ГОСУДАРСТВЕННЫЙ СТАНДАРТ СОЮЗА ССР

СЕЛЕН ТЕХНИЧЕСКИЙ

ГОСТ 16273.1—85

Метод спектрального акализа

Technical selenium. Method of spectral analysis

Взамен ГОСТ 16273.1—71

OKCTY 1709

Постановлением Государственного комитета СССР по стандартам от 30 января 1985 г. № 206 срок действия установлен

go 01.07.91

Несоблюдение стандарта преследуется по закону

Настоящий стандарт устанавливает эмиссионный спектральный метод определения меди, железа, свинца, ртути, магния, теллура, мышьяка, сурьмы, алюминия в техническом селене с массовой долей селена от 97,5% и выше в диапазоне массовых долей, %:

2 - 10-4 - 6 - 10-2 мель 1 - 10-3 - - 6 - 10-1 железо 1 - 10-3 - 6 - 10-2 свинец $1 \cdot 10^{-2} - 1.0$ теллур $1 \cdot 10^{-3} - 2 \cdot 10^{-1}$ жишыж 5 - 10-4 -- 6 - 10-2 ртуть алюминий 2 · 10-4 - 2 · 10-4 2 - 10-3 -- 1 - 10-1 сурьма $5 \cdot 10^{-4} - 6 \cdot 10^{-2}$ масний

Измерение массовых долей примесей в селене основано на испарении пробы и возбуждении спектра с применением дуги переменного тока.

1. ОБЩИЕ ТРЕБОВАНИЯ

Общие требования к методу анализа — по ГОСТ 16273.0—85.

2. АППАРАТУРА, МАТЕРИАЛЫ, РЕАКТИВЫ, РАСТВОРЫ

Спектрограф любого типа с трехлинзовой (или однолинзовой) системой освещения щели.

€TP. 2 FOCT 16273.1—85

(Допускается использование спектральной аппаратуры с фотоэлектрической регистрацией спектра).

Микрофотометр любого типа.

Генератор дуги переменного тока любого типа. Весы лабораторные с предельной нагрузкой 200 г.

Ступки фарфоровые по ГОСТ 9147—80 или агатовые с пестиками.

Чашки фарфоровые по ГОСТ 9147-80.

Бюксы стеклянные по ГОСТ 25336-82.

Шкаф сушильный лабораторный.

Лампа инфракрасная по ГОСТ 13874-76.

Станок для заточки графитовых электродов любого типа.

Сито с сеткой 0071 по ГОСТ 6613-73.

Фотопластинки спектрографические типа I чувствительностью 3—5 единиц, типа II, ЭС или УФШ чувствительностью от 10 до 20 единиц или другие контрастные фотоматериалы.

Электроды графитовые спектрально чистые марок С-3, ОС4-7—4 по ГОСТ 4425—72, диаметром 6 мм, длиной 30—50 мм с кратером диаметром 3,8—4 мм, глубиной 4—5 мм и диаметром 6 мм, длиной 30—50 мм, заточенные на полусферу или конус.

Графит порошковый особой чистоты по ГОСТ 23463—79 или порошок графитовый, изготовленный измельчением спектрально чистых графитовых электродов.

Проявитель:	11 -
метол по ГОСТ 25664—83 (1±0	,1) [
тидрохинон по ГОСТ 19627-74 (5±0	,2) г
натрий сернокислый по ГОСТ 195-77, безводный. (25±	
калий бромистый по ГОСТ 4160—74 (1±0	,1) r
натрий углекислый по ГОСТ 83-79, безводный . (20±	1) r
вода дистиллированная до 1	$дм^3$.
Фиксаж: натрия тиосульфат кристаллический по СТ СЭВ 223—75.	
(250±	-5) r
калий сернокислый пиро по ГОСТ 5713-75 (25±	:1) r
вода дистиллированная до 1	ДМ3,
Допускается применение других контрастно работающих явителей и фиксажа.	про-
6 ' 6	

Стандартные образцы для градуировки любой категории.

Висмута окись по ГОСТ 10216—75. Кобальта окись по ГОСТ 4467—79.

Спирт этиловый ректификованный технический по ГОСТ 18300—72.

Натрий салициловокислый по ГОСТ 17628—72, 5%-ный раствор в спирте,

Натрий хлористый по ГОСТ 4233-77.

3. ПОДГОТОВКА К АНАЛИЗУ

3.1. Приготовление стандартных образцов для градуировки при-

ведено в обязательном приложении 1.

Для целей градуировки допускается применение стандартных образцов любой категории, аттестованных в установленном порядке.

3.2. Приготовление буферной смеси

Смесь 1: в фарфоровую ступку помещают навеску графитового порошка массой 0,87 г и 0,13 г окиси кобальта; перетирают до одноводной массы.

Смесь 2: от смеси 1 отбирают навеску 0,10 г, переносят ее в фарфоровую ступку, добавляют 0,28 г окиси висмута, 0,62 г гра-

фитового порошка и перемешивают.

Для приготовлення буферной смеси в фарфоровую чашку помещают 1 г хлористого натрия и приливают воды до полного растворения соли. В полученный раствор вводят 8,90 г графитового порошка и 0,10 г смеси 2; перемешивают и высушивают наплитке. Сухую смесь перетирают и просенвают через сито с сеткой 0071. Остаток на сетке сита растирают и снова просенвают. Полученная смесь содержит 10% хлористого натрия, 0,25% висмута, 0,01% кобальта.

Количество приготовленной буферной смеси может быть увеличено. Буферную смесь допускается готовить введением соответствующих количеств азотнокислых растворов висмута и кобальта

в смесь графитового порошка с хлористым натрием.

4. ПРОВЕДЕНИЕ АНАЛИЗА

4.1. Анализ селена (с массовой долей ос-

новного компонента от 97,5 до 99,0%)

4.1.1. Пробы и стандартные образцы для градунровки смешивают с буферной смесью в соотношении 1:2 (200 мг пробы и 400 мг буферной смеси) в фарфоровой (или агатовой) ступке в течение 30—35 мин и набивают кратеры графитовых электродов, предварительно обожженных в течение 10—15 с в дуге переменного тока силой 10—12 А. Электроды марки ОСЧ-7—4 предварительно не обжигают. От каждой пробы и стандартного образца для градунровки берут две навески и готовят по три электрода.

4.1.2. Спектры фотографируют через трехступенчатый ослабитель при ширине щели слектрографа 0,012 мм. Освещение щели — трехлинзовым или однолинзовым конденсором. Промежуточную днафрагму устанавливают в зависимости от чувствитель-

ности фотопластинок.

Испарение пробы и возбуждение спектра производят в дуге переменного тока при 7—8 A, дуговой промежуток — 2,5 мм, время экспозиции — 75 с.

В правую часть кассеты вкладывают пластинку типа I размером 9×6 см, в левую, вплотную к ней, — пластинку типа II, ЭС или УФШ размером 9×12 см.

В спектрограммах первого стандартного образца для градуировки линия селена 241,35 нм должна разрешаться с линией железа 241,33 нм (в наиболее ослабленной ступеньке).

Фотографируют на одной паре пластинок по три спектра каждой анализируемой пробы и стандартных образцов. Повторяют

съемку на второй паре пластинок.

Пластинку проявляют при температуре (20±1)°С (время проявления указано на упаковке пластинки), фиксируют, промывают в течение 18—20 мин в проточной воде, споласкивают дистилдированной водой и высушивают.

Если из-за плохого пропускания оптикой спектрографа коротковолновой части ультрафиолетовой области спектра или недостаточной чувствительности фотоматериала линии мышьяка и теллура в спектрах стандартных образцов с наименьшим содержанием примесей имеют малую плотность почернения (менее 0,10), то определение этих элементов следует провести на отдельной фотопластинке. Для этого фотографируют спектры проб и стандартных образцов в условиях, указанных выше, но на одно и то же место фотопластинки снимают спектры трех-пяти электродов. При этом следует учитывать фон, если его почернение в спектре сравнимо с почернением аналитической линии.

4.1.3. Фотометрирование спектрограмм

Фотометрирование спектрограмм проводят на микрофотометре

при ширине щели не более 0,2 мм.

На полученных спектрограммах измеряют плотности почернения аналитических линий определяемых элементов ($S_{\rm sp}$) и линии элементов, служащих внутренним стандартом ($S_{\rm cp}$), длины волн которых приведены ниже.

Для фотометрирования следует выбрать те ступеньки ослабления, в которых плотности почернения измеряемых линий лежат в

области нормальных.

Линия пр	имеси, им	Линия сра	внения, нм
Медь	327.40	Кобальт	304,40
Медь	282,40	Кобальт	304,40
Железо	304,76	Кобальт	304,40
Железо	259,96	Кобальт	242,49
Свинец	283,31	Висмут	289,80
Свинец	266,32	Висмут	269,66
Ртуть	253,65	Селен	241,35

Теллур	238,58	Селен	241,35
Мышьяк	234,98	Селен	241,35
Матний	280,27	Висмут	289,80
Алюминий	308.21	Селен	241,35

Допускается использование в качестве линии сравнения фона около линии определяемого элемента, если плотность его не менее 0.20.

4.1.4. Обработка результатов

Вычисляют разность почернений $\Delta = S_{np} - S_{op}$, находят среднее арифметическое ΔS_m для трех спектров каждого стандартного образца и пробы. По найденным значениям ΔS_m для стандартных образцов строят градуировочный график в координатах $\Delta S - \lg C$, где C — массовая доля примесей в стандартных образцах в процентах. По графику находят массовую долю примесей, соответствующую вычисленным для проб величинам ΔS_m .

За окончательный результат анализа принимают среднее арифметическое результатов параллельных определений, полученных из двух навесок по трем спектрограммам, сиятых из двух

парах пластинок.

4.2. Анализ селена (с массовой долей основного компонента свыше 99.0%)

4.2.1. Приготовление стандартных образцов для градуировки приведено в обязательном приложении 1.

Для разбавления проб и стандартных образцов для градуировки используют буферную смесь, приготовленную по п. 3.2.

4.2.2. Пробы и стандартные образцы смешивают с буферной смесью в фарфоровой (или агатовой) ступке в соотношении 2:1 (600 мг пробы и 300 мг буферной смеси) в течение 30—35 мин. Подтотовленными пробами и стандартными образцами набивают кратеры графитовых электродов. От жаждой пробы и стандартного образца берут две навески и готовят по три электрода.

4.2.3. Фотографирование спектров, фотометрирование спектро-

грамм и обработка результатов — по пп. 4.1.2—4.1.4.

5. ОПРЕДЕЛЕНИЕ СУРЬМЫ

 5.1. Анализ селена (с массовой долей железа не более 0,02%)

5.1.1. Приготовление образцов приведено в обязательном при-

ложении 1.

5.1.2. Для приготовления буферной смеси перетирают в фарфоровой чашке 0,28 г окиси висмута с 0,72 г графитового порошка (первая смесь). Во вторую фарфоровую чашку помещают 1 г хлористого натрия и добавляют воды до растворения всей соли. В полученный раствор вводят 8,90 г графитового порошка и

0,10 г первой смеси, все перемешивают и высущивают на плитке. Полученную смесь растирают до однородной массы 30—40 мин. Приготовленная буферная смесь содержит 10% хлористого натрия и 0,25% висмута.

Буферную смесь можно приготовить введением соответствующего количества раствора азотнокислого висмута в смесь гра-

фитового порошка с хлористым натрием.

Количество одновременно приготовляемой буферной смеси в зависимости от потребности может быть увеличено.

5.1.3. Подготовка к анализу

Анализируемые пробы и стандартные образцы для градуировки смешивают с буферной смесью в весовом соотношении 2:1 (600 мг пробы и 300 мг буферной смеси). Смешивание проводят в ступке в течение 30—40 мин, после чего набивают полученной смесью кратеры графитовых электродов, предварительно обожженных в течение 10—15 с в дуге переменното тока силой 10— 12 А. От каждой пробы и стандартного образца берут две навески и готовят по три электрода.

5.1.4. Фотографирование спектра

Фотографирование спектров производят на спектрографе с трехлинзовым или однолинзовым конденсором через трехступенчатый ослабитель, Ширина щели спектрографа — 0,012 мм, промежуточная диафрагма — круглая. Дуговой промежуток — 2,5 мм.

В кассету помещают пластинму типа II или ЭС. Пластинки подбирают по чувствительности такими, при которых почернения фона в спектре около линии сурьмы 259,81 нм были не менее 0,10 (при фотографировании спектров в установленных настоящим стандартом условиях).

Испарение пробы и возбуждение спектра проводят в дуге пе-

ременного тока при 7-8 А, время экспозиции - 75 с.

Фотографируют на одной пластинке по три спектра каждой пробы и стандартного образца. Съемку повторяют на второй пластинке.

Пластинку проявляют (время проявления указано на упаковке пластинки) при (20±1)°С, фиксируют, промывают 18—20 мин в проточной воде, споласкивают дистиллированной водой и высушивают.

 5.1.5. Фотометрирование спектрограмм и обработка результатов анализа

Фотометрирование проводят при ширине щели микрофотометра не более 0.2 мм.

Измеряют плотности почернений линий сурьмы — 259,81 нм и висмута — 269,66 нм, выбирая для фотометрирования ту из ступенек ослабления, в которой плотности почернения измеряемых линий лежат в области нормальных. Вычисляют разность плотности почернений линии сурьмы и линии висмута ΔS , находят среднее арифметическое значение ΔS_m для трех спектров каждого стандартного образца и пробы. Построение градуировочного графика, определение массовой до-

ли сурьмы и обработка результатов — по п. 4.1.4.

5.1.6. Массовую долю сурьмы от 0,002 до 0,05% в пробах, в которых железа не более 0,02%, допускается определять также по спектрам, получаемым при определении массовой доли примесей в селене, каж приведено в разд. 3, при условии введения сурьмы в стандартные образцы.

5.2. Анализ селена (с массовой долей же-

леза более 0,02%)

5.2.1. Приготовление стандартных образцов для градунровки приведено в обязательном приложении 1.

5.2.2. Приготовление буферной смеси

В фарфоровую чашку помещают 1 г хлористого натрия и добавляют воды до растворения всей соли. В полученный растворвводят 0,20 г окиси висмута и 8,80 г графитового порошка, все перемешивают и высушивают на плитке. Сухой порошок тщательно перемешивают и перетирают. В приготовленной буферной смеси 2% окиси висмута, 10% хлористого натрия.

5.2.3. Подготовка проб и стандартных образцов — по п. 5.1.3.

5.2.4. Фотографирование спектров

Спектры фотографируют через трехступенчатый ослабитель при ширине щели спектрографа 0,012 мм. Освещение щели — трехлинзовым конденсором. Допускается замена трехлинзового конденсора однолинзовым, а также первого конденсора ахромата (f=75 мм) неахроматизированным конденсором с тем же фокусным расстоянием.

Промежуточная днафрагма — круглая.

Дуговой промежуток — 2,5 мм.

В левую часть кассеты (в сторону коротковолновой части спектра) вкладывают пластинку типа II или ЭС, сенсибилизированную раствором салицилового натрия в этиловом спирте (справочное приложение 2). Пластинки подбирают так, чтобы почернения фона около линии сурьмы 231,15 им были не менее 0,20.

Испарение пробы и возбуждение опектра производят в дуге

переменного тока при 7-8 А, время экспозиции 75 с.

Съемку повторяют на второй пластинке.

5.2.5. Фотометрирование спектрограмм и обработка результатов

Измеряют плотности почернения линии сурьмы 231,15 нм и линии висмута 240,09 нм, выбирая для фотометрирования те ступеньки, в которых почернения измеряемых линий лежат в области нормальных.

Вычисляют разность почернений линии сурьмы и линии висмута ΔS . Находят среднее арифметическое ΔS_m для трех спектров каждой анализируемой пробы и стандартного образца.

Построение градуировочного графика, определение массовой доли сурьмы и обработка результатов — по п. 4.1.4.

ПРИЛОЖЕНИЕ І Обязательное

ПРИГОТОВЛЕНИЕ СТАНДАРТНЫХ ОБРАЗЦОВ ДЛЯ ГРАДУИРОВКИ

 Стандартные образцы для градуировки, приготовленные на каждом предприятин по приведенной методике, должны быть аттестованы в установленном порядке.

2. Допускается приготовление станцартных образцов для градуировии из

окислов металлов и растворов солей.

 Приготовление стандартных образцов для градунровки из окислов металлов при анализе селена с массовой долей основного компонента от 97,5 до 99%.

3.1. Реактивы

Селен высокой чистоты по ГОСТ 6738-71.

Теллур высокой чистоты по ГОСТ 18428-81.

Меди (I) окись по ГОСТ 16539-79.

Свинца (II) окись по ГОСТ 9199-77.

Железа окись по ГОСТ 4173-77.

Ртуги окись желтая по ГОСТ 5230-74.

Мышьяковистый ангидрид.

Окись алюминия активная по ГОСТ 8136-76.

Магния окись по ГОСТ 4526-75.

Спирт этиловый ректификованный технический по ГОСТ 18300-72.

3.2. Приготовление образцов

Навески предварительно измельченных и просениных через сито 0071К массой: 0,138 г — окиси меди, 0,118 г — окиси свища, 1,587 г — окиси меди, 0,148 г — окиси свища, 1,587 г — окиси железа, 0,398 г — окиси ртути, 0,488 г — мышьяковистого авгидрида, 0,703 г — окиси алюмини, 0,182 г — окиси магиня, 1,850 г — теллура помещают в ступку и перемешивают. Для получения более однородной массы используют этиловый спирт из расчета 1—1,5 см³ на 1 г смеси. Перетирают до высушивания смеси.

Допускается экпользование механических смесителей типа СМБ.

От полученной смеси отбирают навеску массой 1,0 г и растирают в ступке с 2,35 г селена-основы.

Полученный головной образец с массовой долей железа 6%, по 0,6% свин-

ца, медн, магния, 10% теллура, по 2% алюминяя, мышьяка, ртути.

Рабочне образцы для градунровки готовят последовательным разбавлением головного стандартного образца сначала в 10 раз, а затем каждого последующего в 2—2,5 раза селеном-основой.

Состав стандартных образцов для градуировки приведен в табл. 1.

Таблина

1

	Массовая доля примеси, %			
Номера стандартных образцов	магияя, меди, свинца	железа	ргуги мышьяка, алюнияня	теллура
1-1	0,06	0,6	0,2	1,0
2-1	0.03	0,3	0,1	0,5
31	0,012	0.12	0,04	0,2 0,08
4-1	0.0048	0.048	0.016	0,08
5-1	0.0024	0.024	0.008	0,04
6-i	0.0012	0,012	0,004	0,02

В зависимости от состава анализируемых проб допускается изменение массовой доли или исключение отдельных примесей с соответствующим пересчетом состава.

4. Приготовление стандартных образцов из растворов металла,

```
4.1. Реактивы
                   И
                       DACTBODM
Кислота соляная по ГОСТ 3118-77, и разбавленияя 1 : 1.
Кислота азотная по ГОСТ 4461-77 и разбавленная 1 : 1.
Кислота винная по ГОСТ 5817-77.
Медь по ГОСТ 859-78.
Свинец по ГОСТ 3778—77.
Железо восстановленное.
Ртугь по ГОСТ 4658—73.
Теллур по ГОСТ 18428-81.
Алюминий по ГОСТ 11068—74.
Магний по ГОСТ 804-72.
Селен по ГОСТ 6738-71.
Меди окись по ГОСТ 16539-79.
Свинца окись по ГОСТ 9199-77.
Железа окись по ГОСТ 4173-77.
Ртути окись желтая по ГОСТ 5230—74.
Окись алюминия активная по ГОСТ 8136-76.
Магния окись по ГОСТ 4526-75.
Сурьма трехокись.
Мышьяковистый ангидрил.
Медь азотнокислая. -
Свинец (II) азотнокислый по ГОСТ 4236—77.
Железо (III) азотнокислое 9-водное по ГОСТ 4111-74.
Ртуть азотнокислая 1-водная по ГОСТ 4520—78.
Алюминий азотнокислый 9-водный по ГОСТ 3757-75.
Магний азотнокислый по ГОСТ 11088—75.
Медь (II) углекислая основная по ГОСТ 8927-79.
Свинец углекислый по ГОСТ 10275-74.
Магний углекислый основной водимй по ГОСТ 6419-78.
Растворы:
частнокислой меди — 2 мг меди в 1 см<sup>3</sup>.
азотнокислого свинца — 2 мг свинца в 1 см<sup>3</sup>,
азотнокислого железа — 20 мг железа в 1 см<sup>3</sup>,
азотнокислой ртути — 2 мг ртути в 1 см<sup>3</sup>.
азотнокислого теллура — 10 мг теллура в 1 см<sup>3</sup>.
азотнокислого алюминия — 10 мг алюминия в 1 см<sup>3</sup>,
азотнокислого магния — 2 мг магния в 1 см<sup>3</sup>.
```

Перечисленные растворы готовят растворением рассчитанных количеств металлов, их окислов, азотнокислых или углекислых солей в азотной кислоте, упаривают до влажных солей. Влажные остатки растворяют в воде, растворы переводят в мерные колбы, доводят до метки водой и перемешивают.

Раствор мышьяка: растворяют 0,264 г водорастворимой модификации мышьяковистого ангидрида в воде, переводят раствор в мерную колбу вместимостью 100 см3, доливают водой до метки и перемешивают. Раствор содержит

2 мг мышьяка в 1 см³.

4.2. В мерную колбу вместимостью 100 см³ помещают по 15 см³ азотнокислых растворов железа, магния, меди, свинца, 10 см3 раствора алюминия,

доливают до метки водой и перемешивают.

Смесь 1: навеску графитового порошка массой 6,40 г помещают в фарфоровую чашку, приливают 20 см³ приготовленного раствора и высущивают. В полученный порошок добавляют последовательно по 10 см3 азотнокислых растворов ртути, теллура и 10 см⁸ раствора мышьяка, высущивая смесь после введения каждого раствора до удаления запахов окислов эзота (после введения раствора ртути высушивать при температуре не выше 50°C).

Смесь 2: смесь 1 перемешивают с селеном-основой в весовом соотношепия 2:1. Полученная смесь представляет собой стандартный образец 1—1

(табл. 1).

Серию образцов для градуировки готовят разбавлением смеси 1 и каждого из последующих градуировочных образцов графитовым порошком в 2—2,5 раза. Каждый из приготовлениях градуировочных образцов смецивают с селеном-основой в весовом соотношения 2:1. Содержание примесей в полученных образцах рассчитывают после смещения с селеном-основой. Стандартные образцы по расчету содержат количества примесей, приведенные в табл. 1.

- Приготовление стандартных образцов для градуировки из окислов металлов при анализе селена с массовой долей основного компонента свыше 99%
- Подготовка основы стандартных образцов для градуаровки
- В хачестве основы стандартных образцов используют селен высокой чистоты. Проверяют содержание определяемых примесей в основе: измельченный селен проссевают через сито с сеткой 0071К и набивают в три графитовых электрода, имеющих кратер дваметром 3,8—4 мм, глубиной 4—5 мм, предварительно отожженных вместе с противоздектродами в дуге перемениого тока при 18 А в течение 20 с.

Спектры селена фотографируют на спектрографе с трехлинзовой или однолинзовой осветительной системой при ширине щели 0,012 мм на пластинку типа II или ЭС. Испарение пробы и возбуждение спектра проводят в дуге переменного тока при 18 А. Время экспозиции 30 с. После проявления и фиксирования пластинки проверяют наличие в полученных спектрограммах аналитических линий определяемых элементов.

Если эти линии обнаружены, то после приготовления стандартных образдов следует определять массовые доли примесей в основе методом добавок (обя-

зательное приложение 3).

Характеристическую кривую допускается строить по спектрам стандартных образцов, сиятых через трехступенчатый ослабатель (справочное приложение 4).

5.2. Реактивы — по п. 3.1.

5.3. Приготовление стандартных образдов

Навески предварительно измельченных и просеянных через сито 0071 массой: 0,715 г — окиси железа, 0,125 г — окиси меди, 0,540 г — окиси свица, 0,540 г — окиси рути, 0,657 г — мышьяковистого ангидрида, 0,833 г — окиси магния, 0,188 г — окиси алюминия, 2,00 г — теллура, 4,40 г — селена-основы помещают в фарфорозую ступку и перемешивают. Для получения более однородной массы используют этиловый спирт из расчета 1,0—1,5 см³ на 1 г смеси, после чего перетирают до высупивания.

От приготовленной смеси берут навеску массой 0,5 г и растирают в ступке с 4,5 г селена-основы. Полученный головной образец содержит по 0,1% адкоминия, меди, по 0,5% железа, свинца, ртуги, мышьяка, магния, 2% теллура.

Рабочне образцы для градупровки готовят последовательным разбавлением головного стандартного образца сначала в 10 раз, а затем каждого последующего — 2—2,5 раза селеном основой.

Состав стандартных образцов для градуировки приведен в табл. 2,

В зависимости от состава анализируемых проб допускается изменение массовой доли или исключение отдельных примесей с соответствующим пересчетом состава.

Номер стандартных образцов		Массовая доля примеси,	%
	алюминя, медя	железа, магния, мышьяка, ртути, свинца	теллура
1-2	0,01	0,05 0,02	0.2
2-2	0,004	0,02	0,08
4-2	0,001	0,005	0,02
5-2	0,0005	0,0025	0,01
6-2	0,0002	0,001	0,004
7-2	_	0,0005	0,004

6. Приготовление стандартных образцов из растворов металлов

6.1. Реактивы и растворы

Реактивы и растворы - по п. 4.1.

Раствор азотнокислого железа: 2 мг железа в 1 см³.

6.2. Приготовление образцов

В мерную колбу вместимостью 100 см³ помещают по 5 см⁸ азотновислых растворов меди и алюминия, по 25 см³ азотновислых растворов магния, железа и свинца, доводят до метки водой и перемешивают.

Смесь 1: навеску графитового порошка массой 6,60 г помещают в фарфоровую чашку, добавляют 10 см³ приготовленного раствора и высушивают. В полученный порошок добавляют последовательно по 2,5 см³ растворов мышьяка и ртути, 2,0 см³ азотножислого раствора теллура, высушивая смесь после введения каждого раствора (после введения ртути высушивают при температуре не выше 50°C).

Смесь 2: смесь 1 перемешивают с селеном-основой в весовом соотношении

Полученная смесь представляет собой стандартный образец 1—2.

Серию образцов для градуировки готовят разбавлением смеси 1 и каждого из последующих градуировочных образцов графитовым порошком в 2—2,5 раза. Каждый из приготовленных градуировочных образцов смещивают с селеном-основой в весовом соотношении 2:1. Содержание примесей в полученных образцах рассчитывают после смещения с селеном-основой. Стандартные образцы по расчету содержат количества примесей, приведенные в табл. 2.

Приготовление стандартных образцов для градуировки при определении массовой доли сурьмы

7.1. Реактивы

Селен по ГОСТ 6738-71.

Сурьмы трехокись.

7.2 Приготовление образцов

Навески предварительно измельченных и просеянных через сито 0071 селена-основы массой 4,40 г и трехокиси сурьмы массой 0,60 г переменивают в фарфоровой ступке. В полученной смеси содержится 10% сурьмы. Последовательным разбавлением этой смеси селеном-основой (не более чем в 10 раз за один прием) готовят стандартные образцы для градунровки, содержащие 0,1; 0,05; 0,02; 0,01; 0,005 и 0,002% сурьмы.

ПРИЛОЖЕНИЕ 2 Справочное

СЕНСИБИЛИЗАЦИЯ ПЛАСТИНОК

Олтическая сенсибилизация готовых сухих пластинок проводится методом «купания».

Пластинки, подвергаемые сенсибилизации по методу «купания», предварительно промывают в дистиллированной воде в течение 5 мян. Это необходимо

для более равномерного проникновения сенсибилизации.

Далее пластника погружается на 30 с в 5%-ный раствор салициловокислого натрия в 96%-ном эталовом спирте и, после вытирания кепокрытой эмульсией стороны пластники сущится. Такая пластника еще не сенсибилизирована и может сохраняться в таком виде довольно долго. Для сенсибилизации достаточно погрузить ее в воду или в 30%-ный спирт. Пленка сенсибилизатора, образовавшаяся на пластники, вызывает сенсибилизацию.

Продолжительность действия сенсибилизирующего раствора на светочувствительный слой колеблется в пределах 2—5 мин (увеличение времени вызывает

вуаль на пластинке).

Температура раствора не должна превышать 20°С, необходимо при этом

энергичное покачивание ванны.

После сенсибилизации применяют промывку (около 5 мии) в водпо-спиртовой смеси (2:1), а затем в чистом спирте для ускорения сушки. Скорость сушки сенсибилизированной пластенки 15—20 мии, удобно применять подогреваемый не более чем до 30—35 °С воздух.

ОПРЕДЕЛЕНИЕ СОДЕРЖАНИЯ ПРИМЕСЕЙ В ОСНОВЕ СТАНДАРТНЫХ ОБРАЗЦОВ ДЛЯ ГРАДУИРОВКИ МЕТОДОМ ДОБАВОК

 Основу стандартных образцов и образцов 6—2, 5—2, 4—2, 3—2 смещивают с буферной смесью по п. 4.2.2 настоящего стандарта и набивают в кратеры графитовых электродов, предварительно обожженных в течение 10 с при 18 А в дуге переменного тока. Диаметр кратера электрода 3,8—4 мм, глубива 4—5 мм.

Спентры фотографируют на спектрографе с трехлиновой системой освещения щели через трехступенчатый ослабитель при ширине щели 0,012 мм на пластинку типа II или ЭС. Испарение пробы и возбуждение спектра в дуге переменного тока при 18 А. Время экспозиции 30 с. На одной пластинке фотографируют по три спектра каждото градупровочного образда и основы. На эту же пластинку фотографируют спектр первого градупровочного образда через деаятиступенчатый ослабитель.

 Вместо построения характеристической кривой фотопластинки по спектру, сфотографированному через девятиступенчатый ослабитель, допускается строить кривую по самим спектрам градуировочных образцов, снятых через

трехступенчатый ослабитель (справочное приложение 4).
3. Съемку спектров повторяют на второй пластинке.

Проявление и фиксирование проводят как указано в п. 4.1.2 настоящего стандарта.

По полученным спектрограммам определяют массовые доли примесей в

основе методом добавок,

Строят графих зависимости интенсивности аналитических линий от величины содержания примеси в стандартном образце. Экстраполированием градувровочного графика до пересечения его с осью абсиисс определяют содержание примесей в основе стандартных образцов.

Результаты анализа, полученные как среднее арифметическое результатов на двух пластинках, прибавляют к расчетному содержанию примесей в гра-

дунровочных образцах.

ПРИЛОЖЕНИЕ 4 Справочное

ПОСТРОЕНИЕ ХАРАКТЕРИСТИЧЕСКОЙ КРИВОЙ ФОТОПЛАСТИНКИ ПО СПЕКТРАМ ГРАДУИРОВОЧНЫХ ОБРАЗЦОВ, СНЯТЫМ ЧЕРЕЗ ТРЕХСТУПЕНЧАТЫЙ ОСЛАБИТЕЛЬ

На фотометре измеряют почернение линии определяемого элемента в спектрах прадуировочных образцов во всех трех ступеньках ослабителя. Обозначают условно эти ступеньки как 100, 50 и 10%. Вычисляют разность почернения линий в 100 и 50%-ной ступеньках $\Delta S_{100=50}$. Для тех спектров, в которых две ступеньки ослабления лежат в области нормальных почернений, эта разность является постоянной величиной, равной

$$\Delta S_{100-50} = \gamma \Delta \lg J_{100-50}$$
.

где у — фактор контрастности фотопластинки;

 $\Delta | g J_{100-50}$ — разность пропускаемости ступенек ослабителя (по паспорту).

Оси ординат навосят на миллиметровую бумагу, откладывая по оси ординат почернения в масштабе $I_{MM}=0.01$ единицы, начиная от S=0.

Вычисляют среднее из пяти-шести значений разности почериений между 100 и 50%-ными ступеньками для области нормальных почернений ($\Delta S_{103...95}$) ср.

Точку / ваходят с произвольно выбранной абсциссой и ординатой, равной почернению вачала прямолинейного участка характеристической конвой (S прибливательно 0,50 пластинка типа ЭС). От точки / отсчитывают вправо число миллиметров, равное разности пропускаемости 100 и 50%-ных ступенек ослабителя (по паспорту ослабителя), умножениой на 100, и ставит точку 2.

ля (по паспорту ослабителя), умножениой на 100, и ставят точку 2. От полученной точки 2 откладывают вверх число миллиметров, равное средней величине разности почернений (ΔS_{100-50}), умножениой на 100, и ста-

вят точку З.

Полученную точку 3 соединяют прямой линией с точкой I и прододжают прямую до S-1.80. Эта прямая соответствует области нормальных почернений характеристической кривой.

В тех случаях, если почернение линий в 100%-ной ступеньке слишком велико, вместо разности между 100 и 50%-ной ступеньками построение проводят по разности между 50 и 10%-ной ступеньками.

Для построения области недодержек используют спектры, в которых первая из ступенек лежит в нормальной области, вторая — в области недодержек.

Находят для одного спектра на примолинейном участке характеристической кривой точку, ордината которой равна почернению линии в 100%-ной (или 50%-ной) ступеньке. От этой точки отсчитывают влево число миллиметрои, равное разности пропускаемости ступенек ослабителя, умноженной на 100, и для этой абсинссы находят точку с ординатой, равной почернению той же линии в более ослаблений ступеньке.

Так поступают со всеми измеревными почернениями. Полученные точки

соединяют плавной кривой с началом прямодинейного участка.

На оси абсинсе наносят значения lg/ в масштабе 1 мм=0,01 единицы, начиная от произвольно выбранного начала координат.