

20848 27.4.1,2,3

ГОСУДАРСТВЕННЫЙ СТАНДАРТ СОЮЗА ССР

PEAKTUBЫ

КАЛИЙ ФТОРИСТЫЙ 2-ВОДНЫЙ

ТЕХНИЧЕСКИЕ УСЛОВИЯ

FOCT 20848-75

Издание официальное

3

ГОСУДАРСТВЕННЫЯ КОМИТЕТ СССР ПО СТАНДАРТАМ. . М о с каза

le

ГОСУДАРСТВЕННЫЙ СТАНДАРТ СОЮЗА СС

Реактивы КАЛИЙ ФТОРИСТЫЙ 2-ВОДНЫЙ Технические условия

FOCT 20848-75*

Reagents. 2-aqueous potassium fluoride, Specifications

Взамен ГОСТ 5.1388—72

OKIT 26 2113 1320 80

Постановленкем Государственного комитета стандартов Совета Министров СССР от 21 мая 1975 г. № 1364 срок введения установлен

Проверен в 1984 г. Постановлением Госстандарта от 20.12.84 № 4775 срок действия продлен

до 01.07.99

Несоблюдение стандарта преспедуется по закону

Настоящий стандарт распространяется на 2-водный фтористый калий, представляющий собой бесцветные прозрачные кристаллы, расплывающиеся на воздухе, легко растворимые в воде.

Установленные настоящим стандартом показатели технического

уровня предусмотрены для высшей категории качества.

Формула KF-2H₂O.

Молекулярная масса (по международным атомным массам 1971 г.) — 94,13.

1. ТЕХНИЧЕСКИЕ ТРЕБОВАНИЯ

1.1. 2-водный фтористый калий должен быть изготовлен в соответствии с требованиями настоящего стандарта по технологическому регламенту, утвержденному в установленном порядке.

1.2. По химическим показателям 2-водный фтористый калий

должен соответствовать нормам, указанным в табл. 1.

Издание официальное

Перепечатка воспрещена

Переиздание (декабрь 1985 г.) с Изменениями № 1, 2, утосржденными в ноябре 1979 г., декабре 1984 г. (ИУС 1—80, 4—85).

	Норма		
Навменование похазателя	Чистый для ана- лиза (ч.д.а.) ОКП 26 2113 1322 06		
1. Массовая доля 2-водного фтористого калия КF-2H ₂ O), %, не менее 2. Массовая доля нерастворимых в воде ве- цеств, %, не более 3. Кислотность в пересчете на КF, %, не бо-	99,5 0,002	98,5 0,005	
лее 4. Щелочность в пересчете на КОН, %, не бо- лее	0,05	0,01	
 Массовая доля хлоридов (СІ), %, не более Массовая доля сульфатов (SO₄), %, не более 	0,002	0,002	
 Массовая доля железа (Fe), %, не более Массовая доля синнца, марганца, медя (Pb+Mn+Cu), %, не более Массовая доля кремния (Si), %, не более 	0,0005 0,001 0,004	0,001 0.001 0.005	

Разд. 1. (Измененная редакция, Изм. № 2).

2а. ТРЕБОВАНИЯ БЕЗОПАСНОСТИ

- 2а.1. 2-водный фтористый калий по степени воздействия на организм человека относится к веществам 2-го класса опасности по ГОСТ 12.1.007—76. Предельно допустимая концентрация его (в пересчете на НГ) в воздухе рабочей зоны производственных помещений 0,2 мг/м³. При увеличении предельно допустимой концентрации 2-водный фтористый калий может вызвать острые или хронические отравления с поражением жизненно важных органов и систем.
- 2а.2. Определение предельно допустимой концентрации 2-водного фтористого калия в воздухе основано на поглощении фтористого водорода раствором ализаринкоплексоната лантана с последующим измерением оптической плотности образовавшегося тройного комплексного соединения синего цвета.
- 2а.3. При работе с препаратом следует применять индивидуальные средства защиты в соответствии с типовыми отраслевыми нормами, а также соблюдать правила личной гигиены.

Не допускать попадания препарата внутрь организма и на кожу.

2а.4. Помещения, в которых проводятся работы с препаратом, должны быть оборудованы общей приточно-вытяжной механической вентиляцией. Анализ препарата следует проводить в вытяжном шкафу лаборатории.

Разд. 2а. (Введен дополнительно, Изм. № 2).

2. ПРАВИЛА ПРИЕМКИ

Правила приемки — по ГОСТ 3885—73.

3. МЕТОДЫ АНАЛИЗА

 При проведении анализа должны соблюдаться требования СТ СЭВ 804—77.

(Измененная редакция, Изм. № 1).

 Пробы отбирают по ГОСТ 3885—73. Масса средней пробы не должна быть менее 1060 г.

3.2. Определение массовой доли 2-водного фтористого калия

(Измененная редакция, Изм. № 2).

3.2.1. Применяемые приборы, реактивы и растворы:

колонка из фторопласта-4 или из любого другого материала, устойчивого к воздействию слабых растворов фтористого водорода, с внутренним диаметром 18—20 мм и рабочей высотой 100 мм, в верхней части которой имеется расширение, в нижнюю — вложена фторопластовая пластинка с мелкими отверстиями;

вода дистиллированная, не содержащая СО2, готовят по ГОСТ

4517 .75;

аммоний роданистый по СТ СЭВ 225—75, 10%-ный раствор; катионит марки КУ-2—8 по ГОСТ 20298—74, 1-го сорта; кислота соляная по ГОСТ 3118—77, разбавленная 1:2; метиловый оранжевый (индикатор), 0,1%-ный раствор;

фенолфталеин (индикатор) по ГОСТ 5850-72, 1%-ный спирто-

вой раствор;

натрия гидроокись по ГОСТ 4328—77, раствор концентрации с (NaOH) = 0,1 моль/дм³ (0,1 н.), готовят по ГОСТ 25794.1—83; кислота азотная по ГОСТ 4461—77, 10%-ный раствор;

серебро азотнокислое по ГОСТ 1277-75, 2%-ный раствор в

10%-ном растворе азотной кислоты;

спирт этиловый ректификованный технический по ГОСТ 18300—72, высший сорт.

3.2.2. Подготовка к анализу

3.2.2.1. Подготовка катионита

Катионит с частицами размером от 0,3 до 1,25 мм помещают в стакан, заливают раствором соляной кислоты и выдерживают в течение 12 ч. Затем раствор сливают, а катионит промывают несколько раз нагретым до 50—60°С раствором соляной кислоты до отрицательной реакции на ион железа (проба с роданистым аммонием).

Затем катионит полностью отмывают дистиллированной водой от хлор-иона до отрицательной реакции на хлор-ион (проба с азотнокислым серебром).

Отмытый катионит отсасывают на воронке Бюхнера, сушат и хранят в банке с притертой пробкой.

3.2.2.2. Подготовка колонок

Колонку заполняют водой. Для этого нижний конец фторопластовой трубки погружают в воду, открывают зажим, закрывают колонку сверху пробкой, в которую вставлена стеклянная трубка и через трубку засасывают воду. Необходимо добиться полного отсутствия пузырьков воздуха.

Затем в колонку вносят небольшими порциями катионит до вы-

соты столба 100 мм.

Перед пропусканием анализируемого рствора колонку промывают водой и проверяют среду промывных вод по метиловому оранжевому. Для этого в стакан вместимостью 50 см³ отбирают 25 см³ промывных вод, во второй стакан — 25 см³ дистиллированной воды, прибавляют по одной капле метилового оранжевого и перемешивают. Окраска раствора должна быть одинаковой.

Излишек воды сливают, оставляя над катионитом слой воды 7—10 мм. Необходимо следить, чтобы при работе в слое катионита

не было пузырьков воздуха.

Количество катионита пригодно для определения 38—40 мэкв 2-водного фтористого калия или для 12—13 определений при концентряции раствора не более 0,1 и.

3.2.3. Проведение анализа

Около 0,2800—0,3000 г препарата помещают в стакан вместимостью 100 см³, изготовленный из фторопласта или полиэтилена, растворяют в 50 см³ воды и перемешивают. Полученный раствор пропускают со скоростью 4—6 см³/мин через колонку, наполненную катионитом. Затем колонку с той же скоростью промывают 100 см³ дистиллированной воды, предварительно промывая этой водой стакан, в котором был растворен препарат, и палочку. Воду прибавляют в несколько приемов, приливая каждую новую порцию лишь после того, как предыдущая пройдет через колонку и над катионитом останется вода слоем в 7—10 мм. Раствор и промывные воды собирают в стакан вместимостью 300—350 см³, изготовленный из фторопласта или полиэтилена, и титруют раствором гидроокиси натрия в присутствии пяти капель фенолфталенна до появления устойчивой розовой окраски раствора.

(Измененная редакция, Изм. № 1).

3.2.4. Обработка результатов

Массовую долю 2-водного фтористого калия (X) в процентах вычисляют по формуле

$$X = \frac{V \cdot 0.009413 \cdot 100}{m} - X_2 \cdot 4,705,$$

- где V объем раствора гидроокиси натрия концентрации точно 0,1 моль/дм³, израсходованный на титрование, см³:
- 0,009413 масса двуводного фтористого калия, соответствующая 1 см³ раствора гидроокиси натрия концентрации точно 0,1 моль/дм³, г;

т — масса навески препарата, г;

 X_2 — кислотность, определенная по п. 3.4, %;

4,705 — коэффициент пересчета фтористого водорода на 2-водный фтористый калий.

За результат анализа принимают среднее арифметическое трех параллельных определений, допускаемые расхождения между которыми при доверительной вероятности P=0,95 не должны превышать 0.4%.

(Измененная редакция, Изм. № 2).

- 3.2.5. Отработанный катионит может быть использован повторно. Для этого его сразу же регенерируют многократной (7—8 раз) обработкой нагретым до 50—60°С раствором соляной кислоты при перемешивании. Затем тщательно промывают водой до отрицательной реакции на хлор-ион.
- 3.3. Определение массовой доли нерастворимых в воде веществ
 - 3.3.1. Применяемые реактивы и растворы:

вода дистиллированная по ГОСТ 6709-72;

феноловый красный (индикатор), раствор готовят по ГОСТ 4919.1—77;

натрия гидроокись по ГОСТ 4328—77, раствор концентрации с (NaOH) = 0,1 моль/дм³ (0,1 н.), готовят по ГОСТ 25794.1—83. (Измененная редакция, Изм. № 2).

3.3.2. Проведение анализа

100,00 г препарата помещают в стакан вместимостью 250 — 300 см³, растворяют в 200 см³ воды и прибавляют три-четыре капли раствора индикатора. Если раствор имеет желтую окрску, прибавляют раствор гидроокиси натрия до розовой окраски. Стакан накрывают часовым стеклом и выдерживают на кипящей водяной бане в течение 30 мин.

Затем раствор охлаждают и фильтруют через платиновый фильтр с дырчатым дном (ГОСТ 6563—75), заправленный плотным бумажным фильтром, промытый горячей водой, высушенный при 105—110°С до постоянной массы и взвешенный с погрешностью не более 0.0002 г.

Остаток на фильтре промывают 100 см3 горячей воды и сущат при 105-110°C до постоянной массы, взвешивают с той же погрешностью.

Препарат считают соответствующим требованиям настоящего стандарта, если масса нерастворимых в воде веществ будет не

более:

для препарата чистый для анализа — 2 мг;

для препарата чистый — 5 мг.

(Измененная редакция, Изм. № 1).

3.4. Определение кислотности пересчете HF (фтористый водород) или щелочности в пересчете на КОН (гидроокись калия)

3.4.1. Применяемые реактивы и растворы:

вода дистиллированная, не содержащая СО2, готовят по ГОСТ 4517---75:

кислота соляная по ГОСТ 3118-77, раствор концентрации с

(HCI) = 0,05 моль/дм³ (0,05 н.), готовят по ГОСТ 25794.1—83; натрия гидроокись по ГОСТ 4328—77, раствор концентрации с (NaOH) = 0,05 моль/дм³ (0,05 н.), готовят по ГОСТ 25794.1—83; феноловый красный (индикатор), готовят по ГОСТ 4919.1-77; натрий фосфорнокислый двузамещенный 12-водный по ГОСТ 4172-76;

калий фосфорнокислый однозамещенный по ГОСТ 4198-75;

буферная смесь с рН 7,0, готовят следующим образом: 11,876 г 12-водного двузамещенного фосфорнокислого натрия, предварительно перекристаллизованного из воды и высущенного в эксикаторе над хлористым кальцием до постоянной массы, растворяют в воде и доводят объем раствора водой до 1 дм3 (раствор А); 9,078 г однозамещенного фосфорнокислого калия, предварительно перекристаллизованного из воды и высушенного до постоянной массы при 100°C, растворяют в воде и доводят объем раствора водой до 1 дм3 (раствор Б). К 500 см3 раствора А прибавляют 400 см3 раствора Б, смесь перемешивают. Проверяют рН на рН-метре со стеклянным электродом.

(Измененная редакция, Изм. № 2).

3.4.2. Проведение анализа

5,00 г препарата растворяют в 50 см3 воды в конической колбе вместимостью 100-150 см3, прибавляют три капли раствора фенолового красного и перемешивают. Одновременно готовят растворсравнения. Для этого в такую же коническую колбу приливают 50 см³ буферной смеси с р.Н 7,0; прибавляют три капли растворафенолового красного и перемешивают. Если окраска анализируемого раствора имеет розовый цвет, то его титруют раствором соляной кислоты из микробюретки с ценой деления 0,02 см3 до уравнивания окраски анализируемого раствора с окраской раствора сравнения. Если окраска анализируемого раствора имеет желтый цвет, то его титруют раствором гидроокиси натрия до уравнивания окраски анализируемого раствора с окраской раствора сравнения.

(Измененная редакция, Изм. № 1).

(измененная редакция, изм. оч 1). 3.4.3. Обработка результатов

Щелочность препарата в пересчете на КОН (гидроокись калия) (X_1) в процентах вычисляют по формуле

$$X_1 = \frac{V \cdot 0.002805 \cdot 100}{m}$$
.

Кислотность препарата в пересчете на фтористый водород (X_2) в процентах вычисляют по формуле

$$X_2 = \frac{V_1 \cdot 0.001004 \cdot 100}{m}$$
,

где V — объем раствора соляной кислоты концентрации точно 0,05 моль/дм³, израсходованный на титрование, см³;

V₁ — объем раствора гидроокиси натрия концентрации точно 0,05 моль/дм³, израсходованный на титрование, см³;

0,001004 — масса фтористого водорода, соответствующая 1 см³ раствора гидроокиси натрия концентрации точно 0,05 моль/дм³, г;

0,002805 — масса гидроокиси натрия, соответствующая 1 см³ раствора соляной кислоты концентрации точно 0,05 моль/дм³, г:

т — масса навески препарата, г.

За результат анализа принимают среднее арифметическое двух параллельных определений, допускаемые расхождения между которыми при доверительной вероятности P = 0.95 не должны превышать 0.005%.

(Измененная редакция, Изм. № 2).

3.5. Определение массовой доли хлоридов

Определение массовой доли хлоридов проводят по ГОСТ 10671.7—74 фототурбидиметрическим (способ 2) или визуально нефелометрическим методом. При этом 1,00 г препарата растворяют в 10 см³ 3%-ного раствора борной кислоты х. ч. (ГОСТ 9656—75) и прибавляют 30 см³ воды. Если раствор мутный, его фильтруют через плотный беззольный фильтр, промытый горячим 1%-ным раствором азотной кислоты х. ч. (ГОСТ 4461—77).

Далее определение проводят по ГОСТ 10671.7—74, измеряя оптическую плотность анализируемого раствора по отношению к контрольному раствору, содержащему, кроме реактивов, предусмотренных ГОСТ 10671.7—74, 10 см³ 3%-ного раствора борной кислоты, прибавляемых в таком же порядке, как в анализируемом. Препарат считают соответствующим требованиям настоящего стандарта, если масса хлоридов в анализируемом растворе не будет превышать:

для препарата чистый для анализа — 0,02 мг;

для препарата чистый -- 0,02 мг.

При разногласиях в оценке содержания хлоридов анализ проводят фототурбидиметрическим методом.

(Измененная редакция, Изм. № 1, 2).

3.6. Определение массовой доли сульфатов

Определение массовой доли сульфатов проводят по ГОСТ 10671.5—74 фототурбидиметрическим или визуально-нефелометрическим методом (способ 1). При этом 0,50 г препарата растворяют в 10 см³ 3%-ного раствора борной кислоты х. ч. (ГОСТ 9656—75), прибавляют 15 см³ воды и перемещивают. (Если раствор мутный, его фильтруют через беззольный фильтр, промытый горячей водой).

Далее определение проводят по ГОСТ 10671.5—74, прибавляя в анализируемый раствор 2 см³ 10%-ного раствора соляной кислоты вместо 1 см³ и измеряя через 1 ч оптическую плотность анализируемого раствора по отношению к контрольному раствору, содержащему, кроме реактивов, предусмотренных ГОСТ 10671.5—74, 10 см³ 3%-ного раствора борной кислоты, прибавляемых в таком же порядке, как в анализируемом.

Препарат считают соответствующим требованиям настоящего стандарта, если масса сульфатов в анализируемом растворе не будет превышать:

для препарата чистый для анализа — 0,025 мг;

для препарата чистый — 0,025 мг.

При разногласиях в оценке содержания сульфатов анализ проводят фототурбидиметрическим методом.

(Изменениая редакция, Изм. № 1, 2).

 Определение массовой доли железа, кремния, марганца, меди и свинца

3.7.1. Приборы, реактивы, растворы и посуда:

спектрограф кварцевый типа ИСП-28 или ИСП-30 с трехлинзовой системой освещения щели и трехступенчатым ослабителем;

генератор дуги переменного тока типа ДГ-2; спектропроектор типа СПП-2 или ПС-18;

микрофотометр типа МФ-4 или ИФО-451;

прибор ИС для измельчения и перемешивания веществ с комплектом контейнеров и шариков из органического стекла диаметром 10 мм;

ступка и пестик из органического стекла;

чашки платиновые;

бюксы из фторопласта или полиэтилена;

фотопластинки спектральные типа СП-1 чувствительностью 5

отн. ед.;

угли графитированные для спектрального анализа о.с.ч. 7—3 диаметром 6 мм (электроды угольные); верхний электрод заточен на конус, нижний электрод — с кратером диаметром 4 мм и глубиной 4 мм:

железо (III) окись, ос. ч. 2—4; кремний (IV) окись, ос. ч. 12—4; жарганец (III) окись, ос. ч. 11—2; меди (II) окись по ГОСТ 16539—79; свинца (II) окись по ГОСТ 9199—77;

калий фтористый, не содержащий примеси определяемых элементов или с минимальным их содержанием, которое определяют методом добавок в условиях данной методики и учитывают при построении градуировочных графиков;

юстроении градуировочных графиков; аммоний хлористый по ГОСТ 3773—72;

вода дистиллированная по ГОСТ 6709-72;

гидрохинон (парадноксибензол) по ГОСТ 19627-74;

калий бромистый по ГОСТ 4160-74;

метол (4-метиламинофенолсульфат) по ГОСТ 25664-83;

натрий серпистокислый 7-водный по ГОСТ 429-76;

натрий серноватистокислый (тиосульфат натрия) по СТ СЭВ 223-75;

натрий углекислый по ГОСТ 83-79 или натрий углекислый

10-водный по ГОСТ 84—76;

проявитель метолгидрохиноновый; готовят следующим образом: раствор A:2 г метола, 10 г гидрохинона и 104 г сернистокислого натрия растворяют в воде, доводят объем раствора водой до I дм³, перемешивают, и, если раствор мутный, его фильтруют; раствор Б:16 г углекислого натрия (или 40 г 10-водного углекислого натрия) и 2 г бромистого калия растворяют в воде, доводят объем раствора до I дм³, перемешивают и, если раствор мутный, его фильтруют, затем растворы A и Б смешивают в равных объемах;

фиксаж быстродействующий; готовят следующим образом: 500 г серноватистокислого натрия и 100 г хлористого аммония растворяют в воде, доводят объем раствора водой до 2 дм³, перемеши-

вают и, если раствор мутный, его фильтруют.

(Измененная редакция, Изм. № 2).

3.7.2. Подготовка к анализу

3.7.2.1. Приготовление анализируемой пробы

Около 1 г препарата помещают в платиновую чашку и сушат в сущильном шкафу при (210±5)°С в течение 15 мин. Полученный безводный фтористый калий перетирают в ступке в течение 15 мин.

3.7.2.2. Приготовление образцов для построения градуировочных графиков.

Образцы готовят на основе фтористого калия, высушенного в сушильном шкафу при (210±5) С до постоянной массы (в платиновой чашке). Для получения 16 г безводного фтористого калия требуется 26 г двуводного фтористого калия. Высушенный фтористый калий хранят в герметических бюксах в эксикаторе. Все операции с ним (кроме взвешивания) проводят в боксе под включенной лампой.

Головной образец А, содержащий (в расчете на двуводный фтористый калий) по 0,2% железа, свинца, марганца и меди и 1,6% кремния, готовят перемешиванием 0,0139 г окиси железа (III), 0,0104 г окиси свинца (II), 0,0139 г окиси марганца (III), 0,0121 г окиси меди (II), 0,1661 г окиси кремния (IV) и 2,860 г безводного

фтористого калия.

Взвешивание осуществляют с погрешностью не более 0,0002 г для навесок 0,500 г включительно и не более 0,001 г для навесок более 0,500 г. В качестве тары при взвешивании окислов используют листочки кальки. Перемешивание осуществляют следующим образом: вначале в ступке в течение 15 мин перетирают окислы и 1,00 г фтористого калия, затем смесь и остальной фтористый калий помещают в контейнер с пятью шариками и перемешивают на приборе ИС в течение 15 мин.

Промежуточный образец Б, содержащий по 0,01% железа, свинца, марганца, меди и 0,08% кремния, готовят перемешиванием 0,1000 г головного образца А с 1,9000 г фтористого калия на приборе ИС в контейнере с пятью шариками в течение 10 мии.

Образцы 1, 2, 3 для построения градуировочных графиков с убывающим содержанием примесей готовят разбавлением образцов В и 1 безводным фтористым калием в соответствии с табл. 2.

Таблица 2

Номер образца	Массовая доля примесей в образде, %				инце, %		Macca dea-	
	Fe	Pb	Mn	Cu	Si	Масса раз- бавляемого образця, г	водного фто- ристого калия, г	Время пере- мешвания, мяя
1	0,002	0,002	0,002	0,002	0,016	1,000	4,000	25
2	0,0005	0,0005	0,0005	0,0005	0,004	образца Б 1,000 образца 1	3,000	20
3	0,0002	0,0002	0,0002	0,0002	0,0016	0,4000 образца I	3,600	20

(Измененная редакция, Изм. № 2).

3.7.3. Проведение анализа

Анализ проводят в дуге переменного тока при следующих условиях:

сила тока — 12,0 А; ширина щели спектрографа — 0,020 мм; расстояние между электродами — 2,0 мм; экспозиция — 70 с.

Перед анализом электроды обжигают в дуге переменного тока при силе тока 14 A в течение 30 с.

Анализируемую пробу и образцы 1, 2, 3 помещают в кратеры электродов, набивая пробой и образцом по 3 электрода. Зажигают дугу и снимают спектрограмму. Спектры анализируемой пробы и образцов снимают на одной фотопластинке не менее трех раз. Щель открывают до зажигания дуги.

3.7.4. Обработка результатов

Фотопластинку со сиятыми спектрами проявляют, промывают в проточной воде, фиксируют, снова промывают и высушивают из воздухе. Затем фотометрируют аналитические линии определяемых элементов и соседнего фона, пользуясь логарифмической шкалой, им: Fe—302,06; Pb—283,31; Mn—279,48; Cu—324,75; Si—288,16.

Для каждой аналитической пары вычисляют разность почернений по формуле

$$\Delta S = S_{x+a} - S_{a}$$

где $S_{n+\phi}$ — почернение линии + фона; S_{ϕ} — почернение фона.

По трем значениям разности почернений определяют среднее арифметическое значение $\Delta S'$ для каждого элемента. По значениям ΔS образцов для построения графиков для каждого определяемого элемента строят градуировочный график, откладывая на оси абсцисс логарифмы концентраций, на оси ординат среднее арифметическое значение разности почернений $\Delta S'$.

Массовую долю каждой примеси в препарате находят по графику.

Препарат считают соответствующим требованиям настоящего стандарта, если массовая доля железа, кремния и суммарная массовая доля свинца, марганца и меди не будет превышать допускаемых норм.

За результат анализа принимают среднее арифметическое двух параллельных определений, допускаемые расхождения между которыми при доверительной вероятности P=0,95 не должны превышать 15% относительно вычисляемой концентрации.

(Измененная редакция, Изм. № 1, 2).

3.8, 3.9. (Исключены, Изм. № 1,).

4. УПАКОВКА, МАРКИРОВКА, ТРАНСПОРТИРОВАНИЕ И ХРАНЕНИЕ

 Препарат упаковывают и маркируют в соответствии с ГОСТ 3885—73.

Вид и тип тары 2-9.

Группа фасовки: IV, V, VI.

(Измененная редакция, Изм. № 2).

4.2. (Исключен, Изм. № 2).

4.3. Фтористый калий транспортируют всеми видами транспорта в соответствии с правилами перевозок грузов, действующими на данном виде транспорта.

4.4. Препарат должен храниться в закрытой таре в крытых

сухих складских помещениях.

5. ГАРАНТИИ ИЗГОТОВИТЕЛЯ

5.1. Изготовитель гарантирует соответствие 2-водного фтористого калия требованиям настоящего стандарта при соблюдении условий транспортирования и хранения.

Гарантийный срок хранения препарата — три года со дня

изготовления.

5.1, 5.2. (Измененная редакция, Изм. № 2).

Разд. 6. (Исключен, Изм. № 2).

Изменение № 3 ГОСТ 20848—75 Реактивы. Калий фтористый 2-водный. Техимческие условия

Утверждено и введено в действие Постановлением Государственного комитета СССР по управлению качеством продукции и стандартам от 67.12.89 № 8669

Дата введения 01.07.96

Наименование стандарта на английском изыке изложить в новой редакции: «Reagents, Potassium fluoride 2-aqueous, Specifications».

Вводная часть. Второй абзац исключить.

Пункт 1.2. Таблица 1. Графа «Наименование показателя». Показателя 3, 4

изложить в новой редакции:

«З. Массовая доля кислот (в пересчете на фтористый водород (НР), %, не более.

4. Массовая доля поля пересчеть на гиплосиись кария (КОН), % на

 Массовая доля щелочей (в пересчете на гидроожись калня (КОН), %, не более».

Пункт 2a,1 после значения 0,2 мг/м³ дополнить словами: среднесменная и 1 мг/м³ — максимально-разовая»:

Пункт 2а.4. Исключить слово: «механической».

Раздел 2 дополнить пунктом — 2.2: «2.2. Массовые доли сульфатов, жлоридов, железа, креминя, марганца, меди и свинца изготовитель определяет в каждой 10-й партик».

Пункт 3.1a изложить в новой редакции: «3.1a. Общие указания по проведе-

нию анализа - по ГОСТ 27025-86.

При взвешивании применяют лабораторные весы общего назначения типа

ВЛР-200, ВЛКТ-500г-М и ВЛР-1кг или ВЛЭ-200г.

Допускается применять другие средства измерения с метрологическими характеристиками и оборудования с техническими характеристиками не хуже, а также реактивов по качеству не ниже указанимх в настоящем стандарте».

Пункт 3.1. Заменить значение: 1060 на 450.

Пункт 3.2.1 дополнить абзацами (после первого). «бюретка 1(2)—2—50—0,1 по ГОСТ 20292—74;

стакан по ГОСТ 25336-82;

стаканы фторопластовые или стаканы из полиэтилена;

термометр со шкалой до 100°C;

цилиндр 1(3)-50(100) по ГОСТ 1770-74»;

третий абзяц изложить в новой редакции: «аммоний роданистый по ГОСТ 27067—86, раствор с массовой долей 10 %»;

шестой абзац. Заменить слова: «О.1 %-ный раствор» на «по ТУ 6-09-5171-

—84, раствор с массовой долей 0,1 %; готовят по ГОСТ 4919.1—77»;

седьмой абзяц изложить в новой редакции: «фенолфталени (нидикатор) по ТУ 6—09—5360—87, спиртовой раствор с массовой долей 1 %; готовят по ГОСТ 4919.1—77»:

девятый абзац. Заменить слова: «10 %-ный раствор» на «раствор с массовой

долей 10 %; готовят по ГОСТ 4517-87»;

десятый абзац. Заменить слова: «2 %-ный раствор в 10 %-ном растворе азотной кислоты» на «раствор с массовой долей 2 % в растворе азотной кислоты с массовой долей 10 %»;

последний абзац. Заменить ссылку: ГОСТ 18300-72 на ГОСТ 18300-87».

Пункт 3.2.2.1. Последний абзац изложить в новой редакции:

«Отмытый катионит хранят под слоем воды без CO₂ в бавке с притертой пробкой»,

Пункт 3.2,2.2. Третий абзац. Заменить слово: «среду» на «кислотность среды», «рствора» на «раствора»;

последний абзац. Заменить значение и слова: 12—13 на 8—9, «при концентрации раствора не более 0,1 н.» на «при массовой доле раствора не более 1 %».

Пункт 3.2.4. Первый абзац. Формула, Экспликация, Заменить слово: «двуводного» на «2-водного»: последний абзац изложить в новой редакции: «За результат анализа принимают среднее арифметическое результатов двух параллельных определений, абсолютное расхождение между которыми не превышает 0,25 %»;

дополнить абзацем: «Допускаемая абсолютная суммарная погрешность ре-

вультата анализа ±0,4 % при доверительной вероятности P=0,95».

Пункт 3.3.1. Второй абзац после слова «(нидикатор)» дополнить ссылкой:
«по ТУ 6—99—5170 84»;

дополнить абзацами: «бумага фильтровальная средней фильтрации — ФОС по ГОСТ 12026—76;

стакан B(H)-1-250 ТХС по ГОСТ 25336-82;

тигли конические с отверстиями в дме из платины № 113 по ГОСТ 6563—75; цилиндр 1(3)—250 по ГОСТ 1770—74;

чашка ЧВК-1(2)-250 по ГОСТ 25336-82.

чашка платиновая № 117-8 по ГОСТ 6563-75».

Пункт 3.3.2 изложить в новой редакции:

<3.3.2. Проведение анализа

100,00 г препарата помещают в стакан или платиновую чашку, растворяют в 200 см³ воды и прибавляют три-четыре капли раствора индикатора. Если раствор имеет желтую окраску, прибавляют раствор гидроокиси натрия до розовой окраски. Стакаи или платиновую чашку накрывают чашкой или часовым стеклом и выдерживают на водяюй бане в течение 30 мин.

Затем раствор охлаждают и фильтруют через платиновый тигель с отверстиями в дне, заправленный фильтровальной бумагой, промытый горячей водой, высушенный до постоянной массы при 105—110 °С и взвещенный (все результаты взвещивания в граммах записывают до четвертого деситичного знака).

Остаток на фильтре промывают 100 см³ горячей воды и сушат при

105-110 °С до постоянной массы».

Раздел 3 дополнить пунктом — 3.3.3:

«3.3.3. Обработка результатов

Массовую долю нерастворимых в воде веществ (X_3) в процентах вычисляют по формуле

$$X_{0} = \frac{m_{1} \cdot 100}{m} ,$$

где mt - масса остатка на тигле, г;

т - масса навески препарата, г.

За результат анализа принимают среднее арифметическое результатов двух параллельных определений, относительное расхождение между которыми не превышает 40 %.

Допусквемая относительная суммарная погрешность результата анализа

±30 % при доверительной вероятности P-0,95».

Пункт 3.4. Наименование изложить в новой редакции. «3.4. Определение массовой доли кислот (в пересчете на фтористый водород (НF) или щелочей (в пересчете на гидроокись калия (КОН)».

Пункт 3.4.1 дополнить абзацами (перед первым): «бюретка 6—2—5 или 7—2—10 по ГОСТ 20292—74;

нономер универсальный ЭВ-74 или другой прибор с аналогичными метрологическими характеристиками:

колба Ки-2-250-34 ТХС по ГОСТ 25336-82;

цилиндр 1(3)-50(100) по ГОСТ 1770-74»:

четвертый абаац после слова «(индикатор)» дополнить есылкой, «по ТУ 6—09—5170—84»;

последний абзац. Заменить слова: «рН-метре» на «универсальном нономере ЭВ-74».

Пункт 3.4.2. Исключить слова: «вместимостью 100—150 см³»; заменить слова: «микробюретки с ценой деления 0,02 см³» на «бюретки»; перед словами «раствором гидроокиси натрия» дополнить словами; «из бюретки».

(Продолжение см. с. 297)

Пункт 3.4.3. Первый абзац до обозначения (X_1) изложить в новой редакции: «Массовую долю щелочей (в пересчете на гидроокись калия)»;

второй абзац до обозначения (X2) изложить в новой редакции: «Массовую

долю кислот (в пересчете на фтористый водород)»;

последний абзац изложить в новой редакции: «За результат внализа принимают среднее арифметическое результатов двух параллельных определений, относительное расхождение между которыми не превышает 16 % »;

дополнить абзацем: «Допускаемая относительная суммарная погрешность результата анализа ± 8 % при доверительной вероятности P=0.95».

Пункт 3.5 изложить в новой редакции:

<3.5. Определение массовой доли хлоридов

Определение массовой доли хлоридов проводят по ГОСТ 10671.7-74 фототурбидиметрическим (способ 2) или визуально-нефелометрическим (способ 2) методом. При этом 1,00 г препарата растворяют в 10 см³ раствора борной кислоты х.ч. (ГОСТ 9656-75) с массовой долей 3 % и прибавляют 30 см⁸ воды. Если раствор мутный, его фильтруют через обеззоленный фильтр «синяя лента», промытый горячим раствором азотной кислоты (х.ч. по ГОСТ 4461-77) с массовой долей 1 %.

Далее определение проводят по ГОСТ 10671.7-74, измеряя оптическую плотность анализируемого раствора по отношению к контрольному раствору, содержащему, кроме реактивов, предусмотренных ГОСТ 19671.7—74, 16 см³ раствора борной кислоты с массовой долей 3 %, прибавляемых в таком же порядке, как в анализируемом. Измерение оптической плотности анализируемого раствора проводят в кюветах с толщиной поглощающего свет слоя 50 мм (вмес-

то 100 мм).

Препарат считают соответствующим требованиям настеящего если масса хлоридов в анализируемом растворе не будет превышать:

для препарата чистый для внализа — 0,020 мг,

для препарата чистый — 0,020 мг.

За результат акализа принимают среднее арифметическое результатов двух параллельных определений, относительное расхождение между которыми не превышает 70 %.

Допускаемая относительная суммарная погрешность результата

 $\pm 35 \%$ при доверительной вероятности P = 0.95.

При разногласиях в оценке массовой доли хлоридов анализ проводят фото-

турбидиметрическим методом».

Пункт 3.6. Первый абзац. Заменить слова: «З %-ного ваствора борной кислоты х.ч. (ГОСТ 9656-75)» на «раствора борной кислоты х.ч. (ГОСТ 9656-75) с массовой долей 3 %»; «беззольный фильтр» на «обеззоленный фильтр «синяя лента»:

второй абзап. Заменить слова. «10 %-ного раствора соляной кислоты вместо 1 см³» на «(вместо 1 см³) раствора соляной кислоты с массовой долей 10 %»; «З %-ного раствора борной кислоты» на «раствора борной кислоты с массовой

долей 3 %»;

последний абзац. Заменить слово: «содержания» на «массовой доли».

Пункт 3.7.1 дополнить абзацем (после четвертого): «Допускается применять другие приборы с аналогичными метрологическими характеристиками»;

седьмой абзац дополнить ссылкой: «по ГОСТ 6563-75»;

весьмой абзаи. Заменить слово: «бюксы» на «стаканчики для взвещивания»; девятый абзац. Заменить значение: 5 на 4-6;

одиниздцатый — пятиадцатый абзацы изложить в новой редакции:

«железо (III) оксид «ос.ч. 2-4» по ТУ 6-09-1418-78; крежний двуокись «ос.ч. 12-4» по ТУ 6-09-3379-78;

марганец (III) оксид «ос.ч. 11-2» во ТУ 6--09-3364-78;

меди (II) оксид по ГОСТ 16539-79;

свинец (11) оксид по ТУ 6-09-5382-88»;

двадцать первый абзац. Заменять слова: «(4-метиламинофенолсульфат)» на < (4-метиламинофенол сульфат)»;

двадцать второй, двадцать третий абзацы изложить в новой редакции:

«натрий сульфит 7-водный по ТУ 6-09-5313-87;

натрий серноватистокислый (изтрия тиосульфат) 5-водный по ГОСТ 27068—86»;

двадцать пятый абзац. Заменить слово: «сервистокислого» на «7-водного

сульфита»;

двадцать шестой абзац. Заменить слово: «серноватистокислого» на «5-водного серноватистокислого».

Пункт 3.7.2.1 дополнить словами: «в боксе под включенной лампой».

Пункт 3.7.2.2. Первый абзац Заменить слова: «двуводного» на «2-водного», «герметических бюксах» на «герметичных стаканчиках для взвещивания»;

второй абзац изложить в новой редакции: «Головной образец А, содержащий (в пересчете на 2-водный фтористый калий) массовые доли железа, свинца, марганца и меди по 0,2 % и массовую долю кромния 1,6 %, готовят перемещиванием 0,0139 г оксида (III), 0,0104 г оксида свинца (II), 0,0139 г оксида мартанца (III), 0,0121 г оксида меди (II), 0,1661 г двуокиси кремния и 2,860 г безводного фтористого калия»;

третий абзац. Исключить слова: «Взвещивание осуществляют с погрешностью не более 0,0002 г для навесок 0,500 г включительно и не более 0,001 г для

навесок более 0,500 г;

заменить слова; «окислов» на «оксидов» (2 раза), «фтористого калия» на

«безводного фтористого калия» (2 раза);

четвертый абзац изложить в новой редакции: «Промежуточный образец Б, содержащий массовые доли железа, свинца, марганца и меди по 0,01% и массовую долю креминия 0,08%, готовят перемешиванием 0,1000 г головного образца А с 1,900 г безводного фтористого калия на приборе ИС в контейнере с пятью шариками в течение 10 мин»;

пятый абзац. Заменить слова: «образцов Б и 1» на «образца Б».

Пункт 3.7.3. Пятый абзац, Заменить значение: 70 на 50.

Пункт 3.7.4. Пятый абзац исключить:

носледний абзац изложить в новой редакции: «За результат анализа принишают среднее арифменическое результатов трех параллельных определений, отпосительное расхождение между наиболее отличающимися значениями которых не превышает допускаемое расхождение, равное 50 %»;

дополнить абзацем: «Допускаемая относительная суммарная погрешность

результата анализа . 20 % при доверительной вероятности P=0,95».

Пункт 4.1. Третий абзац дополнить обозначением: VII (до 10 кг);

дополнять абзацем: «Тару маркируют по ГОСТ 14192—77 с нанесением внаков опасности по ГОСТ 19433—88 (классификационный шифр 6163, класс 6, подкласс 6.1, чертеж 66)».

Пункт 4.3 перед словом «фтористый» дополнить словами: «2-водный».

(MYC № 3 1990 r.)

Редактор Н. П. Шукина Технический редактор Э. В. Митяй Корректор М. М. Герасименко

Сдано в наб. 06.12.85 Подп. в печ. 21.01.86 1.0 усл. п .п. 1.0 усл. кр.-отт. 0,84 уч.-изд. л. Тираж 6000 Цена 5 коп.

Ордена «Знак Почета» Издательство стандартов, 123840, Москва, ГСП, Новопресвенский пер., д. 3. Вильнюсская типография Издательства стандартов, ул. Миндауто, 12/14. Зак. 5327.