олово

МЕТОДЫ ОПРЕДЕЛЕНИЯ СУРЬМЫ

Издание официальное

МЕЖГОСУДАРСТВЕННЫЙ СТАНДАРТ

олово

Методы определения сурьмы

ΓΟCT 15483.1—78

Tin. Methods for determination of antimony

ОКСТУ 1709

Дата введения 01.01.80

Настоящий стандарт устанавливает фотометрический (при массовой доле сурьмы от 0,00001 до 0,35 %), атомно-абсорбционный (при массовой доле сурьмы от 0,02 до 0,35 %) методы и метод инверсионной вольтамперометрии с накоплением (при массовой доле сурьмы от 0,00002 до 0,00005 %).

Стандарт соответствует СТ СЭВ 4811 в части фотометрического (при массовой доле сурьмы от 0,003 до 0,35 %) и атомно-абсорбционного методов.

(Измененная редакция, Изм. № 2).

1. ОБЩИЕ ТРЕБОВАНИЯ

 Общие требования к методам анализа и требования безопасности — по ГОСТ 15483.0. (Измененная редакция, Изм. № 1).

2. ФОТОМЕТРИЧЕСКОЕ ОПРЕДЕЛЕНИЕ СОДЕРЖАНИЯ СУРЬМЫ

2.1. Сущность метода

Метод основан на растворении пробы в серной кислоте, экстракции комплексного соединения сурьмы с бриллиантовым зеленым в слое толуола и последующем измерении оптической плотности органической фазы на спектрофотометре при длине волны 656 нм или на фотоэлектроколориметре в интервале длин волн от 640 до 670 нм.

(Измененная редакция, Изм. № 2).

2.2. Аппаратура, реактивы и растворы

Фотоэлектроколориметр или спектрофотометр.

Воронки делительные вместимостью 150 см3.

Колбы мерные вместимостью 25 см3 с притертыми пробками.

Пробирки мерные вместимостью 10 см3 с притертыми пробками.

Вода дистиллированная по ГОСТ 6709, дважды перегнанная: при первой перегонке к воде добавляют 2—3 кристаллика марганцовокислого калия.

Тридистиллят (хранят в полиэтиленовой посуде, применяют при анализе олова высокой чистоты).

Кислота серная по ГОСТ 4204.

Кислота соляная особой чистоты по ГОСТ 14261 и разбавленная 3:1.

Натрий азотистокислый по ГОСТ 4197, раствор с массовой долей 10 %.

Издание официальное

Перепечатка воспрещена

© Издательство стандартов, 1978 © ИПК Издательство стандартов, 1999 Переиздание с Изменениями Мочевина по ГОСТ 6691, насыщенный раствор: 50 г мочевины растворяют в 50 см³ горячей волы.

Бриллиантовый зеленый, водный раствор с массовой долей 0,1 %.

Олово двухлористое, свежеприготовленный раствор с массовой долей 10 % в концентрированной соляной кислоте.

Толуол по ГОСТ 5789.

Ацетон по ГОСТ 2603.

Сурьма металлическая по ГОСТ 1089 марки Су-00.

Растворы сурьмы стандартные.

Раствор А: 0,1000 г металлической сурьмы растворяют при нагревании в 5 см³ концентрированной серной кислоты, затем охлаждают и разбавляют 20 см³ соляной кислоты, разбавленной 3:1, снова охлаждают, переводят в мерную колбу вместимостью 1 дм³, доводят до метки соляной кислотой, разбавленной 3:1, и перемешивают.

1 см³ раствора А содержит 1-10-4 г сурьмы.

Раствор Б; готовят в день применения: 10 см³ раствора А переносят в мерную колбу вместимостью 100 см³, разбавляют до метки соляной кислотой, разбавленной 3:1, и перемешивают.

1 см³ раствора Б содержит 1·10⁻⁵ г сурьмы.

Раствор В; готовят в день применения: 10,0 см³ раствора Б переносят в мерную колбу вместимостью 100 см³, доливают до метки соляной кислотой, разбавленной 3:1, и перемешивают.

1 см3 раствора В содержит 1-10-6 г сурьмы.

Кислота соляная по ГОСТ 3118.

Кислота серная особой чистоты по ГОСТ 14262.

(Измененная редакция, Изм. № 1, 3).

2.3. Проведение анализа

2.3.1. При массовой доле сурьмы от 0,003 до 0,35 %

Навеску олова массой 0,5 г помещают в коническую колбу вместимостью 100 см³, приливают 5 см³ серной кислоты и выпаривают до выделения паров серного ангидрида. Нагревание продолжают на горячей плите до удаления серы со стенок колбы. Сернокислый раствор охлаждают, приливают 20 см³ соляной кислоты, разбавленной 3:1, слегка подогревают до растворения солей, снова охлаждают, переводят в мерную колбу вместимостью 100 см³, доводят до метки соляной кислотой, разбавленной 3:1, и перемешивают.

В зависимости от массовой доли сурьмы отбирают аликвотную часть раствора в соответствии с табл. 1 и переносят в стакан вместимостью 100 см³.

Таблица 1

Массовая доля сурьмы, %	Аликвотная часть раствора, см ³
До 0,05	10,0
Св. 0,05 » 0,12	5,0
» 0,12 » 0,35	2,0

К отобранной части раствора (если было отобрано 2,0 см³ раствора, то к нему прибавляют 3,0 см³ соляной кислоты, разбавленной 3:1) при перемешивании по каплям приливают двухлористое олово до обесцвечивания раствора, 1 см³ раствора азотистокислого натрия и оставляют на 5 мин. Приливают затем равный объем воды, 1 см³ раствора мочевины и перемешивают до полного прекращения выделения пузырьков. Затем раствор переносят в делительную воронку, разбавляют водой до 100 см³ (если была отобрана аликвотная часть 10,0 см³) или до 50 см³ (если была отобрана аликвотная часть 5,0 см³).

К раствору в воронке приливают 1 см³ раствора бриллиантового зеленого и 10 см³ толуола и экстрагируют сурьму в течение 1 мин. После разделения жидкостей водный слой отделяют, прибавляют к нему 1 см³ раствора бриллиантового зеленого, 5 см³ толуола и повторяют экстракцию.

Экстракты сливают в сухую мерную колбу вместимостью 25 см³, в которую предварительно было влито 10 см³ ацетона, доводят до метки толуолом и перемешивают.

Через 10 мин измеряют оптическую плотность органического раствора на спектрофотометре

при длине волны 656 нм или на фотоколориметре, пользуясь светофильтром с областью светопропускания в интервале волн от 640 до 670 нм и кюветой с оптимальной толщиной слоя. Раствором сравнения служит смесь толуола и ацетона в соотношении 3:2.

Из показаний оптической плотности анализируемого раствора вычитают показания оптической плотности раствора контрольного опыта, проведенного через все стадии анализа.

Массу сурьмы в растворе определяют по градуировочному графику.

(Измененная редакция, Изм. № 1, 2, 3).

2.3.2. Для построения градуировочного графика в восемь из девяти стаканов вместимостью 100 см³ отмеряют 0,15; 0,25; 0,5; 1,0; 1,5; 2,0; 2,5 и 4,0 см³ стандартного раствора Б, что соответствует 0,0015; 0,0025; 0,005; 0,01; 0,015; 0,020; 0,025 и 0,040 мг сурьмы. Во все стаканы приливают по 5 см³ раствора соляной кислоты, при перемешивании по каплям приливают раствор двухлористого олова до обесцвечивания раствора. Далее продолжают, как указано в п. 2.3.1. По полученным значениям строят градуировочный график.

(Измененная редакция, Изм. № 2).

2.3.3. При массовой доле сурьмы 0,00001 до 0,00005 %

Навеску олова массой 1 г помещают в стакан вместимостью 100 см³, приливают 5 см³ серной кислоты (ос. ч.), нагревают до растворения навески олова, удаления серы со стенок стакана и выпаривания избытка кислоты до слегка влажных солей.

К охлажденному остатку приливают 7 см³ соляной кислоты, разбавленной 3:1, слегка нагревают (не выше 50 °C) до растворения солей, прибавляют при перемешивании 1 см³ раствора азотисто-кислого натрия и оставляют на 5 мин. Затем при взбалтывании приливают 8 см³ воды, 1 см³ насыщенного раствора мочевины, перемешивают до прекращения выделения пузырьков и переносят раствор в делительную воронку вместимостью 150 см³. Стакан обмывают 53 см³ воды, прибавляют 1 см³ раствора бриллиантового зеленого, 6 см³ толуола и экстратируют в течение I мин. Органический слой сливают в сухую мерную пробирку вместимостью 10 см³, в которую предварительно было влито 4 см³ ацетона, доводят до метки толуолом и перемешивают.

Через 10 мин измеряют оптическую плотность раствора как в п. 2.3.1, используя кювету с оптимальной толшиной слоя.

(Измененная редакция, Изм. № 1, 3).

2.3.4. Для построения градуировочного графика в стаканы вместимостью 100 см³ отмеряют 0,1; 0,3; 0,5; 0,7 и 1,0 см³ стандартного раствора В, доливают до 5 см³ соляной кислоты, разбавленной 3:1, и ведут анализ, как указано в п. 2.2.1.

По полученным значениям оптической плотности и известным содержаниям сурьмы строят градуировочный график.

(Измененная редакция, Изм. № 3).

- 2.4. Обработка результатов
- 2.4.1. Массовую долю сурьмы (Х) в процентах вычисляют по формуле

$$X = \frac{m_1 \cdot 100}{m} \, .$$

где m₁ — масса сурьмы, найденная по градуировочному графику, г;

т — масса навески олова, соответствующая аликвотной части раствора, г.

(Измененная редакция, Изм. № 1).

2.4.2. Абсолютные допускаемые расхождения результатов параллельных определений при доверительной вероятности P = 0.95 не должны превышать значений, указанных в табл. 2, для олова высокой чистоты — в табл. 3.

Массовая доля сурьмы, %	Абсолютное допускаемое расхождение, %	Массовая доля сурьмы в олове высокой чистоты, %	Абсолютное допускаемое расхождение, %
До 0,005	0,002	От 0,00001 до 0,00002	0,000006
Св. 0,005 » 0,01	0,003	CB. 0,00002 * 0,00004	0,000012
» 0,01 » 0,015	0,004	» 0,00004 » 0,00005	0,000015
» 0,015 » 0,03	0,006		
» 0,03 » 0,05	0,01		
» 0,05 » 0,15	0,02		
» 0,15 » 0,2	0.03		
» 0,2 » 0,35	0,04		

(Измененная редакция, Изм. № 2).

3. МЕТОД ИНВЕРСИОННОЙ ВОЛЬТАМПЕРОМЕТРИИ С НАКОПЛЕНИЕМ

3.1. Сущность метода

Метод основан на определении сурьмы методом инверсионной вольтамперометрии с накоплением при использовании пленочного ртутного электрода. Пробу переводят в раствор соляной кислотой в присутствии хлористого кобальта как катализатора.

3.2. Аппаратура, реактивы и растворы

Кислота соляная особой чистоты по ГОСТ 14261.

Кобальт двухлористый 6-водный, ос. ч.

Смесь для растворения: к 250 см^3 концентрированной соляной кислоты добавляют 0,1-0,15 г двухлористого кобальта. Полученный раствор хранят в кварцевой колбе с притертой пробкой до полного использования.

Кислота серная особой чистоты по ГОСТ 14262 и разбавленная 1:1.

Кислота азотная особой чистоты по ГОСТ 11125 и разбавленная 1:1.

Ртуть азотнокислая закисная по ГОСТ 4521.

Ртуть однохлористая.

Серебро металлическое по ГОСТ 6836, проволока диаметром 0.3-0.6 мм.

Смола эпоксидная ЭДГ.

Калий хлористый, ос. ч., кристаллический и растворы: насыщенный при комнатной температуре и насыщенный раствор, разбавленный вдвое.

Агар микробиологический по ГОСТ 17206, раствор с массовой долей 3 % в насыщенном растворе хлористого калия.

Раствор для амальгамирования: к 50 см³ воды, подкисленной 1—2 каплями концентрированной азотной кислоты, добавляют кристаллы азотнокислой закисной ртути до полного насыщения.

Медь металлическая в виде мелконарезанной стружки.

Натрий углекислый безводный по ГОСТ 83.

Сурьма металлическая по ГОСТ 1089.

Раствор сурьмы стандартный, запасной: растворяют 0,1000 г металлической сурьмы в 10— 15 см³ концентрированной серной кислоты при сильном нагревании. Раствор охлаждают, переводят в мерную колбу вместимостью 100 см³ и разбавляют до метки той же кислотой.

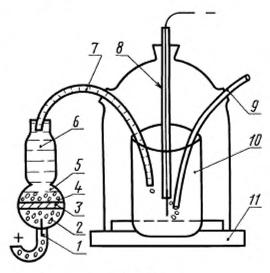
1 см3 запасного раствора содержит 1 мг сурьмы.

Раствор А: $5\ \mathrm{cm^3}$ запасного раствора переносят в мерную колбу вместимостью $100\ \mathrm{cm^3}$, разбавляют серной кислотой, разбавленной 1:I, до метки и перемешивают. $1\ \mathrm{cm^3}$ раствора А содержит $0.05\ \mathrm{mr}$.

Раствор Б: 1 см³ раствора А переносят в мерную колбу вместимостью 100 см³, куда предварительно приливают 20 см³ концентрированной соляной кислоты, доливают до метки водой и перемешивают.

1 см³ раствора Б содержит 0,0005 мг сурьмы.

Полярограф самопишущий, позволяющий осуществить автоматическую запись в прямом и обратном направлениях, со всеми принадлежностями типа LP-7, Чехословакия.


Баллон с инертным газом (азот, аргон, гелий).

Печь трубчатая со вставленной в нее кварцевой трубкой, содержащей мелконарезанные медные стружки для очистки инертного газа от кислорода при 250—300 °C.

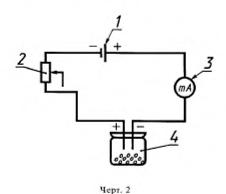
V-образный водяной манометр.

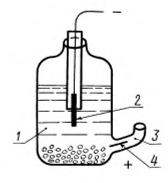
Электролизер стеклянный со сменными кварцевыми стаканчиками или стаканчиками из стекла «пирекс» (черт. 1) состоит из стеклянного сосуда, нижнее основание которого плотно соединено с подставкой из фторопласта 11. В отверстие сверху помещают пленочный ртутный электрод 8, используемый в качестве катода. В одно из боковых отверстий электролизера вводится агар-агаровый мостик 7, соединяющий сосуд для полярографирования 10 с насыщенным каломельным электролом б, используемым в качестве анода. В другое боковое отверстие вводится стеклянная трубка 9 с загнутым и оттянутым нижним концом, служащая для продувки раствора инертным газом. Верхний конец трубки с помощью резинового шланга подсоединен к манометру, через который подается инертный газ. Все перечисленные детали электролизера собраны на шлифах.

Насыщенный каломельный электрод состоит из сосуда (диаметр которого составляет в широкой части 20 мм), с впаянной в него платиновой проволокой 1, на дно которого налива-

Черт. 1

ют ртуть 2 так, чтобы платиновая проволока была полностью погружена в нее. Поверх ртути слоем толщиной 2—3 мм помещают каломельную пасту 3, приготовленную путем растирания 1 г каломели, предварительно смоченной насыщенным раствором хлористого калия с несколькими каплями металлической ртути до получения однородной массы. Поверх пасты помещают кристаллы хлористого калия 4 и оставшуюся емкость заполняют насыщенным раствором хлористого калия 5. Необходимо следить за тем, чтобы указанные слои не перемешивались. Приготовленный каломельный электрод выдерживается в течение 24 ч и затем используется в работе.


Ртутно-серебряный пленочный электрод: отрезок серебряной проволоки длиной 1—1,5 см спаивают с медной проволокой. Серебряную проволоку с помощью эпоксидной смолы вклеивают в стеклянную трубку с оттянутым концом так, чтобы снаружи оставался конец проволоки длиной 0.5—0.7 см. После затвердевания смолы наружный конец серебряной проволоки очищают от смолы.


Установка для амальгамирования электрода (черт. 2) содержит: аккумулятор или сухую батарею 2, сопротивление *I*, миллиамперметр *3*, сосуд для амальгамирования *4*. Сосуд для амальгамирования (черт. 3) содержит в качестве электролита насыщенный раствор азотнокислой закисной ртуги *I*, подкисленный азотной кислотой. В боковую стенку сосуда впаяна платиновая проволока *4*, используемая в качестве анода. Контакт осуществляется через металлическую ртуть, залитую в боковой тубус *3*. В верхнее отверстие сосуда вставляется амальгамируемый электрод *2*, используемый в качестве катода.

Серебряный электрод помещают в сосуд для амальгамирования и проводят электролиз в течение 2,5 мин при силе тока 15 мА. Амальгамированный электрод промывают водой, осторожно растирают кусочком кальки и снова промывают водой. Полученный электрод хранят в воде.

(Измененная редакция, Изм. № 1, 3).

- 3.3. Проведение анализа
- 3.3.1. Навеску образца массой 2 г помещают в кварцевый стакан вместимостью 100 см³, приливают 10 см³ смеси для растворения и ведут растворение при 40—50 °C на водяной бане.

Черт. 3

Полученный раствор охлаждают, переводят в мерный цилиндр вместимостью 10 см3, доводят до метки смесью для растворения и перемешивают. Аликвотную часть этого раствора в количестве 1 см3 помещают в чистый кварцевый стаканчик, добавляют 4 см3 воды и переносят в электролизер для полярографирования. Пленочный электрод при этом должен быть полностью погружен в раствор. Включают ток инертного газа для перемешивания раствора и удаления из него кислорода (на 3 мин). Скорость поступления газа контролируется с помощью манометра. Устанавливают напряжение минус 0,40 В по нормальному каломельному электроду и подключают ячейку к полярографу, предварительно поставив шунт «чувствительность» в положение, обеспечивающее минимальную силу тока. Проводят электролитическое концентрирование на электроде в течение 5—10 мин в зависимости от содержания сурьмы в образце (электролиз ведется при перемещивании раствора током инертного газа). По истечении указанного времени газ отключают, снижают потенциал до минус 0,33 В, переключают шунт полярографа на нужную «чувствительность» и снимают полярограмму при обратном движении барабана со скоростью 200 мА/мин в интервале потенциалов от минус 0,33 до минус 0,009 В. Пик сурьмы лежит при потенциале минус 0,18 В. Определение содержания сурьмы проводят методом добавок, замеряя высоту пика для пробы без добавки и с добавкой 0,1; 0,15 и 0,2 см3 стандартного раствора Б.

3.4. Обработка результатов

3.4.1. Массовую долю сурьмы (Х) в процентах вычисляют по формуле

$$X = \frac{h C_{cr} V_{cr} \cdot 100}{(h_1 - h) \ m \cdot 10^6} \,,$$

где h — высота пика сурьмы для образца без добавки, мм;

 C_{cr} — концентрация добавленного стандартного раствора сурьмы, мкг/см³;

 $V_{c\tau}$ — объем добавленного стандартного раствора сурьмы, см³;

h₁ — высота пика сурьмы для образца с добавкой, мм;

т — масса навески олова, г.

3.4.2. Абсолютные допускаемые расхождения результатов параллельных определений при доверительной вероятности P = 0.95 не должны превышать $1.5 \cdot 10^{-5}$ %.

4. АТОМНО-АБСОРБЦИОННЫЙ МЕТОЛ

4.1. Сущность метода

Метод основан на растворении пробы в смеси фтористоводородной и азотной кислот с водой и измерении атомной абсорбции сурьмы в пламени ацетилен-воздух при длине волны 231,1 нм.

4.2. Аппаратура, реактивы и растворы

Атомно-абсорбционный спектрометр со всеми принадлежностями.

Источник излучения для сурьмы.

Стаканы фторопластовые вместимостью 50 см³ или чашки платиновые вместимостью не менее 50 см³.

Колбы полиэтиленовые вместимостью 50 см3.

Кислота азотная по ГОСТ 4461.

Кислота серная по ГОСТ 4204.

Кислота фтористоводородная по ГОСТ 10484.

Кислота соляная по ГОСТ 3118.

Смесь для растворения: фтористоводородную и азотную кислоты смешивают с водой в соотношении 2:3:5 соответственно; хранят в полиэтиленовой посуде.

Олово высокой чистоты по ГОСТ 860.

Сурьма металлическая по ГОСТ 1089.

Стандартный раствор сурьмы: 0,1000 г сурьмы растворяют при нагревании в 10 см³ серной кислоты, охлаждают, разбавляют 20 см³ раствора соляной кислоты, снова охлаждают, переводя в мерную колбу 1 дм³, доводят до метки раствором соляной кислоты и перемешивают.

1 см3 раствора содержит 10-4 г сурьмы.

4.3. Проведение анализа

4.3.1. Навеску олова массой, приведенной в табл. 4, помещают в стакан из фторопласта и растворяют в 10 см³ смеси для растворения, добавляя ее небольшими порциями во избежание бурной реакции. По окончании растворения содержимое стакана нагревают в течение 1—2 мин, не доводя до кипения, и охлаждают. Раствор переносят в мерную колбу вместимостью 50 см³, доводят водой до метки и перемешивают.

Таблица 4

Массовая доля сурьмы, % Масса навески, я

От 0,02 до 0,1 1

Св. 0,1 » 0,35 0,5

Измеряют атомную абсорбцию сурьмы в пламени ацетилен-воздух при длине волны 231,1 им параллельно с растворами для построения градуировочного графика и контрольного опыта.

Концентрацию сурьмы в растворе находят по градуировочному графику.

- 4.3.2. Для построения градуировочного графика в восемь стаканов из фторопласта или платиновые чашки помещают навеску олова высокой чистоты массой в соответствии с табл. 4 и растворяют в 10 см³ смеси для растворения, добавляя ее небольшими порциями во избежание бурной реакции. По окончании растворения содержимое стакана нагревают в течение 1—2 мин, не доводя до кипения, и охлаждают. Раствор переносят в мерные колбы вместимостью 50 см³ и в семь из них отмеряют 2,0; 4,0; 6,0; 8,0; 10,0; 15,0 и 20,0 см³ стандартного раствора сурьмы, что соответствует 0,2; 0,4; 0,6; 0,8; 1,0; 1,5 и 2,0 мг сурьмы, доводят водой до метки и перемешивают. Измеряют атомную абсорбцию сурьмы, как указано в п. 4.3.1. По полученным значениям атомной абсорбции и соответствующим им концентрациям сурьмы строят градуировочный график.
 - 4.4. Обработка результатов
 - 4.4.1. Массовую долю сурьмы (Х) в процентах вычисляют по формуле

$$X = \frac{(C_1 - C_2) \cdot V \cdot 100}{m} ,$$

где C_1 — концентрация сурьмы, найденная по градуировочному графику, г/см³;

 C_2 — концентрация сурьмы в растворе контрольного опыта, найденная по градуировочному графику, г/см³;

V — объем раствора пробы, см³;

т — масса навески олова, г.

4.4.2. Абсолютные допускаемые расхождения результатов параллельных определений при доверительной вероятности 0.95 не должны превышать значений, приведенных в табл. 2.

Разд. 4. (Введен дополнительно, Изм. № 2).

ИНФОРМАЦИОННЫЕ ДАННЫЕ

1. РАЗРАБОТАН И ВНЕСЕН Министерством цветной металлургии СССР

РАЗРАБОТЧИКИ

В.С. Баев, Т.А. Алманова, Г.М. Власова, В.С. Мешкова, Л.В. Мищенко, Л.Д. Савилова, Р.Д. Тресницкая

- УТВЕРЖДЕН И ВВЕДЕН В ДЕЙСТВИЕ Постановлением Государственного комитета СССР по стандартам от 13.12.78 № 3300
- Стандарт соответствует СТ СЭВ 4811—84 в части фотометрического (при массовой доле сурьмы от 0,003 до 0,35 %) и атомно-абсорбционного методов
- 4. B3AMEH FOCT 15483.1-70
- 5. ССЫЛОЧНЫЕ НОРМАТИВНО-ТЕХНИЧЕСКИЕ ДОКУМЕНТЫ

Обозначение НТД, на которыя дана ссылка	Номер пункта
ΓΟCT 83-79	3.2
TOCT 860-75	4.2
ΓΟCT 108982	2.2; 3.2; 4.2
ΓΟCT 2603-79	2.2
ΓΟCT 3118-77	2.2; 4.2
ΓΟCT 4197—74	2.2
ΓΟCT 4204-77	2.2; 4.2
ΓΟCT 4461—77	4.2
ΓΟCT 4521—78	3.2
ГОСТ 5789—78	2.2
ΓΟCT 6691-77	2.2
ΓΟCT 6709—72	2.2
ΓΟCT 6836-80	3.2
ΓΟCT 10484—78	4.2
ΓΟCT 11125—84	3.2
ΓΟCT 14261-77	2.2; 3.2
ΓΟCT 14262—78	2.2; 3.2
ΓΟCT 15483.0—78	1.1
ΓΟCT 1720696	3.2

- Ограничение срока действия снято по протоколу № 4—93 Межгосударственного Совета по стандартизации, метрологии и сертификации (ИУС 4—94)
- ПЕРЕИЗДАНИЕ (апрель 1999 г.) с Изменениями 1, 2, 3, утвержденными в августе 1984 г., октябре 1985 г., июне 1989 г. (ИУС 12—84, 1—86, 10—89)

Редактор Л.И. Нахимова
Технический редактор В.Н. Прусакова
Корректор В.И. Кануркина
Компьютерная перстка Е.Н. Мартемьяновой

Изд. лиц. № 021007 от 10.08.95. Сдано в набор 19.04.99. Подписано в печать 18.05.99, Усл. печ. л. 1,40. Уч.-изд. л. 0,95. Тираж 131 экз. С2837. Зак. 421.

ИПК Издательство стандартов, 107076, Москва, Колодезный пер., 14. Набрано в Издательстве на ПЭВМ Филиал ИПК Издательство стандартов — тип. "Московский печатник", Москва, Лялин пер., 6. Плр № 080102