МЕЖГОСУДАРСТВЕННЫЙ СТАНДАРТ

БРОНЗЫ ОЛОВЯННЫЕ

Методы определения кремния

ГОСТ 1953.9—79

Tin bronze. Methods for the determination of silicon

OKCTY 1709

Дата введения 01.01.81

Настоящий стандарт устанавливает экстракционно-фотометрический метод определения кремния (от 0,001 % до 0,1 %), фотометрический метод определения кремния (от 0,01 % до 0,3 %) и спектральный полуколичественный метод определения кремния (от 0,0005 % до 0,003 %) в одовянных бронзах по ГОСТ 5017, ГОСТ 614 и ГОСТ 613.

(Измененная редакция, Изм. № 2).

1. ОБЩИЕ ТРЕБОВАНИЯ

 Общие требования к методам анализа — по ГОСТ 25086 с дополнением по п. 1.1 ГОСТ 1953.1.

(Измененная редакция, Изм. № 1, 2).

2. ЭКСТРАКЦИОННО-ФОТОМЕТРИЧЕСКИЙ МЕТОД ОПРЕДЕЛЕНИЯ КРЕМНИЯ (от 0,001 % до 0,1 %)

2.1. Сущность метода

Метод основан на образовании кремнемолибденовой кислоты, экстракции ее бутиловым спиртом, восстановлении ее в экстракте до кремнемолибденовой сини и измерении интенсивности образовавшейся окраски.

Методика применима для определения кремния в присутствии фосфора, не превышающем 5-кратного избытка по отношению к кремнию.

2.2. Аппаратура, реактивы и растворы

рН-метр.

Кислота азотная по ГОСТ 4461 и разбавленная 1:2 (прокипяченная).

Кислота серная по ГОСТ 4207, разбавленная 1:9.

Кислота соляная по ГОСТ 3118 и разбавленная 1:1.

Смесь кислот: соляную кислоту смешивают с азотной в соотношении 3:1.

Кислота фтористоводородная.

Кислота лимонная по ГОСТ 3652, раствор 500 г/дм3,

Кислота борная, насыщенный раствор: 60 г борной кислоты растворяют 1 дм³ горячей воды и после охлаждения используют отстоявшийся раствор.

Аммиак водный ос. ч. и по ГОСТ 3760, разбавленный 1:1 и 1:100.

Аммоний молибденовокислый по ГОСТ 3765, перекристаллизованный, раствор 100 г/дм3.

Издание официальное

Перепечатка воспрещена

5-1*

C. 2 FOCT 1953.9-79

Перекристаллизацию проводят: 250 г модибденовокислого аммония растворяют в 400 см³ воды при нагревании до 70—80 °C, добавляют аммиак до явного запаха и горячий раствор фильтруют два раза через один и тот же плотный фильтр в стакан, содержащий 300 см³ этилового спирта.

Раствор охлаждают до 10 °C и дают отстояться в течение 1 ч. Выпавшие кристаллы отфильтровывают на воронку Бюхнера под вакуумом, создаваемым водоструйным насосом. Кристаллы промывают 2—3 раза этиловым спиртом, порциями по 20—30 см³, высушивают на воздухе.

Спирт этиловый ректификованный по ГОСТ 18300.

Олово двухлористое, раствор 100 г/дм³ готовят: 10 г двухлористого олова растворяют в 100 см³ соляной кислоты(1:1) при нагревании до 80—90 °C.

Промывной раствор: к 50 см³ серной кислоты добавляют 1,5 см³ раствора молибденовокислого аммония.

Калий-натрий углекислый по ГОСТ 4332.

Натрий углекислый по ГОСТ 83, раствор 50 г/дм³.

Натрий кремнекислый мета.

Спирт бутиловый нормальный по ГОСТ 6006.

Кремния двуокись по ГОСТ 9428.

Стандартные растворы кремния:

Приготовление из кремнекислого натрия: 0,5 г растворяют в 20 см³ раствора углекислого натрия в платиновой чашке, охлаждают, помещают в полиэтиленовый сосуд, разбавляют водой до 500 см³ и перемешивают.

1 см³ раствора содержит 0,0001 г кремния.

Точное содержание кремния устанавливают гравиметрическим методом.

Приготовление из двуокиси кремния: 0,2143 г прокаленной двуокиси кремния сплавляют в платиновом тигле с 2 г калия-натрия углекислого. Плав выщелачивают водой, переносят в мерную колбу вместимостью 500 см³, доливают до метки водой, перемешивают и немедленно переносят в полиэтиленовый сосуд.

1 см³ раствора содержит 0,0002 г кремния.

Точное содержание кремния устанавливают гравиметрическим методом.

2.3. Проведение анализа

2.3.1. Навеску броизы (табл. 1) помещают в полиэтиленовый или тефлоновый или в фторопластовый стакан вместимостью 100 см³, добавляют 15—30 капель фтористоводородной кислоты, 15 см³ смеси кислот, накрывают полиэтиленовой или фтористопластовой крышкой и растворяют на холоду, а затем на водяной бане при нагревании до 60 °C и выдерживают при этой температуре 20—30 мин. Затем открывают крышку и держат еще 15 мин.

После растворения раствор охлаждают, добавляют 30 см 3 борной кислоты, через 20 мин смесь переносят через полиэтиленовую воронку в мерную колбу вместимостью 100 см 3 , содержащую 30 см 3 борной кислоты, доливают до метки водой и перемешивают. Раствор немедленно переносят в стакан, в котором проводили растворение. Предварительно устанавливают рН в растворах аликвотных частей на рН-метре следующим образом: в полиэтиленовый стакан вместимостью 50 см 3 помещают аликвотную часть раствора (табл. 1), добавляют воды до объема \sim 50 см 3 и с помощью раствора аммиака (ос. ч.) устанавливают рН = 1,0—1,2, добавляют раствор аммиака по каплям, фиксируя число капель, пошедших на операцию.

Таблица 1

Массовая доля кремния, %	Масса навески, г	Объем аликвотной части раствора, см ²	Мясса навески, соответ- ствующая аликвотной части раствора, г
От 0,001 до 0,01 включ.	1	50	0,5
Cn. 0,01 » 0,025 »	0,5	20	0,1
* 0,025 * 0,05 *	0,5	10	0,05
* 0,05 * 0,1 *	0,25	10	0,025

Аликвотную часть раствора (табл. 1) для анализа помещают в делительную воронку вместимостью 200 см^3 , доливают воды до $\sim 50 \text{ см}^3$ и устанавливают pH = 1,0-1,2, используя предварительные данные. В раствор по каплям при перемешивании добавляют 5 см^3 раствора модибденовокислого аммония и оставляют стоять 10 мин. Затем добавляют 5 см^3 лимонной кислоты, 10 см^3 прокипяченной

азотной кислоты (1:2), 30 см^3 бутилового спирта и экстрагируют кремнемолибденовую гетерополикислоту, осторожно переворачивая воронку 30 раз. После расслоения водный слой отбрасывают, а к органическому слою добавляют 50 см^3 промывной жидкости и промывают, переворачивая воронку 10-15 раз. Водный слой отбрасывают, а органический переносят в мерную колбу вместимостью 50 см^3 , добавляют бутиловый спирт, $7-8 \text{ капель раствора двухлористого олова, доливают до метки бутиловым спиртом и энергично встряхивают. В течение <math>5 \text{ мин измеряют оптическую плотность раствора на фотоэлектроколориметре с красным светофильтром (<math>\lambda_{>\phi} = 600-630 \text{ нм}$) или на спектрофотометре при 635 нм в кювете с толщиной поглощающего слоя 1 см. В качестве раствора сравнения используют бутиловый спирт. Одновременно через все стадии анализа проводят контрольный опыт и найденное в нем значение оптической плотности вычитают из значения оптической плотности пробы.

2.3.2. Построение градуировочного графика

В пять из шести подиэтиленовых, тефлоновых или фторопластовых стаканчиков помещают 1,0; 2,0; 3,0; 4,0; 5,0 см 3 стандартного раствора кремния (0,0001 г/дм 3) или 0,5; 1,0; 1,5; 2,0 и 2,5 см 3 стандартного раствора кремния (0,0002 г/дм 3). Во все стаканчики добавляют по 15 капель фтористоводородной кислоты, по 7—8 см 3 смеси кислот, помещают на водяную баню, нагревают до 60 °С и далее поступают, как указано в п. 2.3.1.

Аликвотная часть раствора, взятая на измерение, для каждой точки градуировочного графика составляет 10 см³.

В качестве раствора сравнения используют раствор, не содержащий кремния. Градуировочный график строится из расчета его массовой доли в аликвотной части раствора.

- 2.4. Обработка результатов
- 2.4.1. Массовую долю кремния (Х) в процентах вычисляют по формуле

$$X = \frac{(m_1 - m_2) \cdot 100}{m}$$
,

где т. - масса кремния в пробе, найденная по градуировочному графику, г;

- m_2 масса кремния в растворе контрольного опыта, найденная по градуировочному графику, г; m масса навески, соответствующая аликвотной части раствора, г.
- 2.4.2. Расхождения результатов параллельных определений не должны превышать значений допускаемых расхождений (d — показатель сходимости при n = 3), указанных в табл.

Таблица 2

Массовая доля кремния, %	d, %	D. %	Массовая доля кремния, %	d, %	D, %
Or 0,001 до 0,005 включ. Cв. 0,005 » 0,01 » » 0,01 » 0,02 » » 0,02 » 0,05 »	0,0008 0,001 0,002 0,005	0,001 0,001 0,003 0,007	От 0.05 до 0,10 включ. Св. 0,10 » 0,20 » » 0,20 » 0,30 »	0,008 0,012 0,02	0,01 0,02 0,03

- 2.4.3. Расхождения результатов анализа, полученных в двух различных лабораториях, или двух результатов анализа, полученных в одной лаборатории, но при различных условиях (D показатель воспроизводимости) не должны превышать значений, указанных в табл. 2.
- 2.4.4. Контроль точности результатов анализа проводят по Государственным стандартным образцам оловянных бронз, вновь утвержденным по ГОСТ 8.315, или методом добавок, в соответствии с ГОСТ 25086.
 - Разд. 2 (Измененная редакция, Изм. № 2).

3. ФОТОМЕТРИЧЕСКИЙ МЕТОД ОПРЕДЕЛЕНИЯ КРЕМНИЯ

3.1. Сущность метода

Метод основан на образовании желтой кремнемолибденовой кислоты и измерении оптической плотности полученного раствора.

 3.2. Аппаратура, реактивы и растворы Спектрофотометр или фотоэлектроколориметр. pH-метр.

C. 4 FOCT 1953.9-79

Кислота азотная по ГОСТ 4461, разбавленная 1:2.

Кислота фтористоводородная по ГОСТ 10484.

Кислота лимонная по ГОСТ 3652, раствор 100 г/дм3.

Кислота ортофосфорная по ГОСТ 6552, разбавленная 1:9.

Кислота борная по ГОСТ 9656, насыщенный раствор; готовят следующим образом: около 60 г борной кислоты растворяют в 1 дм³ горячей воды.

Аммиак водный по ГОСТ 3760, разбавленный 1:1.

Медь по ГОСТ 859, марки М0 или М00.

Мочевина по ГОСТ 6691, раствор 100 г/дм³.

Кристаллический фиолетовый водный раствор 1 г/дм3.

Спирт этиловый ректификованный технический по ГОСТ 18300.

Аммоний молибденовокислый по ГОСТ 3765, перекристаллизованный, свежеприготовленный раствор 100 г/дм³ (перекристаллизацию см. п. 2.2).

Натрий-калий углекислый.

Кремния двуокись по ГОСТ 9428.

Стандартные растворы кремния. Раствор А; готовят следующим образом: 0,2143 г прокаленной двуокиси кремния сплавляют в платиновом тигле с 2 г натрия-калия углекислого в течение 1 ч при 1100 °C. Плав выщелачивают водой, раствор переносят в мерную колбу вместимостью 500 см³, до метки наливают водой и перемешивают. Раствор немедленно переносят в полиэтиленовый сосуд.

1 см³ раствора А содержит 0,0002 г кремния.

Раствор Б; готовят следующим образом: 10 см³ раствора А переносят в мерную колбу вместимостью 100 см³, разбавляют водой до метки и перемешивают. Раствор немедленно переносят в полиэтиленовый сосуд.

1 см3 раствора Б содержит 0,00002 г кремния.

- 3.3. Проведение анализа
- 3.3.1. Навеску бронзы массой 1 г помещают в платиновый или фторопластовый тигель, прибавляют 1 см³ фтористоводородной кислоты; 10 см³ азотной кислоты, разбавленной 1:2, и накрывают платиновой или фторопластовой крышкой. Растворение проводят при нагревании на водяной бане при 60 °C. По окончании растворения в тигель прибавляют 10 см³ раствора борной кислоты и раствор переносят (через полиэтиленовую воронку) в мерную колбу вместимостью 100 см³, в которую уже добавлено 20 см³ раствора борной кислоты, доливают водой до метки и перемешивают.

20 см³ полученного раствора (при массовой доле кремния от 0,01 % до 0,07 %), 10 см³ (при массовой доле кремния от 0,07 % до 0,15 %) и 5 см³ (при массовой доле кремния от 0,15 % до 0,30 %) помещают в стакан вместимостью 50 см³ и нейтрализуют аммиаком при постоянном перемешивании до рН 1,0−1,2. В раствор, имеющий рН 1,0−1,2, прибавляют 5 см³ раствора мочевины и оставляют на 10 мин, затем добавляют 2,5 см³ раствора молибденовокислого аммония и оставляют на 10 мин. После этого вводят 5 см³ раствора лимонной кислоты, 3 см³ ортофосфорной кислоты, раствор переносят в мерную колбу вместимостью 50 см³ и до метки доливают водой. Раствор перемешивают и через 15 мин измеряют оптическую плотность на фотоэлектроколориметре с синим светофильтром в кювете с толщиной поглошающего слоя 3 или 5 см или на спектрофотометре при длине волны 400 нм в кювете с толщиной поглошающего слоя 1 см.

В качестве раствора сравнения используют раствор того же образца без добавления раствора молибденовокислого аммония.

Из полученного значения оптической плотности анализируемого раствора вычитают значение оптической плотности контрольного опыта, проведенного через все стадии анализа и измеренного против воды.

(Измененная редакция, Изм. № 1, 2).

3.3.2. Построение градуировочного графика

В стаканы вместимостью по 50 см 3 помещают 0; 1,0; 2,0; 4,0; 6,0 и 8,0 см 3 раствора Б кремния, разбавляют водой до 20 см 3 и далее анализ ведут, как указано в п. 3.3.1.

- 3.4. Обработка результатов
- 3.4.1. Массовую долю кремния (Х) в процентах вычисляют по формуле

$$X = \frac{m_{\parallel}}{m} \cdot 100$$
,

где m₁ — масса кремния, найденная по градуировочному графику, г;

т — навеска бронзы, соответствующая аликвотной части раствора, г.

3.4.2. Расхождения результатов параллельных определений не должны превышать значений допускаемых расхождений (d — показатель сходимости при n = 3), указанных в табл. 2.

(Измененная редакция, Изм. № 2).

- 3.4.3. Расхождения результатов анализа, полученных в двух различных лабораториях, или двух результатов, полученных в одной лаборатории, но при различных условиях (D показатель воспроизводимости), не должны превышать значений, указанных в табл. 2.
- 3.4.4. Контроль точности результатов анализа проводят по Государственным стандартным образцам оловянных бронз, вновь утвержденным по ГОСТ 8.315, или методом добавок, в соответствии с ГОСТ 25086.
 - 3.4.3, 3.4.4. (Введены дополнительно, Изм. № 2).

4. ПОЛУКОЛИЧЕСТВЕННЫЙ СПЕКТРАЛЬНЫЙ МЕТОД ОПРЕДЕЛЕНИЯ КРЕМНИЯ

4.1. Сущность метода

Пробы или CO массой (0,50±0,05) г подвергают предварительному окислению расплавлением на катоде дуги постоянного тока в атмосфере кислорода.

Окисленный образец помещают на графитовую подставку и между ним и подставным электродом из чистой меди или угля возбуждают дугу постоянного тока. Спектр дуги фотографируют с помощью спектрографа, измеряют интенсивности аналитических линий и фона и по методу «трех эталонов» находят концентрацию кремния. Если линия анализируемого элемента в пробе отсутствует или значительно слабее по интенсивности линии в стандартном образце, оценка концентрации кремния проводится полуколичественно.

4.2. Аппаратура, реактивы и растворы

Спектрограф ИСП-22.

Источник постоянного тока для питания дуги, обеспечивающий напряжение 200—400 В и силу тока до 10 А.

Устройство для высокочастотного поджигания дуги постоянного тока от генератора любой системы (ПС-39, ДГ, ИГ).

Микрофотометр, предназначенный для измерения оптических плотностей спектральных линий и фона.

Пресс масляный, гидравлический или любой другой, обеспечивающий усилие по штоку в 1.5-2 г с пресс-бумагой, обеспечивающей получение прессованных таблеток из металлической стружки диаметром 5-7 мм и массой (0.50 ± 0.05) г.

Электроды-подставки графитовые диаметром 8—10 мм.

Электроды из меди марки МОб или из угля марки ОСЧ в виде прутков диаметром 6—7 мм, заточенные на полусферу, или усеченный конус с площадью диаметром 1,5—1,7 мм.

Приспособление для заточки угольных или медных электродов, например станок модели КП-35.

Кислородная камера для окисления СО и проб.

Баллон с кислородом, снабженный редуктором.

Пластинки спектрографические типа 1 или 2 чувствительностью 0,5—5 ед. Монохроматическая чувствительность 10—60 ед.

Электроплитка или песчаная баня.

Весы аналитические на 200 г с разновесами типа АДВ-200 и др.

Бюксы или тигли фарфоровые для хранения окисленных таблеток.

Пинцеты для захватывания таблеток.

Колпачки стеклянные или пластмассовые для защиты от пыли заточенных электродов.

Магнит типа МВМ-63.

Секундомер или реле времени.

Кислота азотная по ГОСТ 4461, разбавленная 1:1.

Спирт этиловый ректификованный по ГОСТ 18300.

Метол (пара-метиламинофенолсульфат).

Гидрохинон (парадиоксибензол) по ГОСТ 19627.

C. 6 FOCT 1953.9-79

Натрий сернистокислый по ГОСТ 195.

Натрий углекислый по ГОСТ 83.

Калий бромистый по ГОСТ 4160.

Натрий серноватистокислый кристаллический (тиосульфат) по ГОСТ 244.

Кислота уксусная по ГОСТ 61.

Проявитель для пластинок спектральных типа 1, 2 и «Микро» готовят смешиванием равных объемов растворов 1 и 2 перед применением.

Раствор 1: 2,5 г метола, 12 г гидрохинона и 100 г натрия сернистокислого растворяют в 500—700 см³ воды и доливают водой до 1 дм³.

Раствор 2: 100 г углекислого натрия и 7 г бромистого калия растворяют в 500—700 см³ воды и доливают до 1 см³.

Допускается применение и других контрастных проявителей.

Фиксажный раствор: 300 г тиосульфата натрия, 25 г сернистокислого натрия и 8 см³ уксусной кислоты растворяют в 1 дм³ дистиллированной воды.

4.3. Подготовка к анализу

Пробу и CO в виде таблеток массой $(0,5\pm0,05)$ г диаметром 5-7 мм и высотой 2 мм вытачивают на токарном станке.

Пробы могут быть спрессованы из стружки. Стружку предварительно отмагничивают. Затем стружку и СО в виде таблеток очищают от поверхностных загрязнений — травлением в азотной кислоте. Стружку и таблетки СО промывают в дистиллированной воде и сушат. При прессовании таблеток из стружки матрицу и пуансон тщательно очищают от остатков ранее прессованной пробы (промывают водой и протирают спиртом). Приготовляют не менее двух таблеток проб и СО.

Проводят окисление СО и проб в кислородной камере: все детали кислородной камеры и графитовые подставки для проб и СО очищают от окислов меди. Поворотный столик укрепляют в нижнем электродержателе камеры. Во избежание взаимного загрязнения образцов на графитовые подставки поворотного столика помещают таблетки одного состава.

В верхнем держателе укрепляют подставной электрод из меди, рабочий конец которого заточен на усеченный конус с углом при вершине 45° и площадкой диаметром 1,5—1,7 мм, или заточенный на полусферу. Межэлектродный промежуток устанавливают 1,5—2 мм. Таблетка служит катодом дуги постоянного тока, силу тока устанавливают 6 А. Воздух из камеры вытесняют, пропуская сжатый кислород через камеру в течение 30 с. При окислении таблеток давление кислорода в камере поддерживают несколько выше атмосферного. Таблетка под давлением дуги в течение 5—8 с расплавляется и превращается в каплю расплавленных окислов. Ток выключают и подводят к подставному электроду следующую таблетку.

4.4. Проведение анализа

Торцовую часть графитовых электродов для удаления поверхностных загрязнений прокаливают в дуге постоянного тока в течение 20 с при 6—10 A, включая электрод-подставку в качестве анода дуги.

Подготовленные к анализу пробы и CO помещают на прокаленные графитовые подставки. В качестве подставочного электрода применяют медные стержни или угли.

Для определения массовой доли кремния графитовую подставку включают в качестве катода дуги постоянного тока. Допускается использование королька после съемки на аноде. Начало экспозиции отсчитывают после перехода катодного пятна дуги на расплавленную часть королька.

Условия съемки спектрограммы: ширина щели спектрографа — 0,012 мм; освещение щели с помощью трехлинзового конденсора; диафрагма на средней линзе конденсора — 5 мм; дуговой промежуток — 3 мм; сила тока — 6-8 А; обжиг — 20 с; время экспозиции — 60-90 с.

Фотопластинки проявляют в зависимости от их типа в соответствующем проявителе при температуре 18—20 °С в течение 3—5 мин. После промывки пластинок в проточной воде их фиксируют в фиксажном растворе, промывают в проточной воде и высушивают.

4.5. Обработка результатов

4.5.1. Оптические плотности аналитических линий и внутренних стандартов в спектрограммах измеряют с помощью микрофотометра. Ширина щели фотоэлемента составляет 0,10—0,25 мм; ширина щели между зелеными щечками, измеряемая на экране перед фотоэлементом, составляет 0,3—1,0 мм.

Используют аналитическую линию кремния 288,158 нм и минимальное значение оптической плотности фона, измеряемое рядом с линией со стороны более коротких волн. Градуировочные графики строят в координатах:

$$\lg \frac{I_3}{I_{\oplus}} - \lg C$$

Учет фона (переход от ΔS_{κ} lg = $\frac{I_{A}}{I_{\Phi}}$) проводят по таблице (ГОСТ 9717.3).

Основной метод для построения графиков — метод «трех эталонов»). При отсутствии линии кремния в пробе или, если она значительно слабее по интенсивности линии в стандартном образце с минимальным содержанием кремния, оценка проводится полуколичественно, ΔS — разность почернений между линией кремния и фоном ($\Delta S = S_{n+\phi} - S_{\phi}$); $\lg C$ — логарифм концентрации кремния в стандартном образце.

Массовую долю кремния находят по градуировочному графику.

- 4.5.2 Расхождения результатов параглельных определений (d показатель сходимости при n = 3) не должны превышать ~ 0.0003 % при массовой доле кремния от 0.0005 % до 0.001 % и ~ 0.0008 % при массовой доле кремния от 0.001 % до 0.003 %.
- 4.5.3. Расхождения результатов анализа, полученных в двух различных лабораториях, или двух результатов анализа, полученных в одной лаборатории, но при различных условиях (D показатель воспроизводимости), не должны превышать ~0,0004 % при массовой доле кремния от 0,0005 % до 0,001 % и ~0,001 % при массовой доле кремния от 0,001 % до 0,003 %.
- 4.5.4. Контроль точности результатов анализа (полуколичественно) проводят по ГСО 1516—79 (М246х) оловянно-цинковой бронзе или по СОП 2186—86 типа оловянно-цинковой бронзы (М246х). Разд. 4. (Введены дополнительно, Изм. № 2).

C. 8 FOCT 1953.9-79

ИНФОРМАЦИОННЫЕ ДАННЫЕ

- 1. РАЗРАБОТАН И ВНЕСЕН Министерством цветной металлургии СССР
- УТВЕРЖДЕН И ВВЕДЕН В ДЕЙСТВИЕ Постановлением Государственного комитета СССР по стандартам от 10.10.79 № 3899
- 3. Стандарт полностью соответствует СТ СЭВ 1539-79
- 4. B3AMEH ΓΟCT 1953.9-74
- 5. ССЫЛОЧНЫЕ НОРМАТИВНО-ТЕХНИЧЕСКИЕ ДОКУМЕНТЫ

Обозначение НТД, на который даны ссылки	Номер раздела, пункта, подпункта	Обозначение НТД, на который даны ссылки	Номер раздела, пункта, подпункта
ΓΟCT 8,315—97	2.4.4, 3.4.4	ΓΟCT 4207—75	2.2
ГОСТ 61—75	4.2	ΓΟCT 4332—76	2.2
ГОСТ 83—79	2.2	ΓOCT 4461-77	2.2, 3.1, 4.2
ГОСТ 195-77	4.2	ΓΟCT 5017—74	Вводная часть
ГОСТ 244-76	4.2	ΓΟCT 6006—78	2.2
ГОСТ 613-79	Вводная часть	ΓΟCT 6552—80	3.2
ГОСТ 614—97	Вводная часть	ΓΟCT 6691—77	2.2, 3.2
ГОСТ 859-2001	3.2	ΓOCT 9428—73	2.2, 3.2
ГОСТ 1953.1-79	1.1	ГОСТ 965675	3.2
ГОСТ 3118-77	2.2	ГОСТ 10484—78	2.2, 3.2
ГОСТ 3652—69	2.2, 3.2	ГОСТ 18300—87	2.2, 3.2, 4.2
ГОСТ 3760-79	2.2, 3.2	ΓΟCT 19627—74	4.2
ГОСТ 3765—78	2.2, 3.2	ГОСТ 25086—87	1.1, 2.4.4, 3.4.4
ΓΟCT 4160-74	4.2		

- Ограничение срока действия снято по протоколу № 5—94 Межгосударственного Совета по стандартизации, метрологии и сертификации (ИУС 11-12—94)
- ИЗДАНИЕ с Изменениями № 1, 2, утвержденными в феврале 1983 г., августе 1990 г. (ИУС 6-83, 11-90)