

ГОСУДАРСТВЕННЫЙ СТАНДАРТ СОЮЗА ССР

ТАЛЛИЙ

МЕТОД ОПРЕДЕЛЕНИЯ МЕДИ, КАДМИЯ И ЦИНКА

ГОСТ 22519.5-77

Издание официальное

638-97

ГОСУДАРСТВЕННЫЙ СТАНДАРТ СОЮЗА ССР

ТАЛЛИЙ

Метод определения меди, кадмия и цинка

ΓΟCT 22519.5-77

THALLIUM. Method for the determination of copper, cadmium and zink

ОКСТУ 1709

Дата введения 01.01.78

Настоящий стандарт устанавливает полярографический метод определения меди (при массовой доле меди от 0,000005 до 0,003 %), кадмия (при массовой доле кадмия от 0,000005 до 0,003 %) и цинка (при массовой доле цинка от 0,000005 до 0,003 %), в талии марок Тл00, Тл0 и Тл1 по ГОСТ 18337.

Метод основан на отделении таллия (III) экстракцией дихлордиэтиловым эфиром (хлорексом), теллура (IV) метилизобутилкетоном из растворов бромистоводородной кислоты 3—4 моль/дм³ и полярографическом определении меди, кадмия и цинка на фоне, содержащем аммиак и хлористый аммоний, в присутствии сульфита натрия, в пределах поляризации ртутного капающего электрода от минус 0,3 до минус 1,6 В по отношению к насыщенному каломельному или внутреннему ртутному электродам сравнения.

(Измененная редакция, Изм. № 2).

1. ОБШИЕ ТРЕБОВАНИЯ

Общие требования к методу анализа и требования безопасности — по ГОСТ 22519.0.
 (Измененная редакция, Изм. № 3).

2. АППАРАТУРА, РЕАКТИВЫ И РАСТВОРЫ

Полярограф осциллографический или полярограф переменного тока любого типа.

Кислота азотная по ГОСТ 4461 и разбавленная 1:1.

Кислота соляная по ГОСТ 3118 и разбавленная 2:1.

Кислота бромистоводородная по ГОСТ 2062.

Кислота хлорная, 57 %-ный раствор (8,5 моль/дм3).

Аммиак водный по ГОСТ 3760.

Аммоний хлористый по ГОСТ 3773.

Бром по ГОСТ 4109.

Медь по ГОСТ 859 марки М00.

Натрий сернистокислый (сульфит натрия).

Кадмий по ГОСТ 1467, марки Кд0.

Ртуть по ГОСТ 4658.

Цинк металлический гранулированный.

Стандартные растворы меди.

Раствор А; готовят следующим образом: навеску меди массой 0,100 г растворяют в 10 см³ азотной кислоты и выпаривают досуха. Приливают 2 см³ соляной кислоты и снова выпаривают досуха. Приливают 50 см³ соляной кислоты, 200 см³ воды, количественно переводят в мерную колбу вместимостью 1 дм³, разбавляют до метки водой и перемешивают.

1 см3 раствора A содержит 0,1 мг меди.

Издание официальное

Перепечатка воспрещена

© Издательство стандартов, 1977 © ИПК Издательство стандартов, 1998 Переиздание с Изменениями Раствор Б; готовят следующим образом: 10 см³ стандартного раствора А меди помещают в мерную колбу вместимостью 100 см³, приливают 10 см³ соляной кислоты, охлаждают, разбавляют до метки водой и перемешивают.

1 см³ раствора Б содержит 0,01 мг меди.

Раствор В; готовят следующим образом: 1 см³ стандартного раствора А меди помещают в мерную колбу вместимостью 100 см³, приливают 10 см³ соляной кислоты, 25 см³ воды, охлаждают, разбавляют до метки водой и перемешивают.

1 см3 раствора В содержит 0,001 мг меди.

Раствор В применяют свежеприготовленным.

Стандартные растворы кадмия.

Раствор А; готовят следующим образом: навеску кадмия массой 0,100 г растворяют в 10 см³ азотной кислоты, разбавленной 1:1, и выпаривают досуха. Приливают 2 см³ соляной кислоты, и выпаривают до влажного остатка. Приливают 50 см³ соляной кислоты, 200 см³ воды, охлаждают, количественно переводят в мерную колбу вместимостью 1 дм³, разбавляют до метки водой и перемешивают.

1 см³ раствора А содержит 0,1 мг кадмия.

Раствор Б; готовят следующим образом: 10 см³ стандартного раствора А кадмия помещают в мерную колбу вместимостью 100 см³, приливают 10 см³ соляной кислоты, охлаждают, разбавляют до метки водой и перемешивают.

1 см³ раствора Б содержит 0,01 мг кадмия.

Раствор В; готовят следующим образом: 1 см³ стандартного раствора А кадмия помещают в мерную колбу вместимостью 100 см³, приливают 10 см³ соляной кислоты, 25 см³ воды, охлаждают, разбавляют до метки водой и перемешивают.

1 см³ раствора В содержит 0,001 мг кадмия.

Раствор В применяют свежеприготовленным.

Стандартные растворы цинка

Раствор А; готовят следующим образом: навеску цинка массой 0,100 г растворяют в 50 см³ соляной кислоты, приливают 200 см³ воды, охлаждают, количественно переводят в мерную колбу вместимостью 1 дм³, разбавляют до метки водой и перемешивают.

1 см3 раствора А содержит 0,1 мг цинка.

Раствор Б; готовят следующим образом: 10 см³ стандартного раствора А цинка помещают в мерную колбу вместимостью 100 см³, приливают 10 см³ соляной кислоты, охлаждают, разбавляют до метки водой и перемешивают. Раствор применяют свежеприготовленным.

1 см³ раствора содержит 0,01 мг цинка.

Градуировочные растворы меди, кадмия и цинка; готовят следующим образом: к навескам таллия массой 1,000 или 5,000 г (см. табл. 1), перед разложением их в кислотах, отмеривают микропипетками стандартные растворы меди, кадмия и цинка и далее ведут их подготовку, как указано в разд. 3. Разбавление объемов растворов проб с добавками и концентрации в них добавок указаны в табл. 1.

Таблица 1

	№ п/п Массоная доля таллия в пробе, %	Навеска талдия, г	Добавлено стандартного раствора									Массовая концентрация			
			меди			кадмия			цинка				добавки в растворе пробы, мг/дм		
No n/n			Обозначение раствора	см3	MÍ	Обозначение раствора	см ³	wr	Обраначение раствора	см	м	Вмести мость пипетки, м.т	меля	кадмия	шонка
1	99,9995	5,000	В	0,25	0,00025	В	0.25	0,00025	Б	0,25	0,0025	5	0,05	0,05	0.5
2	99,9995	5,000	В	0,4	0,0004	В	0,4	0,0004	Б	0,4	0,004	5	0.08	0,08	0.8
3	99,999	5,000	Б	0,1	0,001	В	0,25	0,00025	Б	0,25	0,0025	5	0,2	0,05	0.5
4	99,999	5,000	Б	0.2	0,002	В	0,4	0,0004	Б	0,4	0.004	5	0,4	0,08	0.8
5	99,99	1,000	A	0.1	0,01	Б	0,3	0,003	Б	0,5	0,005	10	1	0,3	0.5
6	99,99	1,000	A	0,2	0,02	Б	0,5	0,005	Б	0,8	0.008	10	2	0,5	0.8
7	99.98	1,000	A	1.0	0,01	A	0.1	10,0	A	0,1	0,01	20	0,5	0,5	0.5
8	99,98	1,000	A	0.2	0.02	A	0.2	0.02	A	0,2	0.02	20	1	1	1

Фоновый электролит. В 1 дм³ раствора содержится 100 г хлористого аммония и 100 см³ аммиака.

В случае полярографирования на осциллографическом полярографе 1 дм³ фонового электролита должен содержать 20 см³ раствора желатина. Фоновый электролит устойчив в течение 7 дней. Эфир-β, β'-дихлордиэтиловый (хлорекс).

Метилизобутилкетон.

Желатин пищевой по ГОСТ 11293, раствор 20 г/дм³, свежеприготовленный.

(Измененная редакция, Изм. № 2, 3).

3. ПРОВЕДЕНИЕ АНАЛИЗА

3.1. В коническую колбу вместимостью 100 см³ помещают навеску таллия массой 1,000 г (при массовой доле таллия 99,98—99,99 %) или 5,000 г (при массовой доле таллия 99,999—99,9995 %), приливают азотную кислоту, разбавленную 1:1 (к навеске массой 1,000—2,000 г 4—6 см³, к навеске массой 5,000 г 8 см³, в колбу с контрольной пробой соответственно — 4, 6, 8 см³), накрывают часовым стеклом и растворяют при нагревании. Стекло убирают и пробу выпаривают до влажного остатка. Охлаждают и приливают к пробе, содержащей навеску 1,000 г — 2 см³, к пробам, содержащим навески 2,000 г и 5,000 г — соответственно 5 и 10 см³ соляной кислоты и осторожно выпаривают до полного удаления оксидов азота.

К остатку приливают раствор бромистоводородной кислоты с (HBr)=4 моль/дм³ (к пробе с навеской массой 1,000—2,000 г 10—15 см³, к пробе с навеской массой 5,000 г 20 см³), соответственно 0,5 и 1 или 3 см³ брома, накрывают часовым стеклом и оставляют до полного растворения таллия на теплом месте при периодическом перемешивании.

Раствор пробы (выделяющий пары брома) после охлаждения переводят в делительную воронку вместимостью $120-150~{\rm cm}^3$, приливают к растворам, содержащим навеску пробы $1,000~{\rm r}-20~{\rm cm}^3$, $2,000~{\rm r}-30~{\rm cm}^3$, к раствору, содержащему навеску $5,000~{\rm r}-60~{\rm cm}^3$ хлорекса, ополоснув им предварительно колбу, в которой проводилось разложение, и экстрагируют таллий при медленном встряхивании в течение 2 мин. После разделения фаз органический слой отбрасывают, в делительную воронку приливают в соответствии с навеской пробы $10; 20~{\rm unu}~30~{\rm cm}^3$ хлорекса, $1-2~{\rm kannu}$ брома и экстракцию таллия повторяют. После сброса второй порции хлорекса экстракцию таллия повторяют еще два раза.

Водный слой, после сброса хлорекса, переливают через горловину в другую делительную воронку, прибавляют 1—2 капли брома, 10 см³ хлорекса, встряхивают в течение 2 мин. После тщательного отделения хлорекса водный слой сливают через горловину в стакан вместимостью 50 см³, выпаривают до объема 3—4 см³, приливают 1 см³ хлорной кислоты и выпаривают до выделения паров последней, приливают 1 см³ азотной кислоты и продолжают выпаривать почти до полного удаления хлорной кислоты.

При наличии в таллии теллура, что устанавливают предварительно, таллий экстрагируют, как указано до перевода водного слоя в другую воронку, но вместо хлорекса прибавляют 15 см³ метилизобутилкетона (бром не добавляют) и экстрагируют теллур, индий и остатки таллия в течение 1 мин. Водный слой помещают в стакан вместимостью 50 см³ и далее поступают, как указано выше.

К остатку после выпаривания кислоты приливают 5—10 или 20 см³ фонового электролита (см. табл. 1), прибавляют на каждые 5 см³ около 50 мг сульфита натрия, перемешивают и проводят полярографирование меди, кадмия и цинка соответственно при потенциалах пиков минус 0,52, минус 0,82 и минус 1,4 В по отношению к насыщенному каломельному электроду. В аналогичных условиях полярографируют раствор контрольной пробы и градуировочные растворы. Значение высоты волны контрольного опыта вычитают из высоты волны пробы и обрабатывают результаты анализа.

Осциллографический полярограф применяют при анализе меди, кадмия и цинка в таллии с массовой долей его 99,98—99.99 %.

(Измененная редакция, Изм. № 2, 3).

4. ОБРАБОТКА РЕЗУЛЬТАТОВ

4.1. Массовую долю меди, кадмия или цинка (X) в процентах вычисляют по формуле

$$\chi = \frac{H \cdot V \cdot C}{(H_1 - H) \cdot m \cdot 10000} \,,$$

где H — высота волны меди (кадмия или цинка) при полярографировании раствора пробы, мм;

C. 4 FOCT 22519.5-77

- H_1 высота волны меди (кадмия или цинка) при полярографировании раствора пробы со стандартной добавкой, мм;
- V объем раствора пробы, см³;
- С массовая концентрация стандартной добавки меди (кадмия или цинка) в градуировочном растворе, мг/дм³;
- т масса навески таллия, г.

(Измененная редакция, Изм. № 2, 3).

4.2. Абсолютные значения разностей результатов двух паралдельных определений (показатель сходимости) и результатов двух анализов (показатель воспроизводимости) с доверительной вероятностью P = 0,95 не должны превышать значений допускаемых расхождений, указанных в табл. 2.

Таблица 2

Массовая доля меди, кадмия или пинка, %		е расхождение с определений, 9		Допускаемое расхождение результатов анализа, %			
non unital, A	Медь	Кадмий	Цинк	Медь	Кадмий	Цинк	
От 0,000005 до 0,000010 включ.	0,000003	0,000003	-	0,000004	0,000004	_	
CB. 0,000010 * 0,000020 *	0,000005	0,000005	0,000005	0,000008	0,000008	0,000008	
* 0,000020 * 0,000050 *	0,000010	0,000010	0.000010	0,000015	0,000015	0,000015	
* 0,000050 * 0,000100 *	0.000030	0.000030	0.000030	0,000040	0,000040	0,000040	
» 0,00010 » 0,00020 »	0.00005	0,00005	0,00005	0,00008	0,00008	0,00008	
* 0,00020 * 0,00050 *	0.00010	0,00010	0,00010	0,00015	0,00015	0,00015	
» 0,00050 » 0,00100 »	0,00030	0,00030	0,00030	0,00040	0,00040	0,00040	
» 0.0010 » 0.0030 »	0.0005	0,0005	0,0005	0,0008	0,0008	0,0008	

(Измененная редакция, Изм. № 3).

ИНФОРМАЦИОННЫЕ ДАННЫЕ

1. РАЗРАБОТАН И ВНЕСЕН Министерством цветной металлургии СССР

РАЗРАБОТЧИКИ

А.П. Сычев, М.Г. Саюн, В.И. Лысенко, И.А. Романенко, В.А. Колесникова

 УТВЕРЖДЕН И ВВЕДЕН В ДЕЙСТВИЕ Постановлением Государственного комитета стандартов Совета Министров СССР от 10.05.77 № 1171
 Изменение № 3 принято Межгосударственным Советом по стандартизации, метрологии и сертификации (протокол № 4 от 21.10.93)

За принятие проголосовали:

Навменование государства	Наименование национального органа по стандартизации				
Республика Армения	Армгосстандарт				
Республика Белоруссия	Госстандарт Белоруссии				
Республика Казахстан	Госстандарт Республики Казахстан				
Республика Молдова	Молдовастандарт				
Российская Федерация	Госстандарт России				
Республика Туркменистан	Главная государственная инспекция Туркменистана				
Республика Узбекистан	Узгосстандарт				
Украйна	Госстандарт Украины				

3. ВВЕДЕН ВПЕРВЫЕ

4. ССЫЛОЧНЫЕ НОРМАТИВНО-ТЕХНИЧЕСКИЕ ДОКУМЕНТЫ

Обозначение НТД, на который дана ссылка	Номер пункта, подлункта			
FOCT 859-78	2			
ΓΟCT 1467—93	2			
ГОСТ 2062—77	2			
ГОСТ 3118—77	2			
ГОСТ 3760—79	2			
ΓOCT 377372	2			
ГОСТ 4109—79	2			
ΓOCT 446177	2			
ΓOCT 4658—73	2			
ΓOCT 11293-89	2			
ГОСТ 18337-80	Вводная часть			
ΓOCT 22519.0-77	1.1			

- Ограничение срока действия сиято по протоколу Межгосударственного Совета по стандартизации, метрологии и сертификации (ИУС 2—93)
- ПЕРЕИЗДАНИЕ (февраль 1998 г.) с Изменениями № 1, 2, 3, утвержденными в январе 1983 г., марте 1987 г., июне 1996 г. (ИУС 5—83, 6—87, 9—96)

Редактор М.И. Максимова
Технический редактор В.И. Прусакова
Корректор О.В. Ковш
Компьютерная верстка В.И. Тришенко

Изд. янц. №021007 от 10.08.95. Сдано в набор 24.02.98. Подписано в печать 30.03.98. Усл. печ. л. 0,930. Уч.-изд. л. 0,57. Тираж 120 эк s, С/Д 4416. Зак. 115.

> ИПК Издательство стандартов, 107076, Москва, Колодезный пер., 14. Набрано в Издательстве на ПЭВМ Филиал ИПК Издательство етандартов — тип. "Московский печатник" Москва, Лялии пер., 6. Плр № 080102