МЕЖГОСУДАРСТВЕННЫЙ СТАНДАРТ

никель. кобальт

Методы определения висмута

Издание официальное

МЕЖГОСУДАРСТВЕННЫЙ СОВЕТ ПО СТАНДАРТИЗАЦИИ, МЕТРОЛОГИИ И СЕРТИФИКАЦИИ М н с к

Предисловие

1 РАЗРАБОТАН Межгосударственными техническими комитетами по стандартизации МТК 501 «Никель» и МТК 502 «Кобальт», АО «Институт Гипроникель»

ВНЕСЕН Госстандартом России

2 ПРИНЯТ Межгосударственным советом по стандартизации, метрологии и сертификации (протокол № 21 от 30 мая 2002 г.)

За принятие проголосовали:

Наименование государства	Наименование национального органа по стандартизации		
Азербайджанская Республика	Азгосстандарт		
Республика Армения	Армгосстандарт		
Республика Беларусь	Госстандарт Республики Беларусь		
Грузия	Грузстандарт		
Кыргызская Республика	Кыргызстандарт		
Республика Молдова	Молдовастандарт		
Российская Федерация	Госстандарт России		
Республика Таджикистан	Таджикстандарт		
Туркменистан	Главгосслужба «Туркменстандартлары»		
Республика Узбекистан	Узгосстандарт		
Украина	Госстандарт Украины		

- 3 Постановлением Государственного комитета Российской Федерации по стандартизации и метрологии от 17 сентября 2002 г. № 334-ст межгосударственный стандарт ГОСТ 13047.14—2002 введен в действие в качестве государственного стандарта Российской Федерации с 1 июля 2003 г.
 - 4 B3AMEH FOCT 13047.11-81, FOCT 741.17-80
 - 5 ПЕРЕИЗДАНИЕ, Март 2006 г.

© ИПК Издательство стандартов, 2002 © Стандартинформ, 2006

Настоящий стандарт не может быть полностью или частично воспроизведен, тиражирован и распространен в качестве официального издания на территории Российской Федерации без разрешения Федерального агентства по техническому регулированию и метрологии

Содержание

1	Область применения
2	Нормативные ссылки
3	Общие требования и требования безопасности
4	Спектрофотометрический метод (для массовых долей висмута от 0,0002 % до 0,001 %)
	4.1 Метод анализа
	4.2 Средства измерений, вспомогательные устройства, материалы, реактивы, растворы
	4.3 Подготовка к анализу
	4.4 Проведение анализа
	4.5 Обработка результатов анализа
	4.6 Контроль точности анализа
5	Атомно-абсорбционный метод с электротермической атомизацией (для массовых долей
	висмута от 0,0001 % до 0,001 %)
	5.1 Метод анализа. ,
	5.2 Средства измерений, вспомогательные устройства, материалы, реактивы, растворы
	5.3 Подготовка к анализу
	5.4 Проведение анализа
	5.5 Обработка результатов анализа
	5.6 Контроль точности анализа
6	Атомно-абсорбционный метод с пламенной автоматизацией (для массовых долей висмута
	от 0,002 % до 0,010 %)
	6.1 Метод анализа
	6.2 Средства измерений, вспомогательные устройства, материалы, реактивы, растворы
	6.3 Подготовка к анализу
	6.4 Проведение анализа
	6.5 Обработка результатов анализа
	6.6 Контроль точности анализа
П	риложение А Библиография

МЕЖГОСУДАРСТВЕННЫЙ СТАНДАРТ

НИКЕЛЬ, КОБАЛЬТ

Методы определения висмута

Nickel, Cobalt. Methods for determination of bismuth

Дата введения 2003-07-01

1 Область применения

Настоящий стандарт устанавливает спектрофотометрический и атомно-абсорбционные методы определения висмута при массовой доле от 0,0001 % до 0,010 % в первичном никеле по ГОСТ 849, никелевом порошке по ГОСТ 9722 и кобальте по ГОСТ 123.

2 Нормативные ссылки

В настоящем стандарте использованы ссылки на следующие стандарты:

ГОСТ 123-98 Кобальт. Технические условия

ГОСТ 849-97 Никель первичный. Технические условия

ГОСТ 4232-74 Калий йодистый. Технические условия

ГОСТ 4461-77 Кислота азотная. Технические условия

ГОСТ 5457-75 Ацетилен растворенный и газообразный технический. Технические условия

ГОСТ 9722-97 Порошок никелевый. Технические условия

ГОСТ 10157-79 Аргон газообразный и жидкий. Технические условия

ГОСТ 10928-90 Висмут. Технические условия

ГОСТ 11125—84 Кислота азотная особой чистоты. Технические условия

ГОСТ 13047.1-2002 Никель. Кобальт. Общие требования к методам анализа

3 Общие требования и требования безопасности

Общие требования к методам анализа и требования безопасности при выполнении работ — по ГОСТ 13047.1.

4 Спектрофотометрический метод (для массовых долей висмута от 0.0002 % до 0.001 %)

4.1 Метод анализа

Метод основан на измерении светопоглощения при длине волны 540 им раствора комплексного соединения висмута с ксиленоловым оранжевым после предварительной экстракции висмута в виде йодидного комплексного соединения изоамилацетатом.

4.2 Средства измерений, вспомогательные устройства, материалы, реактивы, растворы

Спектрофотометр или фотоэлектроколориметр, обеспечивающий проведение измерений в диапазоне длин волн 500—560 нм.

рН-метр (иономер), обеспечивающий проведение измерений в диапазоне рН 1,4—1,5.

Кислота азотная по ГОСТ 4461, при необходимости очищенная перегонкой, или по ГОСТ 11125, разбавленная 1:1, растворы молярной концентрации 1 моль/дм³ и 0,03 моль/дм³.

Раствор для реэкстракции: к раствору азотной кислоты молярной концентрации 0,03 моль/дм³ добавляют по каплям раствор азотной кислоты молярной концентрации 1 моль/дм³ до достижения рН в пределах от 1,4 до 1,5 по рН-метру.

Кислота аскорбиновая фармакопейная по [1], раствор массовой концентрации 0,05 г/см3.

Калий йодистый по ГОСТ 4232, раствор массовой концентрации 0,02 г/см³.

Висмут по ГОСТ 10928.

Ксиленоловый оранжевый, раствор массовой концентрации 0,001 г/см3.

Изоамиловый эфир уксусной кислоты (изоамилацетат) по [2].

Растворы висмута известной концентрации.

Раствор А массовой концентрации висмута 0,001 г/см³: в стакан вместимостью 250 см³ помещают навеску висмута массой 0,5 г, приливают 30—40 см³ азотной кислоты, разбавленной 1:1, растворяют при нагревании, кипятят 2—3 мин, охлаждают, раствор переводят в мерную колбу вместимостью 500 см³, приливают 50 см³ азотной кислоты, разбавленной 1:1, доливают до метки водой.

Раствор Б массовой концентрации висмута 0,0001 г/см³: в мерную колбу вместимостью 100 см³ отбирают 10 см³ раствора A₂ приливают 10 см³ азотной кислоты, разбавленной 1:1, доливают до метки водой.

Раствор В массовой концентрации висмута 0,000005 г/дм³: в мерную колбу вместимостью 100 см³ отбирают 5 см³ раствора Б и доливают до метки раствором азотной кислоты 1 моль/дм³.

4.3 Подготовка к анализу

Для градуировочного графика в делительные воронки вместимостью 100 см³ отбирают 0,5; 1,0; 2,0; 4,0; 6,0 см³ раствора В, доливают до 40 см³ раствором азотной кислоты 1 моль/дм³, приливают 1,0 см³ раствора йодистого калия и далее поступают, как указано в 4.4.

Масса висмута в растворах для градуировочного графика составляет 0,0000025; 0,0000050; 0,0000100; 0,0000200; 0,0000300 г.

По значениям светопоглощения растворов и соответствующим им массам висмута строят градуировочный график с учетом значения светопоглощения раствора, подготовленного без введения раствора висмута.

4.4 Проведение анализа

В стакан вместимостью 250 см³ помещают навеску пробы массой 3,000 г, приливают 30—40 см³ азотной кислоты, разбавленной 1:1, растворяют при нагревании, выпаривают до объема 5—10 см³, добавляют 15 см³ воды и переводят раствор в делительную воронку вместимостью 100 см³. Приливают воду до 40 см³, добавляют 1,0 см³ раствора йодистого калия, 10 см³ изоамилацетата и встряхивают воронку 1 мин. Водную нижнюю фазу переносят в другую делительную воронку вместимостью 100 см³, приливают 5 см³ изоамилацетата и повторяют экстракцию 1 мин. Водную фазу отбрасывают, а органические фазы объединяют.

К объединенному раствору приливают 20 см³ азотной кислоты 1 моль/см³, 0,5 см³ раствора аскорбиновой кислоты, 0,5 см³ раствора йодистого калия и, осторожно поворачивая воронку 5—6 раз, промывают органическую фазу. Водную фазу отбрасывают, промывку органической фазы повторяют. К промытой органической фазе приливают 15 см³ раствора для реэкстракции, 0,2 см³ ксиленолового оранжевого и встряхивают воронку 1 мин. Водную фазу переводят в мерную колбу вместимостью 25 см³, фильтруя ее через воронку с ватным тампоном, предварительно промытым раствором для реэкстракции. После фильтрования тампон промывают раствором для реэкстракции и доливают в колбу до метки этот же раствор.

Измеряют светопоглощение раствора через 20 мин на спектрофотометре при длине волны 540 нм или на фотоэлектроколориметре в диапазоне длин волн 500—560 нм, используя в качестве раствора сравнения воду и кювету толщиной поглощающего слоя 5 см.

Массу висмуга в растворе пробы находят по градуировочному графику.

4.5 Обработка результатов анализа

Массовую долю висмута в пробе X, %, вычисляют по формуле

$$X = \frac{(M_x - M_c)}{M}$$
 100, (1)

где M_{*} — масса висмута в растворе пробы, г;

М_в — масса висмута в растворе контрольного опыта, г;

M - масса навески пробы, г.

4.6 Контроль точности анализа

Контроль метрологических характеристик результатов анализа проводят по ГОСТ 13047.1. Нормативы контроля и погрешность метода анализа приведены в таблице 1.

Т а б л и ц а 1 — Нормативы контроля и погрешность метода анализа

В процентах

Массовая доля висмута	Допускаемые расхождения результатов двух парадлельных определений d_2	Допускаемые расхождения результатов трек параллельных определений d_3	Допускаемые расхождения двух результатов анализа <i>D</i>	Погрешность метода анализа Δ
0,00020	0,00006	0,00007	0,00012	0,00008
0,00030	0,00008	0,00010	0,00015	0,00010
0,00050	0,00010	0,00012	0,00020	0,00015
0,00100	0,00020	0,00024	0,00040	0,00030

5 Атомно-абсорбционный метод с электротермической атомизацией (для массовых долей висмута от 0,0001 % до 0,001 %)

5.1 Метод анализа

Метод основан на измерении поглощения при длине волны 223,1 нм резонансного излучения атомами висмута, образующимися в результате электротермической атомизации раствора пробы.

5.2 Средства измерений, вспомогательные устройства, материалы, реактивы, растворы

Атомно-абсорбционный спектрофотометр, обеспечивающий проведение измерений с электротермической атомизацией, коррекцию неселективного поглощения и автоматизированную подачу раствора в атомизатор.

Лампа с полым катодом для возбуждения спектральной линии висмута.

Аргон газообразный по ГОСТ 10157.

Фильтры обеззоленные по [3] или другие средней плотности.

Кислота азотная по ГОСТ 4461, при необходимости очищенная перегонкой, или по ГОСТ 11125, разбавленная 1:1, 1:9.

Порошок никелевый по ГОСТ 9722 или стандартный образец состава никеля с установленной массовой долей висмута не более 0.0001 %.

Кобальт по ГОСТ 123 или стандартный образец состава кобальта с установленной долей висмута не более 0,0001 %.

Висмут по ГОСТ 10928.

Растворы висмута известной концентрации.

Раствор А массовой концентрации висмута 0,001 г/см³ готовят, как указано в 4.2.

Раствор Б массовой концентрации висмута 0,0001 г/см3 готовят, как указано в 4.2.

Раствор В массовой концентрации висмута 0,00001 г/см³: в мерную колбу вместимостью 100 см³ отбирают 10 см³ раствора Б, приливают 10 см³ азотной кислоты, разбавленной 1:1, доливают до метки водой.

Раствор Γ массовой концентрации висмута 0,000001 г/см³: в мерную колбу вместимостью 100 см³ отбирают 10 см³ раствора B, приливают 10 см³ азотной кислоты, разбавленной 1:1, доливают до метки водой.

5.3 Подготовка к анализу

Для градуировочного графика в стаканы или колбы вместимостью 250 см³ помещают навески массой 0,500 г проб никелевого порошка или кобальта или стандартного образца состава никеля или кобальта с установленной массовой долей висмута. Число навесок соответствует числу точек градуировочного графика, включая контрольный опыт.

К пробам приливают 15—20 см³ азотной кислоты, разбавленной 1:1, растворяют при нагревании. При использовании никелевого порошка растворы фильтруют через фильтры (красная или белая лента), предварительно промытые 2—3 раза азотной кислотой, разбавленной 1:9, фильтры промывают 2—3 раза горячей водой. Растворы выпаривают до объема 10—15 см³, приливают 40—50 см³ воды, нагревают до кипения, охлаждают, переводят в мерные колбы вместимостью 100 см³.

В колбы отбирают 0.5; 1.0; 2.0; $\overline{3}.0$; 4.0; 5.0 см³ раствора Γ , в колбу с раствором контрольного опыта раствор висмута не вводят, доливают до метки водой и далее измеряют абсорбцию, как указано в 5.4.

Масса висмута в растворах для построения градуировочного графика составляет 0,0000005; 0,0000010; 0,0000020; 0,0000030; 0,0000040; 0,0000050 г.

5.4 Проведение анализа

В стакан или колбу вместимостью 250 см3 помещают навеску пробы массой 0,500 г, приливают 15—20 см³ азотной кислоты, разбавленной 1:1, растворяют при нагревании, выпаривают до объема 5—7 см³, переводят в мерную колбу вместимостью 100 см³, охлаждают и доливают до метки водой.

Измеряют абсорбцию раствора пробы и растворов для градуировки при длине волны 223.1 нм. ширине щели не более 0,5 нм с коррекцией неселективного поглощения в токе аргона не менее двух раз, последовательно вводя их в атомизатор. В зависимости от типа спектрофотометра подбирают оптимальный объем раствора, вводимый в атомизатор, от 0,010 до 0,050 см³ или оптимальное время аэрозольного распыления от 5 до 20 с. Промывают систему водой, проверяют нулевую точку и стабильность градуировочного графика. Для проверки нулевой точки используют раствор соответствующего контрольного опыта, подготовленный, как указано в 5.3.

Подбор оптимальных температурных режимов для атомизатора проводят индивидуально для применяемого спектрофотометра по растворам для градуировки.

Рекомендуемые условия работы атомизатора указаны в таблице 2.

Таблица 2 — Условия работы атомизатора

Наименование стадии	Температура, "С	Время, с
Сушка	120—150	2-20
Озоление	700—900	10-20
Атомизация	2000—2400	4-5

По значениям абсорбции растворов для градуировки и соответствующим им массам висмута строят градуировочный график.

Массу висмута в растворе пробы находят по градуировочному графику.

5.5 Обработка результатов анализа

Массовую долю висмута в пробе, Х, %, вычисляют по формуле

$$X = \frac{M_x}{M} 100, \qquad (2)$$

где M_{\star} — масса висмута в растворе пробы, г; M — масса навески пробы, г.

5.6 Контроль точности анализа

Контроль метрологических характеристик результатов анализа проводят по ГОСТ 13047.1.

Нормативы контроля и погрешность метода анализа приведены в таблице 3.

Таблица 3 — Нормативы контроля и погрешность метода анализа

В процентах

Массовая доля висмута	Допускаемые расхождения результатов двух параллельных определений d_2	Допускаемые расхождения результатов трек нарапледыных определений d_1	Допускаемые расхождения двух результатов анализа <i>D</i>	Погрешность метода анализа Δ
0,00010	0,00003	0,00004	0,00006	0,00004
0,00020	0,00004	0,00005	0,00008	0,00008
0,00030	0,00005	0,00006	0,00010	0,00007
0,00040	0,00006	0,00007	0,00012	0,00008
0,00050	0,00007	0,00009	0,00014	0,00010
0,00060	0,00008	0,00010	0,00017	0,00012
0,00100	0,00015	0,00020	0,00030	0.00020

6 Атомно-абсорбционный метод с пламенной атомизацией (для массовых долей висмута от 0.002 % до 0.010 %)

6.1 Метод анализа

Метод основан на измерении поглощения при длине волны 223,1 им резонансного излучения атомами висмута, образующимися в результате атомизации при введении раствора пробы в пламя

Средства измерений, вспомогательные устройства, материалы, реактивы, растворы

Атомно-абсорбционный спектрофотометр, обеспечивающий проведение измерений в пламени ацетилен-воздух.

Лампа с полым катодом для возбуждения спектральной линии висмута.

Ацетилен газообразный по ГОСТ 5457.

Фильтры обеззоленные по [3] или другие средней плотности.

Кислота азотная по ГОСТ 4461, при необходимости очищенная перегонкой, или по ГОСТ 11125, разбавленная 1:1, 1:9.

Порошок никелевый по ГОСТ 9722 или стандартный образец состава никеля с установленной массовой долей висмута не более 0.002 %.

Кобальт по ГОСТ 123 или стандартный образец состава кобальта с установленной массовой долей висмута не более 0.002 %.

Висмут по ГОСТ 10928.

Растворы висмуга известной концентрации.

Раствор А массовой концентрации висмута 0,001 г/см3 готовят, как указано в 4.2.

Раствор Б массовой концентрации висмута 0,0001 г/см3 готовят, как указано в 4.2.

6.3 Подготовка к анализу

Для градуировочного графика в стаканы или колбы вместимостью 250 см³ помещают навески массой 3,000 г проб никелевого порошка или кобальта или стандартного образца состава никеля или кобальта с установленной массовой долей висмута. Число навесок должно соответствовать числу точек градуировочного графика, включая контрольный опыт,

К пробам приливают 25—30 см³ азотной кислоты, разбавленной 1:1, растворяют при нагревании. При использовании никелевого порошка растворы фильтруют через фильтры (красная или белая лента), предварительно промытые 2-3 раза азотной кислотой, разбавленной 1:9, фильтры промывают 2—3 раза горячей водой. Растворы выпаривают до объема 10—15 см³, приливают 40—50 см³ воды, нагревают до кипения, охлаждают, переводят в мерные колбы вместимостью 100 см3.

В колбы отбирают 0,5; 1,0; 2,0; 3,0; 4,0 см3 раствора Б, в колбу с раствором контрольного опыта раствор висмуга не вводят, доливают до метки водой и далее измеряют абсорбцию, как указано в Масса висмута в растворах для градуировки составляет 0,00005; 0,00010; 0,00020; 0,00030; 0.00040 r.

6.4 Проведение анализа

В стакан или колбу вместимостью 250 см3 помещают навеску пробы массой 3,000 г, приливают 25—30 см³ азотной кислоты, разбавленной 1:1, растворяют при нагревании, кипятят 2—3 мин, выпаривают до объема 10-15 см³, приливают 40-50 см³ воды, нагревают до кипения, охлаждают, переводят в мерные колбы вместимостью 100 см3.

Измеряют абсорбцию раствора пробы и растворов для градуировки при длине волны 223,1 нм, ширине щели не более 0,3 нм не менее двух раз, последовательно вводя их в пламя, промывают систему водой, проверяют нулевую точку и стабильность градуировочного графика. Для проверки нулевой точки используют раствор контрольного опыта, подготовленный, как указано в 6.3.

По значениям абсорбции растворов для градуировки и соответствующим им массам висмута строят градуировочный график.

Массу висмута в растворе пробы находят по градуировочному графику.

6.5 Обработка результатов анализа

Массовую долю висмута в пробе Х, %, вычисляют по формуле

$$X = \frac{M_z}{M} 100,$$
 (3)

где M_{χ} — масса висмута в растворе пробы, г; M — масса навески пробы, г.

ГОСТ 13047.14-2002

6.6 Контроль точности анализа

Контроль метрологических характеристик результатов анализа проводят по ГОСТ 13047.1. Нормативы контроля и погрешность метода анализа приведены в таблице 4.

Т а б л и ц а 4 — Нормативы контроля и погрешность метода анализа

В процентах

Массовая доля висмута	Допускаемые расхождения результатов двух парадлельных определений d_2	Допусквемые расхождения результатов трех паралдельных определений d_3	Допускаемые расхождения двух результатов анализа <i>D</i>	Погрешность метода анализа Δ
0,0020	0,0002	0,0003	0,0004	0,0003
0,0030	0,0004	0,0005	0,0007	0,0005
0,0050	0,0006	0,0007	0,0012	0,0008
0,0100	0,0010	0,0012	0,0020	0,0015

ПРИЛОЖЕНИЕ А (справочное)

Библиография

- ФС 42-2662—89 (Регистр лекарственных средств в России, М., 1993, Инфармхим) Аскорбиновая кислота фармакопейная
- [2] ТУ 6-09-06-1229—85 Изоамиловый эфир уксусной кислоты (изоамилацетат), х. ч.
- [3] ТУ 6-09-1678—95* Фильтры обеззоленные (белая, красная, синяя ленты)

УДК 669.24/.25:543.06:006.354

MKC 77.120.40

B59

OKCTY 1732

Ключевые слова: никель, кобальт, висмут, химический анализ, массовая доля, средства измерений, реактив, проба, градуировочный график, результат анализа, погрешность, нормативы контроля

Редактор Л.И. Нахимова
Технический редактор О.Н. Власова
Корректор Е.Д. Дульнева
Компьютерная верстка А.Н. Золотаревой

Подписано в печать 13.03.2006. Формат 60х84¹/₈. Бумага офсетная, Гарвитура Таймс, Печать офсетная, Усл.печ.л. 0,93, Уч.-изд.л. 0,80, Тираж 29 экз. 3ак. 93. С 2585.

> ФГУП «Стандартинформ», 123995 Москва, Гранатный пер., 4. www.gostinfo.ru info@gostinfo.ru Набрано и отпечатано во ФГУП «Стандартинформ»

^{*} Действует на территории Российской Федерации.