ГОСУДАРСТВЕННЫЙ СТАНДАРТ СОЮЗА ССР

СПЛАВЫ МЕДНО-ЦИНКОВЫЕ

FOCT 1652.11-77

Методы определения никеля

(HCO 4742-84)

Copper-zinc alloys. Methods for the determination of nickel

OKCTY 1709

Дата введения 1978-07-01

Настоящий стандарт устанавливает гравиметрический метод определения никеля (при массовой доле никеля от 0,5 до 7%) и экстракционно-фотометрический и атомно-абсорбционный методы определения никеля (при массовой доле никеля от 0,01 до 7%) в медно-цинковых сплавах по ГОСТ 15527—70, ГОСТ 17711—80 и ГОСТ 1020—77.

Допускается проводить определения никеля в медно-цинковых сплавах по ИСО 4742 (см. приложение).

(Измененная редакция, Изм. № 2, 3, 4).

1. ОБШИЕ ТРЕБОВАНИЯ

 Общие требования к методам анализа — по ГОСТ 26086 с дополнением по п. 1.1 ГОСТ 1652.1.

(Измененная редакция, Изм. № 2).

2. ГРАВИМЕТРИЧЕСКИЙ МЕТОД ОПРЕДЕЛЕНИЯ НИКЕЛЯ

2.1. Сущность метода

Метод основан на осаждении никеля в аммиачном растворе в присутствии винной или лимонной кислоты диметилглиоксимом в виде нерастворимого внутрикомплексного соединения.

2.2. Реактивы и растворы

Тигли фильтрующие по ГОСТ 23932, типов ТФ-3-20, ТФ-3-32. Кислота азотная по ГОСТ 4461 и разбавленная 1:1.

C. 2 FOCT 1652.11-77

Кислота серная по ГОСТ 4204, разбавленная 1:4 и 1:1. Кислота соляная по ГОСТ 3118, 9 моль/дм³ раствор. Кислота винная по ГОСТ 5817, раствор 400 г/дм³. Аммоний азотнокислый, раствор 100 г/дм³. Кислота лимонная по ГОСТ 3652, раствор 400 г/дм³. Кислота фтористоводородная по ГОСТ 10484. Аммиак-водный по ГОСТ 3760 и разбавленный 1:50. Спирт этиловый ректификованный технический по ГОСТ 18300. Диметилглиоксим по ГОСТ 5828, спиртовой раствор 10 г/дм³. (Измененная редакция, Изм. № 4).

2.3. Проведение анализа

2.3.1. Для сплавов, содержащих кремний

Навеску сплава массой 1 г помещают в платиновую чашку, прибавляют 10 см³ азотной кислоты, разбавленной 1:1 и 1 см³ фтористоводородной кислоты. Растворение проводят при нагревании. Затем прибавляют 5 см³ серной кислоты, разбавленной 1:1, и раствор выпаривают до начала выделения белого дыма серной кислоты. Остаток охлаждают, ополаскивают стенки чашки водой и снова выпаривают до белого дыма серной кислоты. Соли растворяют в воде, раствор переносят в стакан вместимостью 300 см³, разбавляют водой до 150 см³, добавляют 8 см³ прокипяченной азотной кислоты, разбавленной 1:1, и выделяют мель электролизом по ГОСТ 1652.1.

Электролит переносят в стакан вместимостью 600 см^3 , разбавляют водой до 200 см^3 и далее проводят анализ, как указано в п. 2.3.2.

2.3.2. Для медно-цинковых сплавов остальных марок

Навеску сплава массой 0,5 г помещают в стакан вместимостью 300 см³ и растворяют в 10 см³ азотной кислоты, разбавленной 1:1, при нагревании. После полного растворения пробы ополаскивают стенки стакана водой и удаляют окислы азота кипячением. Затем раствор разбавляют до объема 150 см³ водой, прибавляют 7 см³ серной кислоты, разбавленной 1:4, и выделяют медь электролизом по ГОСТ 1652.1. Электролит переводят в стакан вместимостью 600 см³ и разбавляют водой до 200 см³.

Раствор нагревают до 70 °C, прибавляют 20 см³ раствора винной или лимонной кислоты, нейтрализуют аммиаком до слабокислой реакции (pH 4—5) по универсальной индикаторной бумаге и при энергичном перемешивании добавляют 20—25 см³ спиртового раствора диметилглиоксима и 2—3 см³ аммиака до слабощелочной среды. Раствор с осадком выдерживают в теплом месте 40—60 мин и затем осадок отфильтровывают на фильтр средней плотности. Стакан и осадок промывают горячей водой. Осадок на фильтре растворяют в 30 см³ 9 моль/дм³ раствора соляной кислоты в стакане, где проводилось осаждение. Фильтр промывают горячей водой. Раствор разбавляют горячей водой до 200 см³. Осаждение никеля повторяют, прибавляя 10 см³ раствора винной или лимонной кислоты, нейтрализуют аммиаком до рН 4—5, прибавляют 10 см³ спиртового раствора диметилглиоксима и 2—3 см³ аммиака. Раствор с осадком выдерживают в теплом месте 40—60 мин (можно оставить на ночь).

Осадок отфильтровывают на предварительно взвешенный фильтрующий тигель при отсасывании. Осадок промывают три раза раствором аммиака, разбавленным 1:50, затем пять раз горячей водой и под конец два раза этиловым спиртом, разбавленным 1:3. Тигель с осадком высушивают в сушильном шкафу при 105—110 °C до постоянной массы и взвешивают.

(Измененная редакция, Изм. № 4).

- 2.4. Обработка результатов
- 2.4.1. Массовую долю никеля (Х) в процентах вычисляют по формуле

$$X = \frac{m - 0,2032 - 100}{m_1}$$

где m — масса диметилглиоксимата никеля, г;

0,2032 — коэффициент пересчета диметилглиоксимата никеля на никель;

 m_1 — масса навески, г.

- 2.4.2. Абсолютные расхождения результатов параллельных определений (d — сходимость) не должны превышать допускаемых значений, указанных в табл. 1.
- 2.4.3. Абсолютные расхождения результатов анализа, полученных в двух различных лабораториях, или двух результатов анализа, полученных в одной лаборатории, но при различных условиях (*D* — воспроизводимость) не должны превышать значений, указанных в табл. 1.

Таблица 1

Массовая доля никеля, %			ля никеля, %	d, %		D, %
Or 0.	5 до	3	включ.	0,05		0,07
CB 3		5		0,06		0.08
* 5		7		0.08	1	0,1

2.4.2, 2.4.3. (Измененная редакция, Изм. № 2, 4).

2.4.4. Контроль точности анализа проводят по Государственным стандартным образцам (ГСО) или по отраслевым стандартным образцам (ОСО), или по стандартным образцам предприятия (СОП) медно-цинковых сплавов, утвержденным по ГОСТ 8.315, или методом добавок или сравнением результатов, полученных другим методом, в соответствии с ГОСТ 25086.

(Измененная редакция, Изм. № 4).

2.4.4.1, 2.4.4.2. (Исключены, Изм. № 4).

3. ЭКСТРАКЦИОННО-ФОТОМЕТРИЧЕСКИЙ МЕТОД ОПРЕЛЕЛЕНИЯ НИКЕЛЯ

3.1. Сущность метода

Метод основан на экстрагировании никеля в виде диметилглиоксимата клороформом, реэкстракции никеля в водную фазу, образовании в водной фазе комплекса никеля с диметилглиоксимом в присутствии окислителя и измерении оптической плотности окрашенного раствора.

3.2. Аппаратура, реактивы и растворы

Фотоэлектроколориметр или спектрофотометр.

Кислота азотная по ГОСТ 4461, разбавленная 1:1.

Кислота соляная по ГОСТ 3118, разбавленная 1:1 и 5 моль/дм³ раствор.

Аммиак водный по ГОСТ 3760 и разбавленный 1:100.

Натрия гидроокись по ГОСТ 4328, 1 моль/дм³ раствор.

Гидроксиламин солянокислый по ГОСТ 5456, раствор 100 г/дм³. Натрий серноватистокислый.

Натрий уксуснокислый по ГОСТ 199, раствор 400 г/дм³.

Кислота серная по ГОСТ 4204, разбавленная 1:1.

Фенолфталеин по ГОСТ 5851, раствор 100 г/дм³ в этиловом спирте. Диацетилдиоксим (диметилглиоксим) по ГОСТ 5828, раствор 35 г/дм³ и 1 моль/дм³ раствор гидроокиси натрия.

Диметилглиоксим, спиртовой раствор 10 г/дм³.

Натрий виннокислый.

Спирт этиловый ректификованный технический по ГОСТ 18300, Водорода перекись по ГОСТ 10928.

Аммоний надсернокислый по ГОСТ 20478, раствор 100 г/дм³ Хлороформ.

Никель марки НО.

Стандартный раствор никеля.

Раствор А: готовят следующим образом: 0,1 г никеля помещают в стакан вместимостью 250 см³ и растворяют в 20 см³ соляной кислоты, разбавленной 1:1, и 10 см³ перекиси водорода, которую добавляют постепенно. Сухой остаток растворяют в 100 см³ соляной кислоты, разбавленной 1:1, и переносят в мерную колбу вместимостью 1 дм³, затем доливают до метки водой и перемещивают.

1 см3 раствора А содержит 0,0001 г никеля.

(Измененная редакция, Изм. № 4).

3.3. Проведение анализа

 3.3.1. Навеску массой 1 г помещают в стакан вместимостью 250— 300 см³ и растворяют в 15 см³ азотной кислоты, разбавленной 1:1. К раствору прибавляют 20 см3 серной кислоты, разбавленной 1:1, и выпаривают почти досуха. Остаток растворяют в горячей воде с прибавлением 2-3 см3 соляной кислоты, разбавленной 1:1, переносят раствор в мерную колбу вместимостью 100 см3, доливают до метки водой и перемешивают. Аликвотную часть объемом 10 см3 при массовой доле никеля до 0,2 % и 2 см³ при массовой доле никеля свыше 0,2 % помещают в делительную воронку вместимостью 250 см3, разбавляют водой до 25 см3 и подщелачивают аммиаком, а затем снова подкисляют соляной кислотой, разбавленной 1:1. Затем добавляют 0,5 г виннокислого натрия, 10 см³ раствора уксуснокислого натрия, 10 см3 раствора серноватистокислого натрия и устанавливают рН раствора 6,5±0,3, прибавляя раствор уксуснокислого натрия. Прибавляют 1 см³ раствора солянокислого гидроксиламина до рН 6,5 по индикаторной бумаге. Затем добавляют 5 г серноватистокислого натрия, 0,5 г виннокислого натрия, 10 см³ раствора уксуснокислого натрия, 1 см³ раствора солянокислого гидроксиламина, встряхивая после добавления каждого реактива. После этого прибавляют 4 см³ этанольного раствора диметилглиоксима и экстрагируют 20 см³ хлороформа в течение 3 мин. После разделения фаз окращенный в желтый цвет хлороформный экстракт переносят в другую делитель-

ную воронку, и из оставшегося водного раствора повторяют экстракцию 10 см³ хлороформа. Экстракты объединяют и реэкстрагируют никель 30 см3 5 моль/дм3 раствора соляной кислоты. Органический слой отбрасывают, а водный раствор нейтрализуют аммиаком по фенолфталенну и последовательно прибавляют 2,5 г серноватистокислого натрия, 0,25 г виннокислого натрия, 10 см³ раствора уксуснокислого натрия, 1 см³ раствора солянокислого гидроксиламина, 2 см³ раствора диметилглиоксима в этаноле и экстрагируют в течение 3 мин 20 см³ хлороформа. Экстракт сливают в другую делительную воронку, а из оставшегося водного раствора повторяют экстракцию 10 см³ хлороформа. Объединенные экстракты промывают 15 см³ аммиака, разбавленного 1:100, в течение 2 мин. Промывание экстракта повторяют еще раз. К промытому хлороформному экстракту в делительной воронке прибавляют 5 см3 щелочного раствора диметилглиоксима, 4 см3 раствора надсернокислого аммония и взбалтывают в течение 5 мин. После разделения слоев органический слой удаляют, а водную фазу переводят в мерную колбу вместимостью 50 см3, доливают до метки водой и через 5 мин измеряют оптическую плотность в кювете с толщиной слоя 1 см на спектрофотометре при длине волны 445 нм или фотоэлектроколориметре с синим светофильтром. В качестве раствора сравнения используют раствор контрольного опыта.

Содержание никеля вычисляют по градуировочному графику.

(Измененная редакция, Изм. № 4).

3.3.2. Построение градуировочного графика

В делительные воронки вносят 0; 0,5; 1; 2; 3; 4; 5 и 6 см³ стандартного раствора никеля, прибавляют аммиак до щелочной реакции, снова подкисляют соляной кислотой, разбавленной 1:1, до рН 6,5 и затем поступают, как указано в п. 3,3.1.

Раствором сравнения служит раствор, полученный аналогичным образом без добавления стандартного раствора никеля.

- 3.4. Обработка результатов
- 3.4.1. Массовую долю никеля (X_1) в процентах вычисляют по формуле

$$X_1 = \frac{m \cdot 100}{m_1},$$

где m — масса никеля, найденная по градуировочному графику, r; m_1 — масса навески пробы, соответствующая аликвотной части раствора, r.

3.4.2. Абсолютные расхождения результатов параллельных определений (d — сходимость) не должны превышать допускаемых значений, указанных в табл. 2.

Таблица 2

Массовая доля никеля, %	d, %	D, %
От 0,01 до 0,025 включ. Св. 0,025 » 0,05 »	0,003 0.005	0,004
* 0,05 * 0,1 *	10,0	0,014
* 0,1 * 0,25 * * 0,25 * 0,5 *	0,015	0,02
* 0.5 * 0.75 * * 0.75 * 1.0 *	0,03	0,04 0,06

3.4.3. Абсолютные расхождения результатов анализа, полученных в двух различных лабораториях, или двух результатов анализа, полученных в одной лаборатории, но при различных условиях (D—воспроизводимость), не должны превышать значений, указанных в табл. 2.

3.4.2, 3.4.3. (Измененная редакция, Изм. № 2, 4).

3.4.4. Контроль точности анализа проводят по Государственным стандартным образцам (ГСО) или по отраслевым стандартным образцам (ОСО), или по стандартным образцам предприятия (СОП) медно-цинковых сплавов, утвержденным по ГОСТ 8.315, или методом добавок или сравнением результатов, полученных другим методом, в соответствии с ГОСТ 25086.

3.4.4.1--3.4.4.3. (Исключены, Изм. № 4).

4. АТОМНО-АБСОРБЦИОННЫЙ МЕТОД

4.1. Сущность метода

Метод основан на растворении пробы в смеси соляной и азотной кислот и измерении абсорбции никеля в пламени ацетилен—воздух, используя излучение с длиной волны 232 или 341,5 нм.

 Аппаратура, реактивы и растворы Атомно-абсорбционный спектрометр.

Лампа с полым катодом для никеля.

Кислота соляная по ГОСТ 3118, разбавленная 1:1.

Кислота азотная по ГОСТ 4461, разбавленная 1:1.

Смесь соляной и азотной кислот в соотношении 1:1.

C. 8 FOCT 1652.11-77

Никель марки Н0 по ГОСТ 849.

Стандартные растворы никеля.

Раствор А: 1 г никеля растворяют в 20 см³ смеси кислот. Раствор охлаждают и переносят в мерную колбу вместимостью 1000 см³, доливают до метки водой и перемешивают.

1 см³ раствора А содержит 1 мг никеля.

Раствор Б: 25 см³ раствора А помещают в мерную колбу вместимостью 250 см³, доливают до метки водой и перемещивают.

1 см³ раствора Б содержит 0,1 мг никеля.

Кислота серная по ГОСТ 4204, разбавленная 1:1.

Кислота фтористоводородная по ГОСТ 10484.

4.3. Проведение анализа

4.3.1. Для сплавов, содержащих кремний до 0,05 %

Навеску сплава массой 0,1 или 0,5 г, согласно табл. 3, помещают в стакан вместимостью 250 см³ и растворяют при нагревании в 10—20 см³ смеси кислот. Раствор переносят в мерную колбу вместимостью 100 или 250 см³ и доливают водой до метки.

Таблица 3

Массовая доля никеля, %	Масса навески сплава, Г	Вместимость мерной колбы, см ³
От 0,01 до 0,2 включ.	0,5	100
Св. 0,2 » 0,5 »	0,5	250
» 0.5 » 7.0 »	0,1	100

4.3.2. Для сплавов, содержащих кремний свыше 0,05 %

Навеску сплава массой 0,1 или 0,5 г помещают в платиновую чашку и растворяют при нагревании в 10—20 см³ азотной кислоты (1:1) и 2 см³ фтористоводородной кислоты. Затем добавляют 10 см³ серной кислоты (1:1) и раствор упаривают до начала выделения густого белого дыма серной кислоты. После охлаждения добавляют 30 см³ воды, остаток растворяют, раствор переносят в мерную колбу вместимостью 100 или 250 см³ и доливают водой до метки.

4.3.3. Построение градуировочных графиков

При массовой доле никеля от 0,01 до 0,5% в семь из восьми мерных колб вместимостью по 100 см^3 помещают 0,5; 1,0; 2,0; 4,0; 6,0; 8,0 и 10,0 см³ стандартного раствора Б никеля, что соответствует 0,05; 0,1; 0,2; 0,4; 0,6; 0,8 и 1,0 мг никеля. Во все колбы наливают по 10 см^3 смеси кислот и доливают водой до метки.

При массовой доле никеля от 0,5 до 7 % в восемь мерных колб вместимостью по 100 см³ помещают 0,5; 1,0; 2,0; 3,0; 4,0; 5,0; 6,0 и 7,0 см³ стандартного раствора А никеля, что соответствует 0,5; 1,0; 2,0; 3,0; 4,0; 5,0; 6,0 и 7,0 мг никеля. Во все колбы наливают по 10 см³ смеси кислот и доливают водой до метки.

4.2-4.3.3. (Измененная редакция, Изм. № 3).

4.3.4. Измеряют атомную абсорбцию никеля в растворах анализируемых сплавов и в градуировочных растворах, регистрируя аналитические сигналы. Используя пламя ацетилен—воздух и аналитические линии 232,0 нм (при массовой доле никеля от 0,01 до 0,5 % и при массовой доле никеля от 0,5 до 7,0 % для растворов сплавов, разбавленных в 10 раз) и 341,5 нм (при массовой доле никеля от 0,5 до 7,0 %). По полученным значениям строят градуировочный график.

(Введен дополнительно, Изм. № 3).

4.4. Обработка результатов

4.4.1. Массовую долю никеля (X_2) в процентах вычисляют по формуле

$$X_2 = \frac{(C_1 - C_2) \cdot V}{m} \cdot 100,$$

где C₁ — концентрация никеля в анализируемом растворе пробы, найденная по градуировочному графику, г/см³;

С₂ — концентрация никеля в растворе контрольного опыта, найденная по градуировочному графику, г/см³:

 V — объем мерной колбы для приготовления раствора пробы, см³:

т - масса навески пробы, г.

4.4.2. Абсолютные расхождения результатов параллельных определений (d — сходимость) не должны превышать допускаемых значений, указанных в табл. 1 и 2.

(Измененная редакция, Изм. № 2, 3, 4).

4.4.3. Абсолютные расхождения результатов анализа, полученных в двух различных лабораториях, или двух результатов анализа, полученных в одной лаборатории, но при различных условиях (D — воспроизводимость), не должны превышать значений, указанных в табл. 1 и 2.

(Измененная редакция, Изм. № 3, 4).

4.4.4. Контроль точности анализа проводят по Государственным

стандартным образцам (ГСО) или по отраслевым стандартным образцам (ОСО), или по стандартным образцам предприятия (СОП) медно-цинковых сплавов, утвержденным по ГОСТ 8.315, или методом добавок или сравнением результатов, полученных другим методом, в соответствии с ГОСТ 25086.

(Измененная редакция, Изм. № 4), 4.4.4.1—4.4.4.3. (Исключены, Изм. № 4).

> ПРИЛОЖЕНИЕ Рекомендуемое

ИСО 4742—84 Медные сплавы. Определение никсля. Гравиметрический метол.

1. Область применения

Настоящий международный стандарт устанавливает гравиметрический метод определения массовой доли никеля во всех типах медных сплавов, имеющихся в международных стандартах.

Метод применим при массовой доле никеля от 2 до 50 %.

Предупреждение! Работая по настоящему стандарту, следует соблюдать обычные меры предосторожности при работе с хлорной кислотой.

3. Сущность метода

Метод основан на растворении пробы в азотной кислоте и удалении олова и кремния, если они присутствуют. Отделении меди электролизом и осаждении никеля из электролита диметилилиоксимом в присутствии лимонной кислоты.

4. Реактивы

При анализе используют реактивы квалификации ч.д.а. и дистиллированную воду или деионизированную воду.

- Азотная кислота (р = 1,4 г/см³).
- Хлорная кислота (р = 1,67 г/см³).
- Бромистоводородная кислота (р = 1,38 г/см³).
- 4.4. Раствор аммиака (р = 0,925 г/см³).
- 4.5. Раствор азотной кислоты (1:1).

Смешивают 100 см³ азотной кислоты ($\rho = 1,4 \text{ г/дм}^3$) и 100 см³ воды.

- 4.6. Сульфаминовая кислота, раствор 100 г/дм3.
- 4.7. Лимонная кислота, раствор 250 г/дм3.
- Диметилглиоксимат натрия, раствор 25,9 г/дм³.

5. Аппаратура

Обычная лабораторная аппаратура, с дополнением.

- Стаканы вместимостью от 300 до 400 см³.
- Электролизная установка с источником тока и платиновыми электродами.
 - Фильтрующий тигель с размерами пор 16—40 мм.
 - 6. Проведение анализа
 - 6.1. Навеска пробы

6.1.1. При массовой доле никеля от 2 до 4,25 %

Взвесить с точностью до 0,0001 г около 2 г пробы так, чтобы массовая доля никеля в пробе была от 40 до 85 мг.

6.1.2. При массовой доле никеля от 4 до 8,5 %

Взвесить с точностью до 0,0001 г около 1 г пробы так, чтобы массовая доля никеля в пробе была от 40 до 85 мг.

6.1.3. При массовой доле никеля от 8 до 50 %

Взвесить с точностью до 0,0001 г от 0,25 до 1 г пробы так, чтобы массовая доля никеля в пробе была от 80 до 125 мг.

- 6.2. Растворение пробы
- 6.2.1. Для сплавов, не содержащих олова и кремния

Навеску пробы помещают в стакан вместимостью 300—400 см³, добавляют 25 см³ раствора азотной кислоты и сначала растворяют на холоде, а затем при нагревании.

После полного растворения пробы раствор кипятят для удаления оксидов азота. Затем добавляют 50 см³ воды, и далее, если раствор прозрачный, продолжают анализ по п. 6.3.

6.2.2. Для сплавов, содержащих олово и кремний

После растворения навески пробы сплава, содержащего олово, раствор будет мутным. В этом случае необходимо дать раствору отстояться в течение 1 ч при 80 °С для выпадения метаоловянной кислоты. Осадок отфильтровывают на плотный фильтр с фильтробумажной массой и несколько раз промывают осадок теплым раствором азотной кислоты (1:99).

Фильтр с осадком помещают в стакаи, в котором проводилось растворение пробы, добавляют 15—20 см³ азотной кислоты и 10—15 см³ хлорной кислоты, накрывают стеклом и нагревают до обильного выделения белых паров. Нагревание продолжают до разрушения всего органического вещества. Остаток охлаждают, ополаскивают стекло и стенки стакана водой, добавляют 15 см³ бромистоводородной кислоты и нагревают до выделения обильных белых паров для испарения олова. Операцию повторяют добавлением бромисто-водородной кислоты до выделения паров и осветления раствора. Затем раствор выпаривают досуха. Остаток охлаждают, растворяют в малом объеме воды и добавляют раствор к фильтрату.

6.3. Электролиз

Добавляют 5 см³ сульфаминовой кислоты к раствору и приблизительно 200 см³ воды и проводят электролиз.

- 6.4. Осаждение никеля
- 6.4.1. Добавляют к электролиту 5 см³ азотной кислоты и 10 см³ хлорной кислоты и выпаривают раствор до выделения обильных белых паров. Охлаж-

дают и добавляют 100 см³ воды. Переносят раствор в стакан вместимостью 800 см³, при необходимости отфильтровав. Добавляют 10 см³ раствора лимонной кислоты и раствор аммиака до тех пор, пока раствор не посинеет. Добавляют дополнительно 1 см³ и разбавляют водой до объема 400 см³ и нагревают до 60—70 °C.

6.4.2. При массовой доле никеля от 40 до 85 мг добавляют 44 см³ раствора диметилглиоксимата натрия к раствору при энергичном перемешивании. Раствор охлаждают до комнатной температуры, периодически перемещивая.

6.4.3. При массовой доле никеля от 80 до 125 мг добавляют 60 см³ раствора диметилглиоксимата натрия к раствору при энергичном перемещивании. Раствор охлаждают до комнатной температуры, периодически перемещивая.

6.5. Фильтрование

Отфильтровывают осадок во взвешенный фильтрующий титель, предварительно высушенный в течение 1 ч при температуре 150 °C. Промывают осадок 10—12 раз небольшим количеством воды, давая возможность фильтру полностью стечь между промывками. Затем сущат осадок в течение 1 ч при температуре 150 °C, охлаждают и взвешивают.

7. Обработка результатов

Массовую долю никеля в процентах вычисляют по формуле

$$\frac{m_1}{m} = \frac{0.2032 \cdot 100}{m} = \frac{m_1}{m} \cdot 20,32,$$

где т. - масса осадка диметилглиоксимата никеля, г;

0,2032 — коэффициент пересчета диметилглиоксимата никеля на никель;
т — масса навески пробы, г.

8. Отчет об анализе

Отчет о проведении анализа должен содержать:

- а) методику отбора проб;
- б) применяемый метод анализа;
- в) полученные результаты и метод их расчета;
- все характерные особенности, замеченные при анализе;
- д) все проделанные операции, не предусмотренные настоящим стандартом, или же считающиеся побочными.

ПРИЛОЖЕНИЕ. (Введено дополнительно, Изм. № 4).

ИНФОРМАЦИОННЫЕ ДАННЫЕ

РАЗРАБОТАН И ВНЕСЕН Министерством цветной промышленности СССР

РАЗРАБОТЧИКИ

Ю.Ф. Шевакин, М.Б. Таубкин, А.А. Немодрук, Н.В. Егиазарова (руководитель темы), И.А. Воробьева

- УТВЕРЖДЕН И ВВЕДЕН В ДЕЙСТВИЕ Постановлением Государственного комитета стандартов Совета Министров СССР от 27.04.77 № 1062
- 3. B3AMEH FOCT 1652.11-71
- 4. Стандарт полностью соответствует ИСО 4742-84
- 5. ССЫЛОЧНЫЕ НОРМАТИВНО-ТЕХНИЧЕСКИЕ ДОКУМЕНТЫ

Обозначение НТД, на который дана ссылка	Номер пункта, подпункта	
ΓΟCT 8.315—91	2 4.4, 3.4.4, 4.4.4	
ГОСТ 19978	3.2	
FOCT 849—70	4.2	
ΓΟCT 1020-77	Вводная часть	
· FOCT 1652.1—77	1.1, 2.3.1, 2.3.2	
FOCT 311877	2.2, 3.2, 4.2	
FOCT 3652-69	2.2	
FOCT 3760-79	2.2, 3.2	
ГОСТ 420477 ГОСТ 4328—77	2.2, 3.2	
FOCT 4461 - 77	22 32 42	
FOCT 5456—79	2.2, 3.2, 4.2	
TOCT 5817 - 77	2.2	
FOCT 5828-77	2.2, 3.2	
FOCT 5851-75	3.2	
ГОСТ 10484—78	2.2, 4.2	
FOCT 10928-90	3.2	
ΓΟCT 15527—70	Вводная часть	
FOCT 17711-93	Вводная часть	
FOCT 18300—87	2.2, 3.2	
FOCT 20478—75	3.2	
ГОСТ 23932—90	2.2	
FOCT 25086—87 FOCT 27068—86	1.1, 2.4.4, 3.4.4, 4.4.4	
ИСО 474284	Duaming in an analysis	
NCU 4/42**04	Вводная часть, приложение	

- Постановлением Госстандарта от 28.12.92 № 1525 снято ограничение срока действия
- 7. ПЕРЕИЗДАНИЕ (июль 1997 г.) с Изменениями № 1, 2, 3, 4, утвержденными в октябре 1981 г., ноябре 1987 г., октябре 1989 г. (ИУС 12—81, 2—88, 2—90, 3—93)