

ГОСУДАРСТВЕННЫЙ СТАНДАРТ СОЮЗА ССР

СИСТЕМА ОБЕСПЕЧЕНИЯ ТОЧНОСТИ ГЕОМЕТРИЧЕСКИХ ПАРАМЕТРОВ В СТРОИТЕЛЬСТВЕ

РАСЧЕТ ТОЧНОСТИ

FOCT 21780—83 (CT C3B 3740—82)

Издание официальное

PA3PASOTAH

Центральным ордена Трудового Красного Знамени научно-исследовательским и проектным институтом типового и экспериментального проектирования жилища (ЦНИИЭП жилища) Гесгражданстроя при Госстрое СССР

Центральным научно-исследовательским институтом тилового и экспериментального проектирования школ, дошкольных учреждений, средних и высших учебных заведений (ЦНИИЭП учебных зданий) Госгражданстроя при Госстрое СССР

Центральным научно-исследовательским и проектно-экспериментальным институтом организации, механизации и технической помощи строительству [ЦНИИОМТП] Госстроя СССР

ИСПОЛНИТЕЛИ

А. В. Цареградский (руководитель темы); Л. А. Вассердам; Д. М. Лаковский (руководитель темы); И. В. Копечицкая; Р. А. Каграманов, канд техн. наук; В. Н. Сведлов, канд. техн. наук; В. В. Тишеико

ВНЕСЕН Центральным ордена Трудового Красного Знамени научно-исследовательским и проектным институтом типового и экспериментального проектирования жилища [ЦНИИЭП жилища]. Госгражданстроя при Госстрое СССР

Директор Б. Р. Рубаненко

УТВЕРЖДЕН И ВВЕДЕН В ДЕЙСТВИЕ Постановлением Государственного комитета СССР по делам строительства от 13 денабря 1983 г. № 320

ГОСУДАРСТВЕННЫЙ СТАНДАРТ СОЮЗА С€Р

Система обеспечения точности геометрических параметров в строительстве

РАСЧЕТ ТОЧНОСТИ

System of ensuring the accuracy of geometrical parameters in construction. Accuracy calculation

ГОСТ 21780—83

(CT C9B 3740-82)

Взамен ГОСТ 21780—76

OKCTY 5002

Постановлением Государственного комитета СССР по делам строительства от 13 декабря 1983 г. № 320 срок введения установлен

c 31.01,84

Настоящий стандарт распространяется на проектирование зданий, сооружений и их элементов и устанавливает общие положения, методические принципы и порядок расчета точности геометрических параметров в строительстве.

На основе настоящего стандарта разрабатываются методические документы, устанавливающие особенности расчетов точности геометрических параметров конструкций различных видов.

Стандарт соответствует СТ СЭВ 3740—82 в части, указанной в справочном приложении 1.

Термины, применяемые в настоящем стандарте, и пояснения приведены в обязательном приложении 2.

1. ОСНОВНЫЕ ПОНЯТИЯ

- 1.1. Расчет точности геометрических параметров должен выполняться в процессе проектирования типовых, экспериментальных и индивидуальных конструкций зданий и сооружений и их элементов в целях обеспечения собираемости конструкций с заданными эксплуатационными свойствами при наименьших затратах.
 - 1.2. Расчет точности производят на основе:

функциональных требований, предъявляемых к строительным конструкциям зданий и сооружений;

данных о точности применяемых технологических процессов и операций изготовления элементов, разбивки осей и сборки конструкций.

- 1.3. В процессе расчета точности в соответствии с принятой расчетной схемой по характеристикам точности составляющих геометрических параметров определяют расчетные предельные знаметрических параметров определяют расчетиме предельные зна-чения результирующего параметра, которые сравнивают затем с допустимыми предельными значениями этого параметра, установ-ленными на основе функциональных требований (путем расчета прочности и устойчивости, в соответствии с результатами испыта-ний или исходя из изоляционных, эстетических и других требований).
- 1.4. Соответствие точности результирующего параметра функ-циональным требованиям обеспечивается, если соблюдены следующие условия:

$$x_{\min} \gg x_{\min, f}$$
, (1)

$$x_{\text{max}} \propto x_{\text{max}, f}$$
, (2)

где x_{min} и x_{max} — расчетные предельные значения результирующего параметра х;

 $x_{\min,f}$ и $x_{\max,f}$ — допустимые предельные значения результирующего параметра x. Разность $x_{\max,f}$ — $x_{\min,f}$ составляет функциональный допуск Δx_f .

1.5. Задача расчета точности может быть:

прямой, когда расчетные предельные значения результирую-щего параметра определяют по известным характеристикам точ-ности составляющих параметров (проверочный расчет); обратной, когда по установленным допустимым предельным

значениям результирующего параметра определяют необходимые требования к точности составляющих параметров.

требования к точности составляющих параметров.

1.6. В соответствии с результатами расчета точности:

в нормативно-технической документации на строительные конструкции зданий, сооружений и их элементов и в рабочих чертежах уточняют, при необходимости, номинальные значения результирующих и составляющих параметров, устанавливают требования к точности этих параметров и правила контроля точности; в технологической документации на изготовление элементов, разбивку осей и производство строительно-монтажных работ устанавливают способы и последовательность выполнения технологических процессов и операций, методы и средства обеспечения х точности.

их точности.

2. МЕТОДИЧЕСКИЕ ПРИНЦИПЫ РАСЧЕТА ТОЧНОСТИ

2.1. Принимаемые в результате расчета точности решения дол-жны обеспечивать минимальные трудовые и материальные затра-ты при возведении строительных конструкций зданий и сооруже-ний и изготовлении их элементов.

С этой целью следует предусматривать максимально возможные значения допусков, а также конструктивные и технологические мероприятия по снижению влияния точности технологических процессов и операций на точность результирующих параметров.

2.2. Расчет точности следует производить, как правило, из ус-

ловия полной собираемости конструкций.

В некоторых случаях при технической возможности и экономической целесообразности может предусматриваться неполная собираемость. При этом для случаев, когда действительные значения результирующего параметра будут выходить за пределы, должны предусматриваться дополнительные операции по подбору элементов или пригонке отдельных размеров.

 Исходным уравнением для расчета точности является уравнение (3), выражающее зависимость между результирующим и составляющими параметрами, входящими в расчетную схему:

$$x = c_1 x_1 + c_2 x_2 + \dots + c_n x_n = \sum_{k=1}^{n} c_k x_k$$
, (3)

где x — результирующий параметр;

 x_k — составляющий параметр;

п — число составляющих параметров в расчетной схеме;

с_x — коэффициент, характеризующий геометрическую зависимость результирующего параметра x от составляющего параметра x_x.

В качестве результирующих параметров при составлении расчетных схем, как правило, рассматриваются размеры в узлах сопряжений элементов и другие размеры, которыми при принимаемой последовательности сборки конструкции завершается определенный цикл технологических операций, определяющих точность составляющих параметров, и в которых компенсируются погрешности этих операций (рекомендуемое приложение 3).

В качестве составляющих параметров рассматриваются размеры элементов, размеры, определяющие расстояния между осями, высотными отметками и другими ориентирами, а также другие получаемые в результате выполнения указанных технологических операций параметры, точность которых влияет на точность ре-

зультирующего параметра.

Если составляющие геометрические параметры статистически зависимы, то при определении расчетных характеристик точности результирующего параметра эта зависимость должна быть учтена. Статистическую зависимость допускается карактеризовать коэффициентом корреляции.

2.4. Расчет точности производят на основе статистических методов. В общем случае при статистическом расчете расчетные предельные значения результирующего параметра x_{min} и x_{max} для

проверки условий (1) и (2) определяют по следующим уравнениям точности:

$$x_{\min} = x_{\text{nom}} + \delta m_x - t_{\min, j} \sigma_x , \qquad (4)$$

$$x_{\text{max}} - x_{\text{nom}} + \delta m_x + t_{\text{max}, f} \sigma_x$$
, (5)

где x_{nom} — номинальное значение результирующего параметра x; метра х;

 σ_x — среднее квадратическое отклонение результирующего

параметра х;

 $t_{\min, j}$ и $t_{\max, j}$ — значения стандартизованной случайной величины, зависящей от допускаемой вероятности появления значений результирующего параметра ниже xmin. f и выше x max. f.

Определение расчетных предельных значений результирующего параметра по статистическим характеристикам с применением уравнений 4 и 5 производят в соответствии с обязательным при-

ложением 4.

2.5. В большинстве практических случаев расчет точности следует производить по допускам упрощенным статистическим методом, применение которого позволяет обеспечивать полную собираемость конструкции при применении установленных действующими стандартами планов приемочного контроля точности составляющих параметров с приемочным уровнем дефектности 4 % ГОСТ 23616-79.

При этом уравнения точности для определения расчетных предельных значений результирующего параметра принимают вид:

$$\begin{array}{ll} \mathbf{x}_{\min} = \mathbf{x}_{now} + \delta \mathbf{x}_{c} - 0.75\Delta \mathbf{x} , & (6) \\ \mathbf{x}_{\max} = \mathbf{x}_{now} + \delta \mathbf{x}_{c} + 0.75\Delta \mathbf{x} , & (7) \end{array}$$

$$x_{\text{max}} = x_{\text{nom}} + \delta x_{\text{c}} + 0.75\Delta x , \qquad (7)$$

где x_{nom} — номинальное значение результирующего параметра; б ж - расчетное отклонение середины поля допуска результирующего параметра;

 Δx — расчетный допуск результирующего параметра.

2.6. Номинальные значения и расчетные характеристики точности результирующего параметра при статистически независимых составляющих параметрах определяют на основе исходного урав-(3) по следующим формулам:

$$x_{\text{nom}} = \sum_{k=1}^{n} c_k x_k, \text{ nom }, \qquad (8)$$

$$\delta x_{c} = \sum_{k=1}^{n} c_{k} \delta x_{k, c}, \qquad (9)$$

$$\Delta x = \sqrt{\sum_{k=1}^{n} c_k^2 \Delta x_k^2} , \qquad (10)$$

тде $x_{k,\text{ пош}}$ — номинальные значения составляющих параметров; • $x_{k,\text{ с}}$ — отклонения середин полей технологических допусков составляющих параметров;

Ах — технологические допуски составляющих параметров. 2.7. При небольшом числе составляющих параметров (до трех) и отсутствии данных о статистических характеристиках их распределения расчет точности допускается выполнять с применением метода «минимума-максимума» в соответствии с обязательным приложением 5.

3. ПОРЯДОК РАСЧЕТА ТОЧНОСТИ

3.1. Для расчета точности в соответствии с п. 2.2 выявляют результирующие геометрические параметры, от точности которых зависит обеспечение функциональных требований, предъявляемых к строительным конструкциям здания и сооружения, и в соответствии с п. 1.3 определяют допустимые предельные значения этих параметров.

При этом для расчета выбираются те из однотипных повторяющихся параметров, расчетные характеристики точности кото-

рых могут получить наибольшее абсолютное значение.

3.2. Для каждого из выбранных результирующих параметров в соответствии с проектируемой технологией и последовательностью выполнения разбивочных и сборочных работ устанавливают базу, служащую началом выполнения определенного цикла технологических операций и являющуюся началом накопления погрещностей, которые должны компенсироваться этим параметром, выявляют составляющие параметры и составляют расчетную схему и исходное уравнение.

3.3. Для каждой расчетной схемы выбирают метод расчета и составляют уравнения точности, а также уравнения для определения номинального размера и характеристик точности результиру-

ющего параметра.

Характеристики точности составляющих параметров, являющихся результатом выполнения определенного технологического процесса или операции, принимают на основе требований соответствующих стандартов или назначают по ГОСТ 21779--82. В случаях, когда составляющий параметр является результатом выполнения нескольких технологических процессов или операций, характеристики его точности следует определять с помощью расчета.

При составлении уравнений для определения характеристик точности результирующего параметра следует также учитывать собственные отклонения составляющих параметров, возникающие в процессе монтажа и эксплуатации конструкций в результате температурных и других внешних воздействий.

3.4. В зависимости от типа задачи методом пробных расчетов

решают уравнения точности исходя из условия выполнения требо-

ваний (1) и (2).

При прямой задаче на основе принятых характеристик точности и номинальных значений составляющих параметров определяот расчетные номинальное и предельные значения результирую-щего параметра и проверяют условия точности. При обратной задаче на основе условий точности по допусти-мым предельным и номинальному значениям результирующего па-

раметра определяют номинальные значения и характеристики точ-

ности некоторых составляющих параметров.

3.5. Если в результате расчета установлено, что при принятых конструктивном решении, технологии производства и других ис-ходных данных условия точности не соблюдаются, то в зависимости от технической возможности и экономической пелесообразно-

сти следует принять одно из следующих решений: повысить точность составляющих параметров, оказывающих наибольшее влияние на точность результирующего параметра, за счет введения более совершенных технологических процессов;

уменьшить влияние составляющих параметров на точность результирующего параметра путем сокращения числа этих параметров в расчетной схеме за счет изменения способа ориентирования (базы) и последовательности выполнения технологических процессов и операций;

пересмотреть конструктивные решения узлов строительных конструкций зданий, сооружений и их элементов с целью изменения допустимых предельных и номинального значений результирующего параметра;

предусмотреть неполную собираемость конструкций,

приложение і Справочное

ИНФОРМАЦИОННЫЕ ДАННЫЕ О СООТВЕТСТВИИ FOCT 21780-83 CT C3B 3740-82

Первый абзац вводной части ГОСТ 21780-83 соответствует вводной части CT C9B 3740-82.

П 1.1 ГОСТ 21780—83 включает требования п. 1.1 СТ СЭВ 3740--82.

П. 1.2 ГОСТ 21780-83 соответствует п. 1.2 СТ СЭВ 3740-82.

П. 1.4. ГОСТ 21780—83 соответствует п. 1.4 СТ СЭВ 3740—82.
П. 1.5 ГОСТ 21780—83 соответствует п. 3.4 СТ СЭВ 3740—82.

П. 1.6 ГОСТ 21780 83 соответствует п. 1.5 СТ СЭВ 3740-82.

Первый абзац п. 2.1 ГОСТ 21780-83 соответствует п 1.6 СТ СЭВ 3740-82. II. 2.3 ГОСТ 21780-83 включает гребования пп. 2.4 и 2.10 СТ СЭВ

3740--82. П. 2.4 ГОСТ 21780—83 включает требования пп. 1.7 и 2.3 СТ СЭВ 3740 82. П. 2.5 ГОСТ 21780-83 включает требования пл. 2.6 п. 2.7 СТ СЭВ 3740-82

П 2.6 ГОСТ 21780 - 83 включает требования п. 2.8 СТ СЭВ 3740 82.

П. 2.7 ГОСТ 21780-83 включает требования п. 1.7 СТ СЭВ 3740-82. II. 3.1 ГОСТ 21780—83 включает требования п. 3.1 СТ СЭВ 3740—82.

П. 3.2 ГОСТ 21780-83 включает требования ии. 2.1 и 3.2 СТ СЭВ 3740-82.

П. 3.3 ГОСТ 21780-83 включает требования п 3.3 СТ СЭВ 3740-82. П. 3.5 ГОСТ 21780- 83 соответствует п. 3.5 СТ СЭВ 3740-82.

Обязательное приложение 2 ГОСТ 21780-83 включает информационное приложение 1 СТ СЭВ 3740-82.

Обязательное приложение 4 ГОСТ 21780-83 вилючает требования п. 2.4 CT C9B 3740- 82.

Обязательное приложение 5 ГОСТ 21780—83 включает требования п. 2.11 CT C9B 3740-82.

ТЕРМИНЫ И ИХ ПОЯСНЕНИЯ

Расчетная схема — графическое изображение связей между результирующими и составляющими геометрическими параметрами, в которых учитываются конструктивно-технологические особенности зданий, сооружений и их элементов, в том числе слособы и последовательность выполнения технологических процессов и операций.

Составляющий параметр — параметр, получаемый непосредственно при выполнении определенного технологического процесса или операции и входящий

в расчетную схему.

Результврующий параметр — параметр, входящий в расчетвую схему и зависящий от ряда составляющих параметров.

Собираемость-по ГОСТ 21778-81

Полная собираемость — собираемость, уровень которой равен или превышает 99,73 %.

Неполная собираемость — собираемость, уровень которой ниже 99,73 %. База — поверхность или ось, относительно которых определяется положечие других поверхностей или осей.

ОСНОВНЫЕ ВИДЫ РЕЗУЛЬТИРУЮЩИХ ПАРАМЕТРОВ

Нависпование ре- вультирующего па- раметра	Схема	Обозначение
1. Зазор между элементами	Δc; εmin, f	c_{nom} — комянальное значение зазора; $c_{\text{min},f};c_{\text{max},f}$ — допустимые предельные значения зазора; $\Delta c_f = -$ функциональный допуск зазора
2. Глубина опира- явя элемента	ament Age	a_{nom} — номинальное значение глубины опирания; $a_{\text{min},\ j}$: $a_{\text{max},\ j}$ — допустымые предельные значения глубины опирания; Δa_f — функциональный допуск глубины опирания
3. Несоосность элементов	ducat drast	$d_{\text{полт}}$ — номинальное значение несоосности; $d_{\text{min.}}$ f ; $d_{\text{max.}}$ f — допустимые предельные значения несоосности; Δd_f — функциональный допуск соосности

Навыепование резуль- тирующего нараметра	Схема	Обозначение
4. Несовпадение поверхностей элементов	dain, f	d_{nom} — номинальное значение несовпадения новерхностей; $d_{\text{min},f}$; $d_{\text{max},f}$ — допустимые предельные значения несовпадения поверхностей; Δd_f — функциональный допуск совпадения по-
5. Невертикаль- мость	min, s drove	ности; $d_{\min, f}; d_{\max, f}$ — допустимые предельные значения невертикальности;
	₩	∆d _f — функциональный допуск вертикальности

Примечание. При рассмотрении параметров, характеризующих подожение элементов, следует учитывать, что $d_{\rm nom}{=}0$, а $d_{\min,\,\,f}$ и $d_{\max,\,\,f}$ равны по-абсолютному значению и определяют предельное отклонение элементов относительно друг друга. Индексы min в тах принимаются условно для указания на-яравления смещения.

ПРИЛОЖЕНИЕ 4 Обязательное

ОПРЕДЕЛЕНИЕ РАСЧЕТНЫХ ПРЕДЕЛЬНЫХ ЗНАЧЕНИЙ РЕЗУЛЬТИРУЮЩЕГО ПАРАМЕТРА ПО СТАТИСТИЧЕСКИМ ХАРАКТЕРИСТИКАМ

[общий случай статистического расчета точности]

- В общем случае статистического расчета точности конструкций и элементов зданий и сооружений расчетвые предельные значения результирующего параметра для проверки условий (1) и (2) определяют по формулам (4) и (5) настоящего стандарта.
- Расчетное номинальное значение x_{пот} результирующего параметра на основе исходного уравнения (3) определяют по формуле (8) настоящего стандарта, а расчетные характеристики точности δm_x и σ_x по формулам:

$$\delta m_x = \sum_{k=1}^n c_k \delta m_{x_k}, \qquad (1)$$

$$\sigma_{x} = \sqrt{\sum_{k=1}^{n} c_{k}^{2} \sigma_{x_{k}}^{2}},$$
 (2)

где δm_{x_k} — систематические отклонения составляющих параметров x_k ;

 σ_{x_k} — средние квадратические отклонения составляющих параметров x_k .

3. Характеристник бта, и от в зависимости от имеющихся для расчета исходных давных следует определять по результатам статистического анализа точности соответствующих технологических процессов и операций по ГОСТ 23615—79 или по характеристикам точности и планам контроля, установленным в соответствующих стандартах или других нормативно-технических документах.

 Для перехода от характеристик точности и планов контроля, устанавливаемых в стандартах и в других нормативно-технических документах, к статистическим характеристикам точности применяют выражения.

$$\delta m_{x_k} = \delta x_k, c$$
, (3)

$$\sigma_{x_k} = \frac{\Delta x_k}{2t_k} , \qquad (4)$$

где $\delta x_{k,c}$ — отклонение середины ноля технологического допуска составляющего параметра;

Ах_к — технологический допуск составляющего параметра;

- 1 д.— значение стандартизованной случайной величины, характеризующее приемочный уровень дефектности плана контроля точности составляющего параметра х д по ГОСТ 23616—79.
- 5. Значения величин: t_{тох, f} и t_{тіп, f} в уравнениях (4) и (5) настоящего ставдарта, а также значения t_k для каждого составляющего параметра определяют по табл. 1 в зависимости соответственно от принимаемого при расчете уровяя собираемости и приемочного уровня дефектности установленного плана контроля точмости составляющего параметра.

т				

Уровень собираемо- ети конструкции, %	99,73	98,5	96,0	90,0
Прнемочный уровень дефектности, %	0,25	1,5	4,0	10,0
Значение t	3	2,4	2,1	1,6

6. Долю сборочных работ, требующих выполнения дополнительных овераций по подбору элементов или пригонке отдельных параметров, определяют отдельно для случаев, когда $x_i \!<\! x_{\min,\,\, j}$ и $x_i \!>\! x_{\max,\, j}$ по табл. 2.

		Таблица 2			
t _{п.(п.]} и t _{тах, 1}	3,0	2,4	2,1	1,6	
Доля сборочных ра- бот, требующих вы- полнения дополните- льных операций, %	-	1,5	2,0	5,0	

ПРИЛОЖЕНИЕ 5 Обязательное

ОПРЕДЕЛЕНИЕ РАСЧЕТНЫХ ПРЕДЕЛЬНЫХ ЗНАЧЕНИЙ РЕЗУЛЬТИРУЮЩЕГО ПАРАМЕТРА МЕТОДОМ «МИНИМУМА—МАКСИМУМА»

Расчетные предельные значения x_{\min} и x_{\max} результирующего параметра в условиях (1) и (2) методом «минимума—максимума» определяют по формулам вастоящего стандарта

$$x_{\min} = x_{\text{nom}} + \delta x_{\text{c}} - \frac{\Delta x}{2} , \qquad (1)$$

$$x_{\text{max}} = x_{\text{eem}} + \delta x_c + \frac{\Delta x}{2}$$
, (2)

где х nom — расчетное номинальное значение результирующего параметра х, определяемое по формуле (8) настоящего стандарта;

 бхс — расчетное отклонение середины поля допуска результирующего параметра х, определяемое по формуле (9) настоящего стандарта;

расчетное значение допуска результирующего параметра х

Расчетное значение допуска результирующего параметра определяют с учетом наиболее неблагоприятного сочетания отклонений составляющих параметров по составляемой на основе исходного уравнения (3) настоящего стандарта формуле

$$\Delta x = \sum_{k=1}^{n} |c_k| \Delta x_k , \qquad (3)$$

где Δx_{R} — довуск составляющего параметра x_{R} ;

 c_k — коэффициент, характеризующий геометрическую зависимость результирующего параметра x от составляющего параметра x_k .

Редактор В. П. Огурцов Технический редактор Н. М. Ильичева Корректор Г. М. Фролова

Сджио в наб, 31.91.84 Подв. к печ. 08.04.84 1.0 усл. п. д. 1,0 усл. кр.-етт. 0,77 уч.-цад. л. Тираж 16000 Цена 5 кол.