1272 23,0793	9 7 8		Св. 0,20 до 0,85 Св. 0,85 до 1,00 От -0,50 до -0,40	32,2158 35,1679 26,3256	11 12 9
68	Св. 0,35 до 1,00 От -0,50 до -0,30 Св0,30 до 0,25	26,0314 20,1412 23,0933	-9 7 8	- 88	Св0,40 до 0,15 Св. 0,15 до 0,75 Св. 0,75 до 1,00	29,2777 32,2298 35,1819	10 11 -12 10
69	Св. 0,25 до 1,00 От -0,50 до -0,35 Св0,35 до 0,20	26,0454 20,1553 23,1074 26,0595	99 8 9	89	От —0,50 до 0,05 Св. 0,05 до 0,70 Св. 0,70 до 1,00	29,2917 32,2438 35,1959	-10 -11 -12 10
70	Св. 0,20 до 0,85 Св. 0,85 до 1,00 От -0,50 до -0,40 Св0,40 до 0,15	29,0116 20,1693 23,1214	10 7 8	90	От -0,50 до 0 Св. 0 до 0,60 Св. 0,60 до 1,00	29,3057 32,2578 35,2099	11 12 10
	Св. —0,40 до 0,15 Св. 0,15 до 0,75 Св. 0,75 до 1,00 От —0,50 до 0,05	26,0735 29,0256 23,1354	9 10 8 .	91	OT -0,50 go -0,05 Cg, -0,05 go 0,55 Cg, 0,55 go 1,00 OT -0,50 go -0,10	29,3198 32,2719 35,2240 29,3338	11 12 10
71	Св. 0,05 до 0,70 Св. 0,70 до 1,00 От —0,50 до 0	26,0875 29,0396 23,1494	9 10 8	92	Св. —0,10 до 0,45 Св. 0,45 до 1,00 От —0,50 до —0,20	32,2859 35,2380 29,3478	
72	Св 0 до 0,60 Св. 0,60 до 1,00 От -0,50 до -0,05	26,1015 29,0536 23,1634	10	93	Св0,20 до 0,40 Св. 0,40 до 1,00 От -0,50 до -0,25	32,2999 35,2520 29,3618	11 12 10
73	Св. —0,05 до 0,55 Св. 0,55 до 1,00 От —0,50 до —0,10	26,1155 29,0676 23,1774	10 -	94	Св. —0,25 до 0,35 Св. 0,35 до 1,00 От —0,50 до —0,30	32,3139 35,2660 29,3758	12 10
74	Св. 0,10 до 0,45 Св. 0,45 до 1,00 От -0,50 до -0,20	29,1295 29,0816 23,1914	10 8	- 95	Св. —0,30 до 0,25 Св. 0,25 до 1,00 От —0,50 до —0,35	32,3279 35,2800 29,3698	11 12 10
75	Св0,20 до 0,40 Св0,40 до 1,00 От -0,50 до -0,25	26,1435 29,0956 23,2054	10 8	96	Св. —0,35 до 0,20 Св. 0,20 до 0,80 Св. 0,80 до 1,00	32,3419 35,2940 38,2461	11 12 13
70	Св. —0,25 до 0,35 Св. 0,35 до 1,00	26,1675 29,1096	10		1		"

-				
177.0	anda.	жение	B055 #	8

2 _T	*	W _T	z .w	s _T	x	w _T *	z _W
97	От —0,50 до —0,40 Св. —0,40 до 0,15 Св. 0,15 до 0,75	29,4038 32,3559 35,3080	10 11 12 13	113	От —0,50 до —0,30 Св. —0,30 до —0,25 Св. 0,25 до 1,00	35,5321 38,4842 41,4363	12 13 14
98	Cs. 0,75 до 1,00 Oт -0,50 до 0,05 Cs. 0,05 до 0,70 Cs. 0,70 до 1,00	38,2601 32,3699 35,3220 38,2741	11 12 13	114	От0,50 до0,35 Св0,35 до 0,20 Св. 0,20 до 0,80 Св. 0,80 до 1,00	35,5461 38,4982 41,4503 44,4024	12 13 14 15
99	От —0,50 до 0 Св. 0 до 0,60 Св. 0,60 до 1,00 От —0,50 до —0,05	32,3839 35,3360 38,2881	11 12 13 11	115	От —0,50 до —0,45 Св. —0,45 до —0,15 Св. 0,15 до 0,75	35,5602 38,5123 41,4644	12 13 14
100	Св. —0,05 до —0,05 Св. —0,05 до 0,55 Св. 0,55 до 1,00	32,3979 35,3500 38,3021	12 13		Св. 0,75 до 1,00	44,4165	15
101	От —0,50 до —0,15 Св. —0,15 до 0,45 Св. 0,45 до 1,00	32,4119 35,3640 38,3161	11 12 13	116	От —0,50 до 0,05 Св. 0,05 до 0,65 Св. 0,65 до 1,00	38,5263 41,4784 44,4305	13 14 15
102	Ол —0,50 до —0,20 Св. —0,20 до 0,40 Св. 0,40 до 1,00	32,4260 35,3781 38,3302	11 12 13	117	От —0,50 до 0 Св. 0 до 0,60 Св. 0,60 до 1,00	38,5403 41,4924 44,4445	13 14 15
103	От —0,50 до —0,25 Св. —0,25 до 0,35 Св. 0,35 до 1,00	32,4400 35,3921 38,3442	11 12 13	118	От —0,50 до —0,05 Св. —0,05 до 0,55.	38,5543 41,5064	13 14
104	От —0,50 до —0,30 Св. —0,30 до 0,25 Св. 0,25 до 1,00	32,4540 35,4061 38,3582	11 12 13		Св. 0,55 до 1,00	44,4585	15
105	От —0,50 до —0,35 Св. —0,35 до 0,20 Св. 0,20 до 0,80	32,4680 35,4201 38,3722	11 12 13	119	От —0,50 до —0,15 Св. —0,15 до 0,45 Св. 0,45 до 1,00	38,5683 41,5204 44,4725	14 15
106	Св. 0,80 до 1,00 От —0,50 до —0,45 Св. —0,45 до 0,15 Св. 0,15 до 0,75	41,3243 32,4820 35,4341 38,3862	14 11 12 13	120	От —0,50 до —0,20 Св. —0,20 до 0,40 Св. 0,40 до 1,00	38,5823 41,5344 44,4865	13 14 15
107	Cs. 0,75 no 1,00 O _T 0,50 no 0,05 Cs. 0,05 no 0,65 Cs. 0,65 no 1,00	41,3383 35,4481 38,4002 41,3523	14 12 13 14	121	От —0,50 до —0,25 Св. —0,25 до 0,35 Св. 0,35 до 1,00	38,5963 41,5484 44,5005	13 14 15
108	От —0,50 до 0 Св. 0 до 0,60 Св. 0,60 до 1,00	35,4621 38,4142 41,3663	12 13 14	122	От —0,50 до —0,30 Св. —0,30 до 0,25 Св. —0,25 до 1,00	38,6103 41,5624 44,5145	13 14 15
109	От —0,50 до —0,05 Св. —0,05 до 0,55 Св. 0,55 до 1,00	35,4761 38,4282 41,3803	12 13 14	123	От —0,50 до —0,35 Св. —0,35 до —0,20 Св. 0,20 до 0,80	38,6243 41,5764 44,5285	13 14 15
110	От —0,50 до —0,15 Св. —0,15 до 0,45 Св. 0,45 до 1,00	35,4901 38,4422 41,3943	12 13 14	124	Св. 0,80 до 1,00 От -0,50 до -0,45 Св0,45 до 0,15	47,4806 38,6383 41,5904	16 13 14
111	От —0,50 до —0,20 Св. —0,20 до 0,40 Св. 0,40 до 1,00	35,5041 38,4562 41,4083	12 13 14		Св. 0,15 до 0,75 Св. 0,75 до 1,00	44,5425 47,4946	15 16
112	Св. —0,50 до —0,25 Св. —0,25 до 0,35 Св. —0,35 до 1,00	35,5181 38,4702 41,4223	12 13 14	125	От —0,50 до 0,05 Св. 0,05 до 0,65 Св. 0,65 до 1,00	41,6044 44,5565 47,5086	14 15 16

Примечание. Значения W_T^* рассчитаны по формуле:

$$\boldsymbol{W}_{T}^{*} = [\pi(\boldsymbol{z}_{\overline{W}} - 0.5) + \boldsymbol{z}_{T} \text{ inv } \alpha] \cos \alpha.$$

Здесь $z_{\overline{w}}$ — округленное до ближайшего — целого числа значение z_{wr}

$$z_{Wr} = \frac{\alpha_{xk} z_k}{180^{\circ}} + 0.5$$
, rate $\cos \alpha_{xk} = \frac{z_k \cos \alpha}{z_k + 2x}$.

rge
$$\cos a_{xk} = \frac{z_k \cos \alpha}{z_k + 2x}$$

ПРИЛОЖЕНИЕ 2 Рекомендуемов

Таблица 1

ВЫБОР КОЭФФИЦИЕНТОВ СМЕЩЕНИЯ

Рекомендация распространяется на передачи, зубчатые колеса которых соответствуют исходному контуру по ГОСТ 13755—81.

Рекомендация не распространяется на зубчатые передачи, к которым предъявляются особые требования (передачи машин и механизмов массового или крупносерийного производства, специальные передачи, несущая способность которых в заданных габаритах должна быть максимально возможной, специальные кинематические передачи и т. п.).

Коэффициенты смещения у зубчатых колес рекомендуется выбирать по табл. 1 для прямозубой передачи и т. п. у. табл. 2 для косозубой и шевронной передач. Если при этом диаметры вершии зубьез зубчатых колес рассчитаны по формулам, приведенным в табл. 2, п. 15 настоящего стандарта, проверку качества зацепления по геометрическим показателям в соответствии с табл. 6 настоящего стандарта производить не требуется, за исключением проверки нормальной толшины на поверхности вершин $s_{n\alpha}$ при $x_1 = x_2 = 0.5$ и z < 18, а также, при наличии модификации головки, проверки величны в $a_{\alpha M}$ при $x_1 = x_2 = 0.5$.

Разбивку коэффициента суммы смещений зубчатых колес передачи рекомендуется производить по табл. 3 для прямозубой передачи и табл. 4 для косозубой и шевронной передач. Если при этом диаметры вершин зубьев зубчатых колес рассчитаны по формулам, приведенным в табл. 2, п. 15 настоящего стандарта, то отсутствие подрезания зубь и отсутствие интерференции зубьев в соответствии с табл. 6 настоящего стандарта проверять не требуется,

Коэффициенты смещения у зубчатых колес прямозубой передачи

Коэффициент смещения						
у шестерня х,	у колесь <i>х</i> .	Область примеления				
0	0	Межосевое расстояние а _{тр} задано равным	ати-	z ₁ >17		
0,3	-0,3	0,5 (z ₁ +z ₂)m или не за- дано	Силовые передачи ч	12 <z₁<16 z₂="" н="">22</z₁<16>		
0	0	Межосевое расстояние		z ₁ >21		
0,3	-0,3	a_{w} задано равным $0.5(z_1+z_2)m$		14 <z1<20 n="" u="">3,5</z1<20>		
0	0 ,	Межосевое расстояние a_w не задано		z ₁ >30; z ₁ >20, если модификация головки обязательна и ее пара- метры, определяемые по ГОСТ 13755—81, должны быть оп- тимальными		
0,5	0,5			10 < z₁ < 30 В предслах 10 < z₁ < 16 нижнее предельное значение z₁ опре- деляется по графику на чертеже		

Таблица 2

Коэффициенты смещения у зубчатых колес косозубой и шевронной передач

Коэффицие	ит смещения					
у шестерин х	у колеса жа	Область применения				
0	0		446	$z_1 > z_{\min}$ z_{\min} от табл. 5		
0,3	-0,3	Межосевое расстояние a_{00} задано равным $(z_1+z_2)m$ доов няи не ва-	Капематиче- ские пере- дачи	$z_1 > z_{1 \min}$, но не менее 10 и $z_2 > z_{2 \min}$, $z_{1 \min}$ и $z_{2 \min}$ определяются по графику на черт. 8 приложения 1 соответственно при $z = x_1 = 0.3$ и $z = x_2 = -0.3$		
0	0	дано	5	z ₁ >z min +2 zmin определяется по табл. 5		
- 0,3	-0,3		Силовме передачи	 z₁>zmin +2, но не менее 10 и и>3,5 zmin определяется по графику на черт. 8 приложения 1 при x=x₁=0,3 Рекомендация не распространяется на передачи, у которых при твердости поверхностей зубьев колеса до НВ 320, твердость поверхностей зубьев шестерии превосходит ее более чем на НВ 70 		

Таблица 3

Разбивка коэффициента суммы смещения х у прямозубой передачи на составляющие х1 и х2

Коэффициент	Коэффицие	нт смещения		
суммы сиещения ^Х Е	у шестерии х,	у колеса ха		Область применения
0 <x<sub>E <0,5</x<sub>		0	Кинемати- ческие пе- редачи	$z_1 > z_{\min}$, но не менее 10 и $z_2 > 17$. z_{\min} определяется по графику на черт. 8 приложения 1 при $x = x_1 = x_2$
	ΥΣ	v	Силовые передачи	$z_1 > z_{min} + 2$ и $z_2 > 21$ z_{min} определяется по графику на черт. 8 приложения 1 $x = x_1 = x_2$
0,5 <x<sub>∑ <1</x<sub>	0,5	x _E -0,5	Кансмати- ческие пе- редачи	$z_1 \! > \! 10$ и $z_2 \! > \! z_{pmin}$. z_{pmin} определяется по графику на черт. 8 приложения $x \! = \! x_2 \! = \! x_2 \! = \! -0.5$.
			Силовые передачи	$z_1 \! > \! 11$ и $z_2 \! > \! z_{ \mathrm{min}} + \! 2$ $z_{ \mathrm{min}}$ опредсляется по графику на черт. 8 приложения 1 при $x \! = \! x_2 \! = \! x_{ \Xi} - \! 0,\! 5$

Примечания:

3. При u=1 рекомендуется $x_1=x_2=0.5x_3$

^{1.} При заданном межосевом расстоянии a_{w} требуемое значение коэффициента суммы смещений x_{Σ} можно полу-

чить за счет изменения числа зубьев z_1 или z_2 , если это изменение допускается. 2. При $0.3 < x \le < 0.7$ и u < 2 наибольшая скорость скольжения в зацеплении будет большей, чем в передаче без смещения,

Таблица 4

Разбивка коэффициента суммы смещения x_2 у косозубой или шевронной передач на составляющие x_1 и x_2

Коэффициент суммы смещения *2	Коэффицие	нт смещения		
	у шестерин х,	у колеса ж		Область примежения
0 <x <sub="">E <0,5</x>			Кинематиче- ские пере- дачи	$z_1 > z_{1 \min}$, но не менее 10 и $z_2 > z_{2 \min}$ $z_{1 \min}$ определяется по графику на черт. 8 приложения 1 при $x = x_1 = x_2$, $z_{2 \min}$ определяется по табл. 5
	. * <u>*</u>	0	Силовые передачи	 z₁>z₁min +2, но не менее 10 и z₂>z₂min +2, z₁min определяется по трафику на черт, 8 приложения 1 при x=x₁=x₂, z₂min определяется по табл. 5. Рекомендация не распространяется на передачи, у которых при твердости поверхностей зубьев колеса до НВ 320 твердость поверхностей зубьев колеса до НВ 320 твердость поверхностей зубьев пестерни превосходит ее более чем на НВ 70

Примечания:

1. При заданном межосевом расстоянии a_w требуемое значение коэффициента суммы смещений x_{Σ} можно получить за счет изменения числа вубъев z_1 или z_2 , угла наклона β если эти изменения допускаются.

При x₂ >0,3 и u<2 наибольшая скорость скольжения в зацеплении будет большей, чем в передаче без смещения.

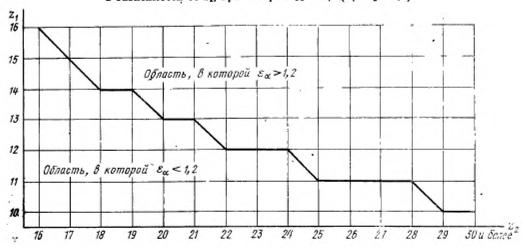

3. При u=1 рекомендуется $x_1=x_2=0.5x_2$.

Таблица 5

Значения наименьшего числа зубьев z_{\min} зубчатого колеса с коэффициентом смещения x = 0 при станочном зацеплении с исходной производящей рейкой

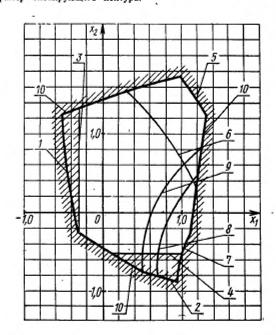

' β, град	z _{min}	R. FD43	r _{mtn}
До 12	17	Св. 24 до 28	13
Св. 12 до 17	16	> 28 > 31	12
» 17 » 21	15	> 31 > 34	11
» 21 » 24	14	> 34	10

График для определения нижнего предельного значения z_1 в зависимости от z_2 , при которых $\varepsilon_2 := 1,2$ ($x_1 = x_2 = 0,5$)

БЛОКИРУЮЩИЕ КОНТУРЫ .

Блокирующим контуром называется совокупность линий в системе координат x₁ и x₂, ограничивающих зону допустимых значений коэффициентов смещения для передачи с числами зубьев зубчатых колес z₁ и z₂. На черт. 1 приведен пример блокирующего контура.

На чертеже приняты следующие обозначения:

 зона недопустимых значений коэффициентов смещения исходного контура;

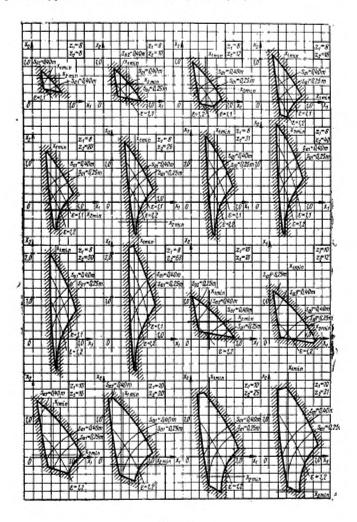
2000

зона нерекомендуемых значений коэффициентов смещения исходного контура;

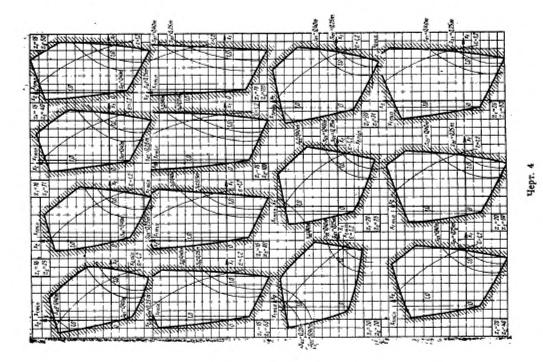
I-граница подрезания зуба въстерня, не вызывающего уменьшения коэффициента перекрытия (верхивя точка активного профиля зуба колеса лежит на окружжести вершин); 2—граница водрезания зуба колеса, не вызывающего уменьшенях коэффициента перекрытия (верхияя точка активного профиля зуба шестерия лежит на окружности вершин); 3—линяя x_{\min} шестерия; 4— линяя x_{\min} сколесо; 5—линяя x_{\min} е $e_{\alpha}=1.0$; 6—линяя $e_{\alpha}=1.2$; 7—линяя $s_{\alpha}=0.25$ л; 9—линяя $s_{\alpha}=0.40$ л; 10—диния янтерференция зубьев,

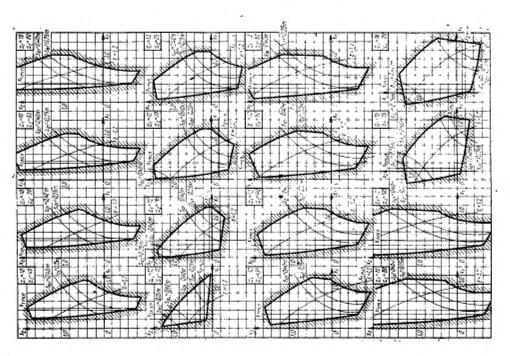
Черт. 1

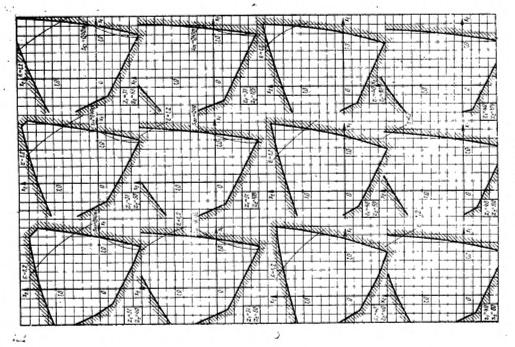
При выборе коэффициентов смещения с помощью блокирующих контуров коэффициент торцового перекрытия ε_a и толщина зуба на поверхности вершин шестерни δ_{a1} рассчитываются по формулам, приведенным в табл. 6 настоящего стандарта только в случаях, когда необходимо получить их уточненные значения.

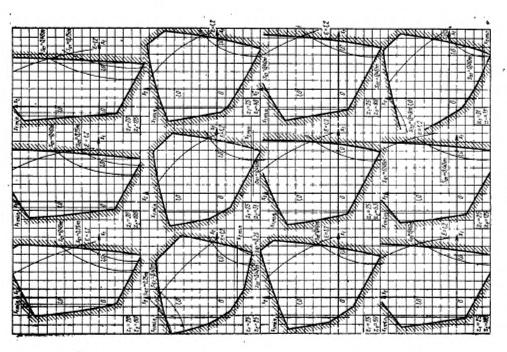

стоящего стандарта только в случаях, когда необходимо получить их уточненыме значения. Приведенные на черт. 2-6 блокирующие контуры построены для прямозубых передач, зубья зубчатых колес которых образованы теоретической исходной производящей рейкой, соответствующей исходному контуру с $\alpha = 20^\circ$, $h_a^* = 1$ и $h_1^* - h_a^* = 1$ (вилючая исходный контур по ГОСТ 13755—81), и диаметры вершин зубьев рассчитаны по формулам, приведенным в табл. 2, п. 15 настоящего стандарта (без учета притупления продольных кромок зубьев). Эти блокирующие контуры могут быть использованы с некоторым приближением для косозубых передач. При

этом выбор контура следует производить по эквивалентному числу зубьев $z_y = \frac{z}{\cos^3 \beta}$ и коэффициент торцового перекрытия определять по формуле $z_{\phi} \approx (1.51 \cos \beta - 0.51) \epsilon$.


Пример. Даяо: $z_1 = 13$, $z_2 = 65$, $x_{\Sigma} = 0.633$.


Разбивку x_{Σ} требуется произвести таким образом, чтобы получить $s_{\phi 1} = 0.4 \, m$ и $\epsilon > 1.2$.


По блокирующему контуру с числами зубьев ближайшими меньшими к заданным $(z_1 = 12, z_2 = 63)$ находим, что этим условиям удовлетворяют коэффициенты смещения $x_1 = 0.400$ и $x_2 = 0.233$.


Черт. 2

Wepr. 5

Проверка по геометрическим показателям возможности обработки зубчатого колеса зуборезным долбяком

Таблица 1

Исходные данные,	относящиеся	к зуборезному	долбяку

Наименование параметра	Обозначение	Указания	
Число зубьев	z ₀	-	
Модуль	m ₀	m ₉ =m	
Угол наклона	βο	β ₀ =β	При исходных конту- рах по ГОСТ 13755—81 и ГОСТ 9587—70 прини- мать зуборезные долбя-
Делительный диаметр	do	-	ки соответственно по ГОСТ 9323—79 и ГОСТ 10059—80
Диаметр вершин	d _{ae}	_	
Нормальная толщина	Sno	-	
Угол развернутости профиля, эответствующий точке начала ехиологического утолщения нож- и зуба	Yre	При наличии модификации ножки зуба вместо v_{ro} должен быть задан угол развернутости профиля, соответствующий начальной точке модификации ножки v_{go}	

Таблица 2

ПРОВЕРКА ПО ГЕОМЕТРИЧЕСКИМ ПОКАЗАТЕЛЯМ ВОЗМОЖНОСТИ ОБРАБОТКИ ЗУБЧАТОГО КОЛЕСА ЗУБОРЕЗНЫМ ДОЛБЯКОМ

Наименование параметра	Обозначение	Расчетные формулы и указання
		тствия зуба зубчатого колеса и отсутствия енции зубьев зубчатых колес передачи
Угол зацепления в станочном зацеплении зубчатого колеса и зуборезного долбяка	atwo	$\operatorname{inv} a_{two} = \frac{s_{no} + s_n - nm}{(z + z_o)m} + \operatorname{inv} a_t$, где s_n — по табл. 3, п. 19 настоящего стандарта
 Угол профиля зуба зуборез- ного долбяка в точке на окруж- мости вершия 	a ₀₀ .	$\cos a_{a0} = \frac{d_0}{d_{a0}} \cos a_f$
3. Межосевое расстояние в ста- ночном зацеплении зубчатого ко- жеса и зуборезного долбяка	a _{wo}	$a_{wo} = \frac{d+d_{\theta}}{2} \cdot \frac{\cos a_{\theta}}{\cos a_{\theta w \theta}}$
4. Радиус кривизны профиля зуба зубчатого колеса в гранич- ной точке	Pt	$ ho_l = a_{w_0} \sin \alpha_{lw_0} - 0.5 \ d_{a_0} \sin \alpha_{a_0}$ При $ ho_l > 0$ подрезание зуба зубчатого колеса зуборезным долбяком отсутствует. При $ ho_l < ho_p$ интерференция зубьев зубчатых колес передачи отсут-

Продолжение табл. 2

Наименование параметра	Обозначение	Расчетные формулы и указания	
	Проверка о	гсутствия срезания зуба зубчатого колеса	
 Раднус кривизны профиля зуба зубчатого колеса в точке на окружности вершин 	a	$ ho_{lpha}=0.5d_{lpha}\sinlpha_{lpha}$, где $lpha_{lpha}$ — по табл. 4, п. 2 настоящего стандарта	
6. Раднус кризнаны профиля зуба зубчатого колеса в точке начала среза	PJ	$ ho_f = a_{wq} \sin a_{lwq} - 0,5 vr_q d_q \cos a_l$ При $ ho_f > ho_a$ срезание зуба зубчатого колеса зуборезным долбяком отсутствует	При модификации ножки зуба зуборезного долбяка для определения радиуса кривизны профиля зубатого
7. Расстояние между окружно- стью вершин зубчатого колеса и его концентрической окруж- ностью, проходящей через точки начала среза зуба	hj	$h_f = 0.5 d_a - \sqrt{\frac{p_f^2 + 0.25 \ d_b^2}{1 + 0.25 \ d_b^2}}$, где $d_b =$ по табл. 4, п. 1 настоящего стандарта	колеса в начальной точ- ки ру и высоты моди- фикации голов- ки ру и высоты моди- фикации hy в формулы вместо уга и ру геду- ет соответстванно под- ставлять у до и ру
	Провер	ка днаметра впадин зубчатого колеса	
8. Днаметр впадин зубчатого колеса, обрабатываемого зуборез- ным долбяком	dy	$d_f = 2a_{wo} - d_{ao}$ При исходном контуре по ГОСТ 13755—81 дляметра не более чем на $0.2m$ по сравнению с ле, приведенной в табл. 2, л. 16 настоящего станда	рассчитанным по форму-

Примечание. При расчете геометрии зубчатой передачи, зубчатые колеса которой окончательно обрабатываются только зуборезным долбяком, следует руководствоваться указаниями:

1. Коэффициенты смещения x_1 и x_2 у зубчатых колес передачи следует выбирать с учетом того, чтобы обеспечить возможность их обработки зуборезным долбяком.

2. Диаметры вершин зубьев соответственно шестерии и колеса допускается в обоснованных случаях рассчитывать

по формулам

$$d_{a1}-2a_w-d_{f2}-2c^*m$$
,
 $d_{a2}=2a_w-d_{f1}-2c^*m$,

где d_{f1} и d_{f6} — диаметры ввадии соответственно шестерни и колеса, обрабатываемых зуборезным долбяком.

РАСЧЕТ НЕКОТОРЫХ ГЕОМЕТРИЧЕСКИХ И КИНЕМАТИЧЕСКИХ ПАРАМЕТРОВ ПРИМЕНЯЕМЫХ В РАСЧЕТЕ ЗУБЧАТОЙ ПЕРЕДАЧИ НА ПРОЧНОСТЬ

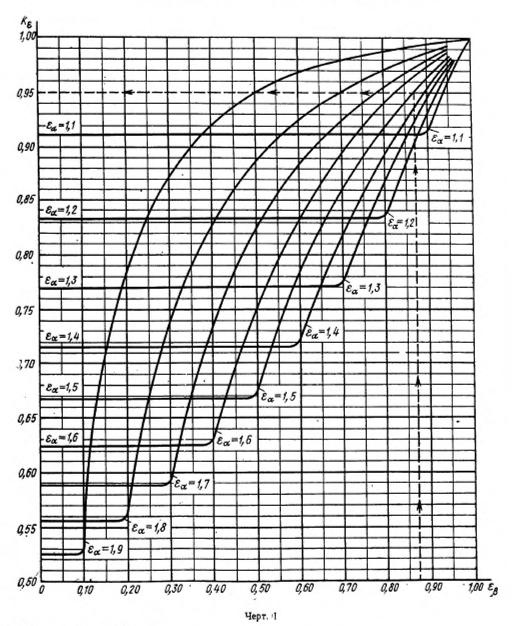
Расчет геометрических параметров

Табляца 1

Обозначение	Расчетные формулы и указания		
Ру	$ ho_y=0,5d_y\sin a_y$, где $lpha_y$ — по табл. 3, п. 6 настоящего стандарта $ ho_3=a_w\sin a_{fw}$		
Рв			
^{\$} a1	$\epsilon_{a1} = rac{z_1}{2\pi} \ ({ m ig} a_{a1} - { m ig} a_{aw})$ Формула справедлива если верхняя точка яктивного профиля совпа дает с точкой профили на окружности вершин. Если имеется притуп-		
tas	$\epsilon_{ab} = \frac{z_{b}}{2\pi}$ (ig a_{ab} — ig a_{tw}) $\epsilon_{ab} = \frac{z_{b}}{2\pi}$ (ig a_{ab} — ig a_{tw}) $\epsilon_{ab} = \frac{z_{b}}{2\pi}$ (ig a_{ab} — ig a_{tw}) $\epsilon_{ab} = \frac{z_{b}}{2\pi}$ (ig a_{ab} — ig a_{tw}) $\epsilon_{ab} = \frac{z_{b}}{2\pi}$ (ig a_{ab} — ig a_{tw}) $\epsilon_{ab} = \frac{z_{b}}{2\pi}$ (ig a_{ab} — ig a_{tw}) $\epsilon_{ab} = \frac{z_{b}}{2\pi}$ (ig a_{ab} — ig a_{tw}) $\epsilon_{ab} = \frac{z_{b}}{2\pi}$ (ig a_{ab} — ig a_{tw}) $\epsilon_{ab} = \frac{z_{b}}{2\pi}$ (ig a_{ab} — ig a_{tw}) $\epsilon_{ab} = \frac{z_{b}}{2\pi}$ (ig a_{ab} — ig a_{tw}) $\epsilon_{ab} = \frac{z_{b}}{2\pi}$ (ig a_{ab} — ig a_{tw}) $\epsilon_{ab} = \frac{z_{b}}{2\pi}$ (ig a_{ab} — ig a_{tw}) $\epsilon_{ab} = \frac{z_{b}}{2\pi}$ (ig a_{ab} — ig a_{tw}) $\epsilon_{ab} = \frac{z_{b}}{2\pi}$ (ig a_{ab} — ig a_{tw}) $\epsilon_{ab} = \frac{z_{b}}{2\pi}$ (ig a_{ab})		
Параметры, о	! тносящиеся только к косозубым передачам		
l'm	$I_m = \frac{b_{\mathbf{w}} \epsilon_a}{\cos \beta_b}$.		
	Здесь:		
I _{mia}	$l_{\min} = l_m \left(1 - \frac{n_a - n_{\beta}}{\epsilon_a - \epsilon_{\beta}} \right) \text{nps } n_a + n_{\beta} < 1$		
	$I_{\min} = I_m \left[1 - \frac{(1-n_a) \ (1-n_3)}{\epsilon_a \ \epsilon_3} \right] \text{при } n_a + n_3 > 1 \; .$ Здесь n_a и n_3 — дробные части величин ϵ_a и ϵ_3 , рассчитанных		
	ло табл. 6, пп. 3 и 4 настоящего стандарта		
k.	$k_{z} = \frac{I_{\min}}{I_{-}}$.		
	Рв *a1 *a2 Параметры, о		

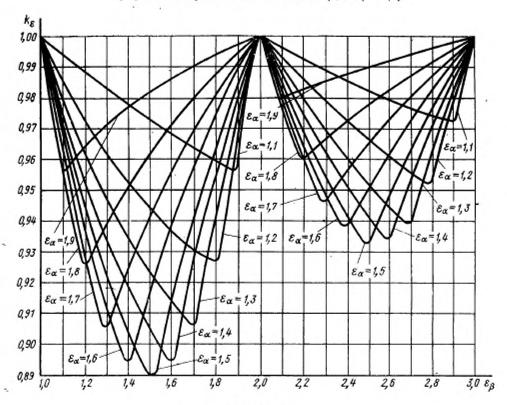
Продолжение табл. 1

Наименование парвыетра	Обозначение	Расчетные формулы и указания
	Параметры, от	носящиеся только к прямозубым передачам
7. Радиус кривизны профиля вуба в верхней граничной точке однопарного зацепления	Pa	$ ho_{\mu} = ho_{ ho} + ho_{\pi}$. Здесь: $ ho_{ ho} = ho$ по табл. 4, п. 3 настоящего стандарта, $ ho_{\pi} = ho$ по табл. 5, п. 1 настоящего стандарта
8. Угол профиля зуба в верх- ней граничной точке однопарного зацепления	a _B	$\mbox{tg } a_a = \frac{2 \rho_a}{d_b} \ ,$ где d_b — по табл. 4, п. 1 настоящего ставларта
9. Диаметр окружности всрх- них граничных точек однопарного зацепления	d _u	$d_{u} = \frac{2p_{u}}{\sin a_{u}}$
10. Расстояние между окружностью диаметра $(d_2+2\ \Delta y\cdot m)$ и окружностью верхних граничных точек однопарного зацепления	h _{st}	$h_{u}=0.5(d_{a}-d_{u})+\Delta y\cdot m$


Таблица 2

Расчет кинематических параметров

Наименование параметра		Обозначение	Расчетные формулы и ук	Расчетные формулы и указания	
1. Скорость общей профилю зуба в зад тактиой точке		v _{Fy}	$v_{Fy} \to \omega e_y$, где ω — угловая скорость зубчатого колеса, p_y — по табл, 1.		
2. Сумма скоростей общей точ- ки по профилям зубьев шестер- ни и колеса в заданных контакт- ных точках		v _{žy}	$v_{2y} = v_{Fy1} + v_{Fy2}$		
3. Скорость сколь- жения в заданной	шестерни	D _{SY1}	$v_{sy1} = v_{Fy1} - v_{Fy2}$	$v_{sy1} = v_{Fy1} - v_{Fy2}$	
контактной точке профиля зуба	колеса	v _{sy2}	$v_{sy1} v_{sy1}$		
4. Скорость сколь- женяя в точке про- филя зуба на ок- ружности вершен	шестерни	0501	$v_{aa1} = 0.5w_s d_{b1}$ (ig $a_{a1} - ig a_{tw}$) (u+1)	Если имеется притуп- ление продольной кром- ки зуба, то следует рас- считать скорость, сколь- жения в точке притуп- ления. Для этого вместо	
	колеса	U ₃₄₃	$v_{sa2} = 0.5 \omega_2 d_{b2} \text{ (tg } a_{a2} - \text{tg } a_{fw}) (a+1)$	α_{a1} и α_{a2} следует соответственно подставлять α_{k1} и α_{k2} . Здесь d_b , α_a и α_k — по табл. 4, пп. 1 и 2 настоящего стандарта	
5. Удельное скольж данной контактной то ля зуба	ение в за- эчке профи-	8,	$\vartheta_y = \frac{\vartheta_{sy}}{v_{Fy}}$		


Наименование пара	метра	Обозначение	Расчетные формулы и у	казания
6. Удельное сколь- женяе в няжней точке активного про- филя зуба	шестерии	8,01	$\vartheta_{\rho 1} = -\frac{(\lg \alpha_{\sigma 8} - \lg \alpha_{f w}) (u+1)}{\lg \alpha_{f w} - u(\lg \alpha_{\sigma 2} - \lg \alpha_{f w})}$	Если имеется притуп- ление продольной кром- ки зуба, вместо α_{a1} и α_{a2} следует подстав- лять соответственно α_{k1}
	колеса	8,02	$\vartheta_{\rho 1} = -\frac{(\operatorname{ig} \alpha_{\sigma 1} - \operatorname{ig} \alpha_{f w}) (\mu + 1)}{\mu \operatorname{ig} \alpha_{f w} - (\operatorname{ig} \alpha_{\sigma 1} - \operatorname{ig} \alpha_{f w})}$	н α ₂₈ . Здесь α ₄ н α ₅ — по табл. 4, п. 2 настояще го стандарта
		Параметры, отн	осящнеся только к прямозубым передачам	1
7. Угол профиля зуба в нижней гра- ничной точке одно- парного зацеплення	шестерни	¢v1	$\operatorname{tg} a_{v1} = \frac{2(a_{w} \sin a_{w} - \rho_{u2})}{d_{b1}}$	Здесь р _и — по табл. 1,
	колеса	g _{p2}	$ \operatorname{tg} \alpha_{vs} = \frac{2(a_{w} \sin a_{w} - \rho_{u_{1}})}{d_{b_{2}}} $	
8. Скорость сколь- жения в верхней гра-	щестерии	0511	$v_{su1} = 0.5 w_1 d_{b1} (tg \alpha_{su1} - tg \alpha_{\infty}) (u+1)$	Здесь а по табл.
ничной точке одно- парного зацепления	колеса	0,523	$\sigma_{su2} = 0.5\omega_2 d_{bb}(\operatorname{tg} \alpha_{sub} - \operatorname{tg} \alpha_{su})(u+1)$	1, π. 8
9. Удельное сколь- жение в инжией гра- ничной точке одно- парного зацепления	шестерни	. 8 ₀₁	$\theta_{v1} = -\frac{(\operatorname{tg} \alpha_{u2} - \operatorname{tg} \alpha_{w})}{\operatorname{tg} \alpha_{w} - u(\operatorname{tg} \alpha_{u2})}$	(u+1) -(ga _w)
•	колеса	8,02	$\theta_{y2} = -\frac{(\lg a_{x1} - \lg a_{xy})}{a \lg a_{xy} - (\lg a_{x1})}$	(u+1) −tg a _w)

Пример. Дано: $\varepsilon_a=1,50$; $\varepsilon_g=0.87$. По графику определяем $k_z=0.95$ (см. пунктир). .

График для определения величины k_i (1,0<8) <3,0)

Черт. 2

СОДЕРЖАНИЕ

FOCT	16530-83	Передачи зубчатые. Общие термины, определения и обозначения .
		1. Понятия, относящиеся к зубчатому колесу
		2. Понятия, относящиеся к зубчатому зацеплению и зубчатой пе-
		person
		3. Виды зубчатых колес и передач
		4. Понятия, относящиеся к методу образования зубьев зубчатых
		колес передачи
		Алфавитный указатель терминов
		Алфавитный удазатель обозначений на основе латинского ал-
		фавита
		Алфавитный указатель обозначений на основе греческого ал-
		фавита
TOCT	16531-83	Передачи зубчатые цилиндрические. Термины, определения и обоз-
1001	10001-00	
		1. Виды цилиндрических зубчатых колес и передач 5
		ti bentun danmintahu mannin oleman menerahan m
		o. determs a mepasserpa ojetaren penna
		 Исходный и исходные производящие контуры и их параметры Параметры пилинарической передачи
		of timpunctiput disministration increases in the contract of t
		6. Элементы и параметры эвольвентной цилиндрической зубчатой
		передачи
		7. Цилиндрические передачи Новикова 6
		Правила построения терминов и определений видовых полятий
		цилиндрических зубчатых передач 6
		Алфавитный указатель терминов
		Алфавитный указатель обозначений
LOCT	16532-70	Передаци зубувтые индиндрические эвольвентные внешнего зацеп-
		ления. Расчет геометрин
		1. Общие положения
		2. Расчет геометрических параметров
		Таблица 1. Исходные данные для расчета
		Таблица 2. Расчет основных геометрических параметров ?
		Таблица 3. Расчет размеров для контроля взаимного положения
		париониенных профилей зубьев
		pasitonacimus apopulaci syches
		Таблица 4. Расчет размеров для контроля номинальной поверх-
		mucin ayon
		Таблица 5. Расчет размеров для контроля взаимного положения
		Ognovinciniar apopulati System
		Таблица 6. Проверка качества зацепления по геометрическим
		показателям
		ПРИЛОЖЕНИЕ 1. Упрощенный расчет геометрических параметров 8
		ПРИЛОЖЕНИЕ 2. Выбор коэффициентов смещения
		ПРИЛОЖЕНИЕ 3. Блокирующие контуры
		ПРИЛОЖЕНИЕ 4. Проверка по геометрическим показателям воз-
		можности обработки зубчатого колеса зуборез-
		ным долбяком
		ПРИЛОЖЕНИЕ 5. Расчет некоторых геометрических и кинемати-
		ческих параметров, применяемых в расчете зуб-
		чатой передачи на прочность
		чатов передачи на прочиость . ,

Редактор Р. С. Федорова Технический редактор Л. Я. Митрофанова Корректор А. П. Якуничкина