

ГОСУДАРСТВЕННЫЙ СТАНДАРТ СОЮЗА ССР

МАТЕРИАЛЫ ПОЛИВИНИЛХЛОРИДНЫЕ ДЛЯ ПОЛОВ

МЕТОДЫ КОНТРОЛЯ

FOCT 11529-86

Издание официальное

Дена 5 коп.

РАЗРАБОТАН Министерством промышленности строительных материалов СССР

ИСПОЛНИТЕЛИ

А. Т. Бублик, канд. техн. наук (руководитель темы); А. Д. Сугробкин; Л. Е. Холодкова; Л. Т. Шпанова; О. Э. Пфлаумер, канд. техн. наук; Е. Н. Белимова, Г. А. Кулешова; Н. В. Чепик; И. А. Егорова; М. П. Кораблин

ВНЕСЕН Министерством промышленности строительных материалов СССР

Зам министра В. Я. Сидоров

УТВЕРЖДЕН И ВВЕДЕН В ДЕЙСТВИЕ Постановлением Государственного комитета СССР по делам строительства от 23 апреля 1986 г. № 48

ГОСУДАРСТВЕННЫЙ СТАНДАРТ СОЮЗА ССР

МАТЕРИАЛЫ ПОЛИВИНИЛХЛОРИДНЫЕ ДЛЯ ПОЛОВ

Методы контроля

PVC materials for floors. Methods of control ГОСТ 11529—86

Взамен ГОСТ 11529—75, ГОСТ 12729—78

OKIT 57 7000

Постановлением Государственного комитета СССР по делам строительства от 23 апреля 1986 г. № 48 срок введения установлен с 01.01.87

Несоблюдение стандарта преследуется по закону

Настоящий стандарт распространяется на поливинилхлоридные материалы (рулонные и плиточные) для полов и устанавливает методы контроля следующих показателей:

линейных размеров;

истираемости;

деформативности при вдавливании;

изменения линейных размеров;

прочности связи между слоями;

водопоглощения;

гибкости;

массы 1 м2.

Применение методов контроля должно предусматриваться в стандартах или технических условиях, устанавливающих технические требования к конкретным видам поливинилхлоридных материалов для полов.

1. ОБЩИЕ УКАЗАНИЯ

 1.1. Число рудонов или плиток, отбираемых от партии, устаиавливают в стандартах или технических условиях на конкретный вид материала.

1.2. Температура помещения, в котором проводят контроль ма-

териалов, должна быть (23±5) °C.

Материалы или образцы из них перед испытанием должны быть выдержаны при этой температуре не менее 3 ч.

1.3. За результат испытания принимают среднее арифметичес-кое значение \overline{X} не менее трех определений показателя на образцах, изготовленных из одной пробы материала, рассчитываемое по формуле

$$\overline{X} = \frac{\sum_{i=1}^{n}}{n}$$
, (1)

где \overline{X} — результат *i*-го определения; n — число определений.

1.4. Результаты испытаний должны быть внесены в журнал, в котором указывают;

наименование материала, тип, обозначение нормативно-технической документации, по которой изготавливают материал;

дату изготовления;

номер партии;

дату испытания;

обозначение настоящего стандарта;

количество образцов, подвергнутых испытанию; значение каждого параллельного определения; среднее арифметическое значение показателя;

должности и фамилии лиц, проводивших испытания.

2. ОПРЕДЕЛЕНИЕ ЛИНЕЙНЫХ РАЗМЕРОВ

2.1. Определение длины и ширины

2.1.1. Подготовка к испытанию

Измерение длины и ширины проводят на готовой продукции (рудонах и плитках).

2.1.2. Инструменты

Рулетка измерительная металлическая с ценой деления 1 мм по ГОСТ 7502—80 с длиной шкалы:

для измерения длины — не менее 20 м;

для измерения ширины — 2 или 3 м. Штангенциркуль типа ШЦ-III по ГОСТ 166—80.

2.1.3. Проведение измерения

2.1.3.1. Рулоны или плитки укладывают на горизонтальную по-

верхность. Рулон разворачивают на всю длину полотна.

 2.1.3.2. Длину полотна линолеума в каждом из отобранных рулонов следует измерять рулеткой на расстоянии 1 м от любой кромки.

2.1.3.3. Ширину следует измерять рулеткой не менее чем в трех местах; на расстоянии не более 1 м от начала и конца и 5 м от любого края каждого из отобранных рулонов.

2.1.3.4. Для определения длины и ширины плиточных материа-

лов следует измерять каждую сторону штангенциркулем.

2.1.4. Обработка результатов

2.1.4.1. Результат измерения длины рулона (каждого отдельно) должен быть в пределах допусков, указанных в нормативно-

технической документации на конкретный вид материала.

2.1.4.2. За ширину материала в рулоне следует принимать среднее арифметическое значение измерений, которое не должно отличаться от нормы, указанной в нормативно-технической документации.

- 2.1.4.3. За длину или ширину каждой плитки следует принимать среднее арифметическое значение измерений двух противоположных сторон.
 - 2.2. Определение толщины

2.2.1. Отбор образиов

Для проведения испытаний из отобранного материала вырезают квадратные образцы с размером стороны (50±5) мм.

2.2.2. Приборы и приспособления

Толщиномер индикаторный ТН(TP)10—60 по ГОСТ 11358—74 (при необходимости диаметр пятки и наконечника толщиномера должен быть указан в нормативно-технической документации на конкретный вид продукции) или микрометр тип МК-25 по ГОСТ 6507—78.

Оптическое устройство, снабженное измерительной шкалой с ценой деления не более 0,1 мм.

2.2.3. Проведение измерения

2.2.3.1. Толщину материалов следует измерять в геометрическом центре каждого образца толщиномером или микрометром.

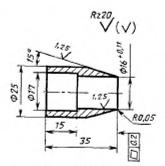
Толщину материалов на теплозвукоизолирующей подоснове и

вспененных следует измерять только толщиномером.

2.2.3.2. Толщину поливинилхлоридного слоя многослойных материалов, а также толщину лицевого слоя следует определять по торцевому срезу образца при помощи оптического устройства.

2.2.4. Обработка результатов

За результат испытання принимают среднее арифметическое значение показателя параллельных определений толщины.


3. ОПРЕДЕЛЕНИЕ ИСТИРАЕМОСТИ

 3.1. Метод определения истираемости на машине барабанного типа

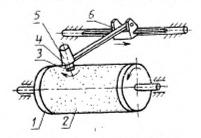
Сущность метода заключается в определении величины уменьшения толщины материала при истирании в течение заданного количества циклов испытания.

3.1.1. Отбор образцов

Для проведения испытаний из отобранного материала вырезают образцы диаметром (16±0,5) мм. Образцы вырезают с помощью вырубного устройства, указанного на черт. 1.

Материал: сталь УЮА. Гвердость, не менее 60 НЯСэ-Покрытие Хим Окс ПРМ

Hepr. 1


3.1.2. Аппаратура и приспособления

Машина барабанного типа, схема которой указана на черт. 2. Конструкция машины должна обеспечивать: скорость вращения барабана (0,085 ± 0,015) м/с;

массу патрона с держателем (1±0,05) кг;

перемещение держателя с образцом вдоль образующей барабана на расстояние (16±0,5) мм за один оборот;

полный поворот держателя с образцом вокруг своей оси в течение двух оборотов барабана (одного рабочего цикла машины). Держатель образца должен быть самоустанавливающимся.

1—полый пяливдр; 2—шлифовальная шкурна; 3—образец; 4—держатель; 5—патроц; 6—ьзретка

Черт. 2

Шкурка шлифовальная бумажная C(15—13) A8-П по ГОСТ 6456—82.

Штангенциркуль тип ШЦ-III — по ГОСТ 166-80.

Весы лабораторные общего назначения 2-го класса точности с наибольшим пределом взвещивания до 200 г по ГОСТ 24104—80,

Кисть по ГОСТ 10597-80 или щетка по ГОСТ 6388-85.

Клей любого типа и марки для прикленвания пластмассы к металлу.

3.1.3. Подготовка к испытанию

3.1.3.1. Определяют плотность слоя износа материала у в со-

ответствии с обязательным приложением 1.

3.1.3.2. Определяют коэффициент истирающей способности шлифовальной шкурки К в соответствии с обязательным приложением 2. Шкурку с коэффициентом К менее 0,9 и более 1,4 применять не разрешается.

3.1.3.3. Образцы, имеющие подоснову, освобождают от нее.
 Образцы линолеума на тканевой подоснове, изготовленного про-

мазным способом, от подосновы не освобождают.

3.1.3.4. Измеряют диаметр образца D штангенциркулем.

3.1.3.5. Образец приклеивают к основанию держателя и выдерживают при температуре (23±5) °C в течение времени, соответствующего времени отверждения клеевого соединения.

3.1.3.6. Держатель с образцом взвешивают.

3.1.4. Проведение испытания

 З.1.4.1. Держатель с образцом закрепляют в патроне машины, опускают его на поверхность барабана и включают электродвигатель.

Истирание образца проводят каждый раз по не истертому участку поверхности шлифовальной шкурки в течение одного рабочего цикла машины. Если количество рабочих циклов отличается от принятого, то это должно быть указано в нормативно-технической документации на конкретный материал.

 З.1.4.2. По окончании испытания держатель с образцом вынимают из патрона, очищают кистью или щеткой от продуктов из-

носа и взвешивают.

3.1.5. Обработка результатов

Истираемость материала по уменьшению толщины Δh , мкм, рассчитывают по формуле

$$\Delta h = \frac{m_1 - m_2}{\tau S} \cdot K \cdot 10^4, \tag{1}$$

где m_1 - масса образца с держателем до испытания, г; m_2 — масса образца с держателем после испытания, г; K — коэффициент истирающей способности шлифовальной шкурки, определяемый в соответствии с обязательным приложением 2; γ — плотность слоя износа материала, г/см³, определяемая в соответствии с обязательным приложением 1; S — площадь истирания, см²; 10^4 — коэффициент нересчета.

Площадь исгирания, равную площади образца, S, см², рассчитывают по формуле

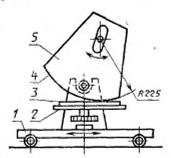
$$S = \frac{\pi D^2}{4}$$
, (2)

где D — диаметр образца, см.

За результат испытання принимают среднее арифметическое значение параллельных определений показателя истираемости.

 Метод определения истираемости на машине с возвратно-поступательным движением

Метод предназначается для определения истираемости (износостойкости) при разработке и освоении новых видов поливинилхлоридных материалов для полов.


Сущность метода заключается в определении величины уменьшения толщины материала при истирании в течение заданного количества циклов испытания или в определении количества циклов испытания истирания слоя износа на всю его толщину.

3.2.1. Отбор образцов

Размеры и форма образца должны быть указаны в нормативно технической документации на машину.

3.2.2. Аппаратура и приспособления

Машина с возвратно-поступательным движением, схема которой указана на черт. 3.

I-площадка; 2-стол; 3-образец; 4шлифовальная шкурка; 5-рабочий элемент

Черт. 3

Конструкция машины должна обеспечивать:

наличие рабочего элемента с цилиндрической поверхностью радиусом (225 \pm 0,5) мм, массой (17 \pm 0,2) кг и шириной основания

(140±1,0) мм, обтянутого шлифовальной шкуркой шириной (106±1.0) мм;

движение площадки со скоростью 40 возвратно-поступатель-

ных ходов в минуту с амплитудой хода (106 ± 1,0) мм;

поворот стола на $(36\pm2)^\circ$ и перекатывание рабочего элемента по поверхности образца в каждом направлении со скольжением $(36\pm0,5)$ мм относительно амплитуды хода.

Шкурка шлифовальная тканевая (15-13) A8-II по ГОСТ

5009—82.

Весы лабораторные общего назначения 4-го класса точности с наибольшим пределом взвешивания до 500 г по ГОСТ 24104—80.

Кисть или щетка для сметания пыли.

- 3.2.3. Подготовка к испытанию
- 3.2.3.1. Определяют плотность слоя износа материала в соответствии с обязательным приложением 1.
- 3.2.3.2. Определяют коэффициент истирающей способности шкурки К в соответствии с обязательным приложением 2.
 - 3.2.3.3. Образец взвешивают.
 - 3.2.4. Проведение испытания
- 3.2.4.1. Образец закрепляют в машину по способу, указанному в нормативно-технической документации на машину. Рабочий элемент опускают на образец и включают электродвигатель.

Истирание образца начинают по неистертому участку поверхности шлифовальной шкурки. Количество циклов, через которое производят смену шкурки перемещением ее на длину истертого участка, должно быть указано в нормативно-технической документации на конкретный материал.

Поверхности образца очищают кистью или щеткой через то же количество циклов.

При определении истираемости на всю толщину слоя износа по количеству циклов испытания визуально проверяют истертость поверхности. Если образец истерт на всю толщину слоя износа в пяти и более местах, испытание прекращают.

- 3.2.4.2. При определении истираемости (износостойкости) по уменьшению толщины количество циклов испытания должно быть указано в иормативно-технической документации на конкретный материал.
- 3.2.4.3. По окончании испытания образец вынимают из машины, очищают кистью или щеткой от продуктов износа и взвешивают.
 - 3.2.5. Обработка результатов
- 3.2.5.1. Истираемость (износостойкость) материала по уменьшению толщины рассчитывают так же, как указано в п. 3.1.5.

3.2.5.2. Истираемость (износостойкость) материала по количеству циклов испытания С рассчитывают по формуле

$$C = \frac{C_{\phi}}{K}$$
, (3)

где C_{Φ} — фактическое количество циклов испытания до истирания образца в пяти и более местах на всю толщину слоя износа; K — коэффициент истирающей способности щлифовальной шкурки, определяемый в соответствии с обязательным приложением 2.

За результат испытаний принимают среднее арифметическое значение параллельных определений показателя истираемости

(износостойкости).

4. ОПРЕДЕЛЕНИЕ ДЕФОРМАТИВНОСТИ ПРИ ВДАВЛИВАНИИ

Сущность метода заключается в определении величин абсолютной деформации при вдавливании индентора под нагрузкой, абсолютной остаточной деформации после снятия нагрузки и восстанавливаемости.

Метод не распространяется на полимерные материалы толщиной менее 1.2 мм.

4.1. Отбор образцов

Для проведения испытаний из отобранного материала вырезают квадратные образцы с размером стороны (50±5) мм.

4.2. Аппаратура

 Устройство для испытания, принципиальная схема которого указана на черт. 4.

4.2.1.1. Конструкция устройства для испытания должна обес-

печивать:

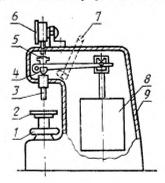
предварительную нагрузку, равную 10 H, для обеспечения контакта индентора с поверхностью испытуемого образца при установке стредки отсчетного устройства в нулевое положение и при отсчете абсолютной остаточной деформации;

плавное приложение основной нагрузки, равной (1000±10) H; постоянство воздействия основной нагрузки в течение времени,

необходимого для испытания;

вертикальный ход индентора не менее 4 мм или не менее 2 мм при испытании материала толщиной до 2 мм;

измерение деформации в пределах от 0 до 4 мм с погреш-


ностью не более ±0,01 мм.

4.2.1.2. Индентор и подъемный столик должны удовлетворять

следующим требованиям:

индентор должен быть самоустанавливающимся, цилиндрической формы с плоским основанием, диаметр (11,3±0,1) мм, края основания индентора должны быть закруглены по радиусу (0,15± ±0,02) мм;

Принципиальная схема устройства для испытания

І-гайка-маховик;
 2 подъемный столик;
 3-нидентор;
 4-прама римага основной нагрузки;
 5-шпиндель с грузом предварительной нагрузки;
 5- отсчетное устройство;
 7-рухожив приложения и синтия основной нагрузки;
 5-грузы для основной нагрузки;
 9-коопус

Черт. 4

подъемный столик, регулируемый по высоте, должен быть толщиной не менее 10 мм;

рабочне поверхности индентора и подъемного столика должны иметь твердость не менее 61 HRC₂ и шероховатость Ra, равную 0.63 мкм. по ГОСТ 2789—75.

4.2.1.3. Приложение основной нагрузки другой величины и применение индентора другой формы и размера должны быть указаны в нормативно-технической документации на конкретный материал.

4.2.2. Секундомер 2-го класса точности по ГОСТ 5072-79.

4.3. Подготовка к испытанию

Проверяют величину деформации корпуса устройства для испытания в соответствии со справочным приложением 3. Проверку проводят не реже одного раза в сутки.

4.4. Проведение испытания

4.4.1. Образец укладывают на подъемный столик устройства для испытания лицевой поверхностью вверх так, чтобы индентор находился в центре образца. При наличии у материала подосновы образцы испытывают вместе с ней.

4.4.2. Подъемный столик с образцом приводят в соприкосновение с индентором. Устанавливают указатель отсчетного устройства в нудевое положение или положение, указанное в паспорте прибора, при этом на испытуемый образец начинает действовать предварительная нагрузка. Затем плавно в течение (4 ± 1) с пригладывают основную нагрузку.

Рекомендации по установке стрелки отсчетного устройства в иулевое положение приведены в справочном приложении 3.

4.4.3. Значение абсолютной деформации определяют по отсчет-

кому устройству после выдержки под общей нагрузкой.

4.4.4. Значение абсолютной остаточной деформации определяют по отсчетному устройству по глубине вмятины в образце, оставшейся после снятия основной нагрузки.

4.4.5. Время выдержки образцов под общей нагрузкой и после снятия основной нагрузки должно быть указано в нормативно-

технической документации на конкретный материал.

4.5. Обработка результатов

4.5.1. За величину абсолютной деформации каждого образца принимают разность между показанием отсчетного устройства и величиной деформации корпуса устройства для испытания (п. 4.3). 4.5.2. Восстанавливаемость Е в процентах определяют по фор-

муле

$$E = \frac{h_a - h_o}{h_o} \cdot 100,$$
 (4)

где ha — абсолютная деформация, мм; ho — абсолютная остаточ-

ная деформация, мм.

4.5.3. Результаты испытания образцов, у которых в процессе приложения нагрузки образуются трещины или наблюдается разрушение от продавливания, в расчет не принимают.

4.5.4. За результаты испытаний принимают среднее арифмети-

ческое значение параллельных определений показателей:

абсолютной деформации;

абсолютной остаточной деформации:

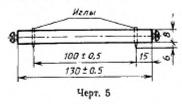
восстанавливаемости.

5. ОПРЕДЕЛЕНИЕ ИЗМЕНЕНИЯ ЛИНЕЙНЫХ РАЗМЕРОВ

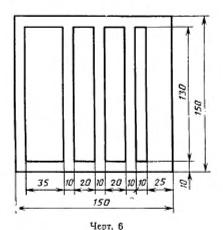
 Метод определения изменения линейных размеров по рискам

Сущность метода заключается в измерении расстояния между рисками, нанесенными на образец до и после воздействия на него заданной температуры в течение заданного времени.

5.1.1. Отбор образцов

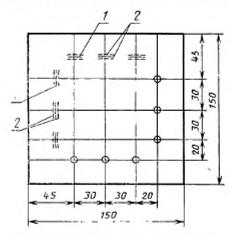

Для проведения испытаний из отобранного материала вырезают квадратные образцы с размером стороны (150±1) мм.

5.1.2. Аппаратура и приспособления


Электрический сушильный шкаф, обеспечивающий и поддерживающий температуру (70 ±2) °C.
Оптическое устройство, снабженное измерительной шкалой с

ценой деления не более 0.1 мм.

Разметочный шаблон, состоящий из металлического стержня и двух игл, установленных на расстоянии (100±0,5) мм друг от друга. Радиус острия иглы должен быть не более 0,05 мм. Схема разметочного шаблона указана на черт. 5.


Приспособление для разметки образца размерами 150×150× ×2 мм, схема которого указана на черт. 6.

5.1.3. Подготовка к испытанию

Образец кладут на горизонтальную поверхность лицевой стороной вверх и при помощи приспособления для разметки напосят по четыре линии в продольном и поперачном направлениях.

Из крайних точек пересечения продольных и поперечных линий разметочным шаблоном наносят риски, как указано на черт. 7.

І- риски до непытачия; 2-риски после испытания Черт. 7

5.1.4. Проведение испытания

 5.1.4.1. Размеченные образцы помещают в сушильный шкаф, нагретый до температуры (70±2) °С, на 5 ч.

При изменении режима испытания он должен быть указан в нормативно-технической документации на конкретный материал.

 5.1.4.2. После термостатирования образец выдерживают 30 мин при температуре (23±5) °C.

5.1.4.3. Из тех же точек, на те же линии, как в п. 5.1.3, разметочным шаблоном вновь наносят риски.

 5.1.4.4. Расстояние между центрами двух рисок измеряют при помощи оптического устройства.

5.1.5. Обработка результатов

5.1.5.1. Величину изменения линейных размеров X в процентах вычисляют по формуле

$$X = \frac{\Delta l}{l} \cdot 100, \quad (5)$$

где Δl — расстояние между двумя рисками, мм; l — расстояние между иглами разметочного шаблона, мм.

5.1.5.2. За результат испытаний принимают среднее арифметическое значение параллельных определений показателя линейных размеров в продольном и поперечном направлениях (в каждом направлении отдельно).

 5.2. Метод определения изменения линейных размеров с помощью приспособления для фик-

сации образца типа ПИР

Сущность метода заключается в определении изменения расстояния между противоположными сторонами образца в долевом и поперечном направлениях после его термостатирования.

5.2.1. Отбор образиов

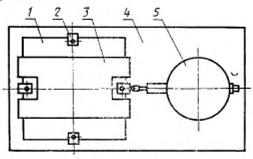
Для проведения испытаний из отобранного материала вырезают квадратные образцы с размером стороны (100 ± 1) мм, отступив от края не менее чем на 20 мм.

5.2.2. Аппаратура и приспособления

Электрический сушильный шкаф, обеспечивающий и поддержи-

вающий температуру (70±2) °C.

Приспособление для фиксации образца типа ПИР с измерительным устройством — индикатором ИЧ010 класса 1 по ГОСТ 577—68.


Конструкция приспособления должна обеспечивать:

фиксацию положения образца на горизонтальном основании и фиксацию точек замера с помощью специальных зажимов, укрепляемых на образце, штифтов, имеющихся на основании, и специального прижима, шарнирно-установленного на основании; крепление измерительного устройства на основании с помощью кронштейна:

плавное включение и отключение измерительного устройства с

помощью арретира.

Схема приспособления для фиксации образца типа ПИР указана на черт. 8.

І—образец; 2—зажим; 3—пряжны; 4—осчование; 5—видикатор часового типа

5.2.3. Подготовка к испытанию

На каждом образце точками отмечают середину каждой из сторон, а также продольное и поперечное направления изготовления образца буквами Д и П.

5.2.4. Проведение испытания

 5.2.4.1. К середине каждой стороны образца прикрепляют зажимы.

5.2.4.2. Образец с зажимами фиксируют на основании приспособления таким образом, чтобы продольное направление образца совпадало с осью измерительного устройства.

5.2.4.3. Включают измерительное устройство и записывают по-

казание индикатора.

5.2.4.4. После этого отключают измерительное устройство и

снимают образец с зажимами с основания.

5.2.4.5. Затем образец с зажимами вновь фиксируют на основании приспособления таким образом, чтобы поперечное направление образца совпадало с осью измерительного устройства и повторяют операции, указанные в пп. 5.2.4.3 и 5.2.4.4.

5.2.4.6. Образец с зажимами помещают в электрический сушильный шкаф, нагретый до температуры (70±2) °С, и выдержи-

вают в течение 5 ч.

При изменении режима испытания он должен быть указан в нормативно-технической документации на конкретный материал.

5.2.4.7. После термостатирования образец с зажимами выдерживают в течение 30 мин при температуре (23±5) °С и вновь обмеряют в продольном и поперечном направлениях так же, как до термостатирования.

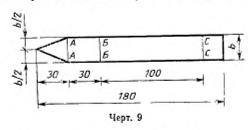
5.2.5. Обработка результатов

5.2.5.1. Величину изменения линейных размеров X в процентах вычисляют по формуле

$$X = \frac{l - l_1}{l} \cdot 100, \tag{6}$$

где l_1 — показание индикатора при обмере образца до термостатирования, мм; l_2 — показание индикатора при обмере образца после термостатирования, мм; l — величина стороны образца, равная $100\,$ мм.

5.2.5.2. За результат испытаний принимают среднее арифметическое значение параллельных определений показателя изменения линейных размеров в продольном и поперечном направлениях (в каждом направлении отдельно).


6. ОПРЕДЕЛЕНИЕ ПРОЧНОСТИ СВЯЗИ МЕЖДУ СЛОЯМИ

Сущность метода заключается в определении прочности связи между лицевым слоем из прозрачной пленки с печатным рисунком

и полимерным слоем или полимерным слоем и подосновой по силе, необходимой для отделения одного слоя от другого при заданной ширине образца.

6.1. Отбор образцов

Для определения прочности связи между слоями (в продольном и поперечном направлениях) из отобранного материала вырезают по три образца длиной (180±1) мм. Форма образца указана на черт. 9. Ширина образца (b) должна быть указана в нормативнотехнической документации на конкретный материал.

6.2. Аппаратура и приспособления

Разрывная машина с безынерционным или маятниковым силоизмерителем.

Конструкция машины должна обеспечивать:

передвижение подвижного зажима со скоростью (100± ±10) мм/мин;

измерение силы инерционным силоизмерителем с погрешностью не более ± 1 % от измеряемой величины;

величину измеряемой силы маятниковым силоизмерителем в

пределах 20-85% предельного значения шкалы.

Машина может быть снабжена самопишущим устройством для записи диаграммы «сила — длина участка расслоения».

Линейка измерительная металлическая с пределом измерения 300 или 500 мм по ГОСТ 427—75.

Этилацетат по ГОСТ 8981-78.

Нож.

Стеклянный или фарфоровый сосуд днаметром не более 60 мм и высотой не более 100 мм.

Бумага фильтровальная лабораторная по ГОСТ 12026-76.

6.3. Подготовка к испытанию

6.3.1. На лицевой и тыльной сторонах образца наносят по три параллельные линии А—А, Б—Б и С—С, как указано на черт. 9.

6.3.2. Образец расслаивают вручную или при помощи ножа до линии A-A. Затем образец расслаивают вручную или при помощи машины до линии B-B.

6.3.3. Образцы, не поддающиеся расслаиванию вручную, опус-

кают в сосуд с этилацетатом до линии А-А.

Уровень этилацетата в сосуде должен быть не более 20 мм. Со-суд с образцом ставят в вытяжной шкаф на (20±2) мин. Затем образец вынимают из сосуда, промокают фильтровальной бумагой досуха и расслаивают образец вручную до линии Б-Б. Расслоенный образец вновь помещают в вытяжной шкаф до испарения этилацетата, но не менее чем на 1 ч.

6.3.4. Образец, не поддающийся расслоению указанными спосо-

бами, считают прощедшим испытание.

6.4. Проведение испытания

6.4.1. Образец закрепляют в зажимах машины до линии Б-Б, при этом отслаиваемый слой закрепляют в подвижном зажиме. Образец рассланвают на длину участка (100±1) мм. 6.4.2. В процессе испытания записывают по шкале силоизме-

рителя не менее трех максимальных и трех минимальных пока-

зателей силы.

6.4.3. При испытании на машине с самопишущим устройством снимают диаграмму «сила-длина участка расслоения».

6.4.4. Если при испытании образца произойдет разрыв одного из слоев, то машину останавливают, образец заменяют другим.

При повторном разрыве одного из слоев силу разрыва условно принимают за силу расслоения.

6.5. Обработка результатов

6.5.1. Силу расслоения F, H, рассчитывают по формуле

$$\dot{F} = \frac{\Sigma(F_{\text{max}} + F_{\text{min}})}{2n}, \quad (7)$$

где Σ $(F_{\text{max}} + F_{\text{min}})$ — сумма максимальных и минимальных показателей силы по шкале силоизмерителя или на диаграмме, Н; n — число пар F_{max} и F_{min} .

6.5.2. Прочность связи между слоями при расслаивании (R),

Н/см, вычисляют по формуле

$$R = \frac{F}{b},\tag{8}$$

где F — сила расслаивания, H; b — ширина образца, см.

6.5.3. За результат испытаний принимают среднее арифметическое значение параллельных определений:

показателя прочности связи между лицевым слоем из прозрачной пленки с печатным рисунком и полимерным слоем в продольном и поперечном направлениях отдельно;

показателя прочности связи между полимерным слоем и подосновой в продольном и поперечном направлениях отдельно.

7. ОПРЕДЕЛЕНИЕ ВОДОПОГЛОЩЕНИЯ

7.1. Метод определения водопоглощения массе

Сущность метода заключается в определении количества воды, поглощенной образцом при выдержке его в воде в течение заданного времени.

7.1.1. Отбор образцов

Для проведения испытаний из отобранного материала вырезают квадратные образцы с размером стороны (100±1) мм.

7.1.2. Аппаратура, материалы

Весы лабораторные общего назначения 2, 3, 4-го классов точности с наибольшим пределом взвешивания до 500 г по ГОСТ 24104—80.

Сосуд из стекла, фарфора или эмалированной стали, позволяющий вместить образцы от одной партии.

Бумага фильтровальная лабораторная по ГОСТ 12026-76.

Вода питьевая по ГОСТ 2874-82.

Часы любого типа.

7.1.3. Подготовка к испытанию

В сосуд наливают воды столько, чтобы уровень ее над поверхностью образцов был не менее 20 мм, и выдерживают их в воде при температуре (23±5)°С не менее 1 ч.

7.1.4. Проведение испытания

7.1.4.1. Образец взвешивают.

 7.1.4.2. Взвешенный образец погружают в сосуд с водой так, чтобы он не касался стенок сосуда. Если в сосуд помещают нес-

колько образцов, то они не должны касаться друг друга.

7.1.4.3. Через (24±0,5) ч образец вынимают из сосуда. С образца удаляют поверхностную влагу фильтровальной бумагой. Фильтровальную бумагу меняют до тех пор, пока на ней перестают появляться следы влаги.

7.1.4.4. Образец повторно взвешивают.

7.1.5. Обработка результатов

 7.1.5.1. Водопоглощение в массе W_m в процентах вычисляют по формуле

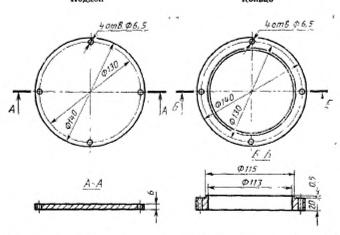
$$W_m = \frac{m_2 - m_1}{m_1} \cdot 100,$$
 (9)

где m_1 — масса образца до водопоглощения, r_i m_2 — масса образца после водопоглощения, r_i

7.1.5.2. За результат испытаний принимают среднее арифметическое значение параллельных определений показателя водопоглощения в массе.

7.2. Метод определения водопоглощения по поверхности Сущность метода заключается в определении массы воды, поглощенной лицевой поверхностью образца материала в течение заданного времени.

7.2.1. Отбор образцов


Для проведения испытаний из отобранного материала вырезают квадратные образцы с размером стороны (125±1) мм.

7.2.2. Аппаратура, материалы

Весы лабораторные общего назначения 2, 3, 4-го классов точности с наибольшим пределом взвешивания до 500 г по ГОСТ 24104—80.

Разборная форма из нержавеющего металла, конструкция которой указана на черт. 10.

Детали формы для определения поверхностного водопоглощения Поддон Кольцо

Примечание. Для скрепления деталей формы применяют болты М6×25. Черт. 10

Бумага фильтровальная лабораторная по ГОСТ 12026—76. Вода питьевая по ГОСТ 2874—82.

Сосуд вместимостью не менее 0,2 л из стекла, фарфора, фаянса или эмалированной стали.

Часы любого типа.

7.2.3. Подготовка к испытанию

В сосуд наливают воду и выдерживают ее при температуре (23 ± 5) °C не менее 1 ч.

7.2.4. Проведение испытания

7.2.4.1. Вырезанные образцы взвешивают каждый отдельно.

7.2.4.2. Взвешенный образец укладывают на поддон формы лицевой стороной вверх, на образец устанавливают кольцо, которое для устранения утечки воды прижимают к образцу болтами.

7.2.4.3. В собранную форму с образцом наливают из сосуда

воду на высоту (10:1) мм.

7.2.4.4. Через (24±0,5) ч воду из формы выливают.

7.2.4.5. Внутренние поверхности формы и образец промокают

фильтровальной бумагой.

7.2.4.6. Форму разбирают, вынимают образец и промокают фильтровальной бумагой его лицевую поверхность до тех пор, по-ка на ней не перестанут появляться следы влаги.

7.2.4.7. Образец взвешивают.

7.2.5. Обработка результатов испытания

7.2.5.1. Водопоглощение по поверхности W_s, г/см², вычисляют по формуле

$$W_s = \frac{m_1 - m_1}{S}$$
, (10)

где m_1 — масса образца до испытания, г; m_2 — масса образца после испытания, г; S — площадь образца, покрытая водой, см².

7.2.5.2. За результат испытаний принимают среднее арифметическое значение параллельных определений.

с. Определение гивкости

Сущность метода заключается в сгибании образца материала вокруг стержня круглого сечения заданного диаметра при заданной температуре и последующей визуальной оценке наличия или отсутствия трещин на испытываемом материале.

8.1. Отбор образцов

Для проведения испытаний из отобранного материала вырезают образцы длиной, равной трем диаметрам стержня, и шириной (50±1) мм. Длина образца должна совпадать с продольным направлением изготовления материала.

8.2. Аппаратура, приспособления

Металлический стержень круглого сечения высотой не менее 100 мм. Размер диаметра стержня должен быть указан в нормативно-гехнической документации на конкретный материал.

Секундомер 2-го класса точности по ГОСТ 5072-79.

Криокамера, обеспечивающая требуемую отрицательную температуру.

Перчатки из любого материала, кроме резиновых.

8.3. Подготовка образцов к испытанию

Для определения гибкости материала при отрицательной температуре образцы и стержень помещают в криокамеру.

Температура и время выдержки должны быть указаны в нор-

мативно-технической документации на конкретный материал.

8.4. Проведение испытания

8.4.1. Для определения гибкости при нормальных условиях образец лицевой стороной наружу огибают вокруг стержня, прижимают к нему и выдерживают в таком состоянии в течение 30 с,

после чего визуально проверяют наличие трещин.

8.4.2. Для определения гибкости при отрицательной температуре испытание проводят так же, как указано в п. 8.4.1, но в криокамере. В целях исключения нагрева образца от рук оператора и в целях техники безопасности оператор должен работать в перчатках.

8.5. Обработка результатов

Считают, что образцы выдержали испытание, если на поверхности всех испытуемых образнов трещины отсутствуют. Трещины на расстоянии не более 10 мм от края не учитывают.

9. ОПРЕДЕЛЕНИЕ МАССЫ

Сущность метода заключается в определении массы 1 м² условной площади испытываемого материала при фактической толщине.

9.1. Отбор образцов

Для проведения испытаний из отобранного материала вырезают квадратные образцы с размером стороны (100±1) мм.

9.2. Аппаратура

Весы лабораторные общего назначения 2, 3, 4-го классов точности с наибольшим пределом взвешивания до 500 г по ГОСТ 24104—80.

9.3. Проведение испытания

Образец помещают на чашку весов и взвешивают.

9.4. Обработка результатов

9.4.1. Массу 1 м² материала (М), г, вычисляют по формуле

$$M = m \cdot 100, \tag{11}$$

где m — масса образца, г; 100 — количество образцов в 1 м².

9.4.2. За результат испытаний принимают среднее арифметическое значение параллельных определений.

ПРИЛОЖЕНИЕ I Обязательное

ОПРЕДЕЛЕНИЕ ПЛОТНОСТИ СЛОЯ ИЗНОСА

Приспособления и материалы:

весы лабораторные 2-го класса точности с наибольшим пределом взвещивания до 200 г по ГОСТ 24104—80;

микрометр типа МК-25 по ГОСТ 6507—78; штангенциркуль тип ШЦ-111 по ГОСТ 166—80;

штангенциркуль тип ШЦ-III по ГОСТ 166—80; бумага антиадгезионная.

Плотность слоя взноса определяют на трех образцах диаметром (16± ±0.5) мм.

Плотность слоя износа, изготовленного вальцево-каландровым или экструзионным способами, определяют на каждой партии до дублирования с другимы слоями материала.

Плотность слоя износа, изготовленного промазным способом, определяют при изменении рецептуры на образцах, изготовленных в процессе производства линолеума, для чего состав, предназначенный для изготовления лицевого слоя, намазывают на антиадгезионную бумагу и подвергают термообработке в соответствии с технологическим регламентом.

Плотность слоя износа, изготовленного промазным способом, должна быть записана в журнале заводских испытаний или указана в нормативном документе на материал.

Диаметр образца измеряют штангенциркулем.

Толщину образца измеряют микрометром в геометрическом центре обваца.

Вычисляют объем образца V, см3, по формуле

$$V = \frac{\pi D^2}{4} \cdot H,$$
 (1)

где D - диаметр образца, см;

Н — толщина образца, см.

Плотность слоя износа образцов (γ) , г/см³, вычисляют с точностью до 0.01 г/см³ по формуле

$$\gamma = \frac{m}{V}$$
, (2)

где m — масса образца, г;

V — объем образца, см³.

За величину плотности слоя износа принимают среднее эрифметическое вначение паравлельных определений трех образцов.

ОПРЕДЕЛЕНИЕ КОЭФФИЦИЕНТА ИСТИРАЮЩЕЙ СПОСОБНОСТИ ШЛИФОВАЛЬНОЙ ШКУРКИ [K]

1. Приспособления и материалы;

машина барабанного типа;

эталон диаметром (16±0,1) мм, изготовленный из цинка марки ЦВ, твердостью (34±2) HV 5/30, определяемой по ГОСТ 2999—75. Эталон входит в комплект машины барабанного типа;

шкурка шлифовальная тканевая по ГОСТ 5009-82 или бумажная по ГОСТ

6456 -82;

весы лабораторные общего назначения 2-го класса точности с наибольшим

пределом взвешивания до 200 г по ГОСТ 24104-80.

 Коэффициент истирающей способности шлифовальной шкурки для всех методов истирания определяют по истираемости эталона из цинка на машине барабанного типа,

Коэффициент истирающей способности для каждой партии шкурки определяют на трсх образцах шкурки, вырезанных в начале, середине и конце каж-

дого десятиметрового куска шкурки, отрезанного от рудона.

Эталон с тержателем взвешивают, закрепляют в патроне, который опускают на поверхность барабана, обтянутого исследуемой шлифовальной шкуркой, истирают в течение одного рабочего цикла машины (два оборота барабана) и вновь взвешивают.

На каждом образце шкурки производят три параллельных определения.

Истираемость эталона ($N_{\rm cp}$) определяют по разности массы держателя с эталоном до и после истирания и вычисляют как среднее арифметическое значение девяти определений, округляя результат до 0,001 г.

Коэффициент истирающей способности шлифовальной шкурки (К) вычис-

ляют по формуле

$$K = \frac{0.014}{H_{co}}$$
, (3)

где 0,014 — условная постоянная величина, принятая за эталонную истираемость, г;

Ист — истираемость эталона из цинка на исследуемой шкурке, г.

ПРИЛОЖЕНИЕ 3 Справочное

РЕКОМЕНДАЦИИ ПО УСТАНОВКЕ СІРЕЛКИ ОТСЧЕТНОГО УСТРОЙСТВА В НУЛЕВОЕ ПОЛОЖЕНИЕ И ПО ПРОВЕРКЕ ВЕЛИЧИНЫ ДЕФОРМАЦИИ КОРПУСА УСТРОЙСТВА ДЛЯ ИСПЫТАНИЯ

Подъемный столик (с образцом или без него) вращением гайки-маховика подвимают до упора. Затем, вращая маховик в обратную сторону, приводят стрелку отсчетного устройства в кулевое положение, указанное в паспорте прибора, при этом на образец начинает действовать предварительная нагрузка.

После установки стрелки отсчетного устройства в нулевое положение (подъемный столик без образца) поворотом рукоятки прикладывают основную нагрузку и по показанию отсчетного устройства определяют величину деформации корпуса устройства при испытании. Изменение № 1 ГОСТ 11529—86 Материалы поливинилхлоридные для полов. Методы контроля

Принято Межгосударственной научно-технической комиссией по стандартизации, техническому нормированию и сертификации в строительстве (МНТКС) 20.05.98

Зарегистрировано Техническим секретариатом МГС № 3056

За принятие изменения проголосовали:

Наименование государства	Наименование органа государствен- ного управления строительством
Республика Казахстан	Комитет по жилищной и строитель- ной политике при Министерстве энергетики, индустрии и торговли Республики Казахстан
Киргизская Республика	Государственная архитектурно-строи- тельная инспекция при Правительстве Киргизской Республики
Республика Молдова	Министерство территориального раз- вития, строительства и коммунально- го хозяйства Республики Молдова
Российская Федерация	Госстрой России
Республика Таджикистан	Госстрой Республики Таджикистан
Украина	Государственный Комитет строитель- ства, архитектуры и жилищной поли- тики Украины

Введение. Второй — девятый абзацы изложить в новой редакции:

- «- внешнего вида;
- линейных размеров;
- параллельности кромок;
- истираемости;
- деформативности при вдавливании;
- изменения линейных размеров;
- прочности связи между слоями;
- водопоглощения;
- гибкости;
- массы 1 м²;
- удельного поверхностного и объемного электрического сопротивления;
 - прочности сварного шва».

(Продолжение см. с. 54)

Пункт 1.2 дополнить абзацем:

«Подготовку образцов к испытанию и проведение испытаний, если иет других указаний, следует проводить при температуре (23±5) *С».

Пункт 1.3 изложить в новой редакции.

«1.3. За величину показателя, имеющего числовое значение, принимают для рулона (плитки) среднеарифметическое значение результатов испытаний всех образцов, для партии — среднеарифметическое значение результатов испытаний рулонов (плиток) в выборке».

Пункт 1.4 исключить.

Стандарт дополнить разделом - 2а

«2а. Проверка внешнего вида

- 2а.1. Упаковку и маркировку рудонов (плиток) проверяют визуально.
- 2а. 2. Количество полотен в рулоне устанавливают визуально осмотром развернутого на всю длину рулона.
- 2а.3. Качество лицевой поверхности проверяют визуально с расстоя ния 1 м от поверхности материала при равномерной освещенности не менее 300 лк.
- 2а.4. Стабильность раппорта рисунка определяют совмещением двух полотен (двух плиток) одного рисунка. При совмещении полотен (плиток) по линии кромок не должно быть искажения рисунка.
- 2а.5. Цвст, рисунок и фактуру оценивают визуально сравнением отобранных рулонов с образцом-эталоном с расстояния 1 м от поверхности материала при равномерной освещенности лампой дневного света с интенсивностью облучения 300 лк».

Пункт 2.1.2. Заменить ссылки: ГОСТ 7502—80 на ГОСТ 7502—98, ГОСТ 166 80 на ГОСТ 166 –89.

Стандарт дополнить пунктом — 2.1.4.4:

«2.1.4.4. Результат округляют до 0,1 м (для длины полотна материала в рулоне) и до 1 мм (для ширины полотна материала в рулоне и для длины и ширины плитки)».

Пункт 2.2.1 изложитть в новой редакции:

«2 2.1. Толщину измеряют на трех образцах размером [(50×50)±5] мм».

Пункт 2 2.2 Первый абзац изложить в новой редакции:

«Толщиномер индикаторный ТН (ТР) 10—60 по ГОСТ 11358—89 с диаметром пятки и наконечника 16 мм, если в нормативных документах на конкретный вид продукции не указаны другие значения, или микрометр типа МК-25 по ГОСТ 6507—90».

Пункт 2.2.4 исключить.

Раздел 2 дополнить пунктом — 2.3:

«2.3. Параллельность кромок определяют измерением через 1 м ширины полотна материала на длине 4 м в любом месте полотна. Разность между результатами каждого измерения и шириной материала, измеренной по п. 2.1, не должна превышать допускаемые отклонения от параллельности, предусмотренные нормативными документами на конкретный вид материала».

Пункт 3.1.1 изложить в новой редакции:

«3.1.1. Ислытание проводят на трех образцах диаметром (16,0 \pm 0,5) мм, вырубленных штанцевым ножом (черт. 1)».

Пункт 3.1.2. Заменить значения: $(1\pm0,05)$ на $(1,00\pm0,05)$; $(16\pm0,5)$ на $(16,0\pm0,5)$;

заменить слова «Шкурка шлифовальная бумажная С (15—13) А8-II по ГОСТ 6456—82» на «Шкурка шлифовальная бумажная из нормального электрокорунда марок (15А-13А) зернистостью 8Н и легированного электрокорунда марок (94А-91А) зернистостью 8Н по ГОСТ 6456—82»;

заменить ссылки: ГОСТ 166—80 на 166—89, ГОСТ 24104—80 на ГОСТ 24104—88; ГОСТ 10597—80 на ГОСТ 10597—87, ГОСТ 6388—85 на ГОСТ 6388—91

Пункт 3.1.3 5. Исключить слова: «при температуре (23±5) °С».

Пункт 3.1.5. Последний абзац изложить в новой редакции:

«Результат округляют до 1 мкм»

Пункт 3.2.2 Заменить значения: (225 ± 0.5) на $(225,0\pm0.5)$; (17 ± 0.2) на $(17,0\pm0.2)$; (140 ± 1.0) на $(140,0\pm1.0)$; (106 ± 1.0) на $(196,0\pm1.0)$; (36 ± 0.5) на $(36,0\pm0.5)$;

заменить ссылку: ГОСТ 24104-80 на ГОСТ 24104-88.

Пункт 3.2.5.2 Последний абзац изложить в новой редакции.

«Результат округляют до 1 мкм».

Пункт 4.1 изложить в новой редакции:

«4.1. Испытание проводят на трех образнах размером [(50×50)±5] мм». Пункт 4 2.1.2. Заменить ссылку: ГОСТ 2789—75 на ГОСТ 2789—73.

Пункт 4.2.2. Исключить ссылку «по ГОСТ 5072-79».

Пункт 4.4.4 дополнить абзацем:

«Результат округляют до 0,01 мм».

Пункт 4.4.5 изложить в новой редакции:

*4.4.5. Время выдержки образца под общей нагрузкой и после снятия основной нагрузки — $(5,0\pm0,1)$ мин, если в нормативных документах на конкретные материалы не указана другая величина».

Пункт 4.5.1 дополнить абзацем:

«Результат округляют до 0,01 мм»

Пункт 4.5.2 дополнить абзацем:

«Результат округляют до 1 %».

Пункт 4.5.4. Второй, третий абзацы дополнить словами: «результат округляют до 1 мм»;

четвертый абзац дополнить словами: «результат округляют до 1 %».

(Продолжение см. с. 56)

Пункт 5.1.1 изложить в новой редакции

«5.11 Испытание проводят на трех образцах размером [(150×150)±2] мм».

Пункт 5 1.2 Третий абзац. Заменить значение: (100 ± 0.5) на $(100,0\pm0.5)$; чертеж 5. Заменить значения: 100 ± 0.5 на 100.0 ± 0.5 ; 130 ± 0.5 на 130.0 ± 0.5 .

Пункт 5.1.4.2. Исключить слова: «при температуре (23±5) "С».

Пункт 5.1.5.1 дополнить абзацем:

«Результат округляют до 0,1 %».

Пункт 5.2.1 изложить в новой редакции:

«5.2.1. Испытание проводят на трех образцах размером $[(100 \times 100) \pm 2]$ мм».

Пункт 5.2.4.7. Исключить слова: «при температуре (23±5) °С».

Пункт 5.2.5.2 дополнить абзацем:

«Результат округляют до 0.1 %».

Пункт 6 1. Первый абзац после слов «на черт. 9» изложить в новой редакции:

«Ширина образца для определения прочности связи между лицевым слоем из прозрачной пленки с печатным рисунком и полимерным слоем — (15±1) мм; ширина образца для определения прочности связи между полимерным слоем и подосновой — (70±1) мм, если в нормативных документах на конкретный вид материала не указана другая ширина образца».

Пункт 6.4.4 дополнить абзацем:

«В случае разрыва образца по подоснове образец считают выдержавшим испытание».

Пункт 6.5.1 дополнить абзацем:

«Результат округляют до 1 Н».

Пункт 6.5.2 дополнить абзацем:

«Результат округляют до 0,1 H/см».

Пункт 7.1.1 изложить в новой редакции: «7.1.1. Испытание проводят на трех о

+7.1.1. Испытание проводят на трех образцах размером [(100×100)±1] мм+.

Пункт 7.1.3. Исключить слова: «при температуре (23±5) °С».

Пункт 7.1.4.3. Заменить значение: $(24\pm0,5)$ на $(24,0\pm0,5)$.

Пункт 7.1.5.1 дополнить абзацем:

«Результат округляют до 0,1 %».

Пункт 7.1.5.2 исключить.

Пункты 7.1.2, 7.2.2, 9.2. Заменить ссылку: ГОСТ 24104- 80 иа ГОСТ 24104—88.

Пункт 7.2.1 изложить в новой редакции:

«7.2.1. Испытание проводят на трех образцах размером [(125×125)±1] мм». Пункт 7.2.3. Исключить слова: «при температуре (23±5) °С».

Пункт 7.2.4.4. Заменить значение: (24±0,5) на (24,0±0,5).

Пункт 7.2.5.1 дополнить абзацем:

«Результат округляют до 0,1 г/см2».

Пункт 7.2.5.2 исключить.

Пуикт 8.1 изложить в новой редакции:

«8.1. Испытание проводят на трех образцах длиной, равной не менее трем диаметрам стержня, и шириной (50±1) мм. Образец вырезают в продольном направлении».

Пункт 8.2. Второй абзац. Исключить ссылку: «по ГОСТ 5072-79».

Пункт 9.1 изложить в новой редакции:

«9.1. Испытание проводят на трех образцах размером I(100×100)±11 мм».

Пункт 9.4.1 дополнить абзацем:

«Результат округляют до 1 г».

Пункт 9.4.2 исключить.

Стандарт дополнить разделами - 10, 11:

«10. Определение удельного поверхностного и объемного электрического сопротивления

Удельное поверхностное и объемное электрическое сопротивление определяют по ГОСТ 6433.2—71 со следующими дополнениями:

 форма и размер образца — круг диаметром, равным диаметру охранного электрода;

 условие окружающей среды при кондиционировании и испытании по ГОСТ 6433.1—71: 24 ч (20 °C) 65 %; М (23 °C) 45—75 %;

 перед кондиционированием лицевую поверхность образца протирают техническим спиртом по ГОСТ 17299—78;

электроды — из отожженной алюминиевой, оловянной или свинцовой фольги толшиной от 5 до 20 мкм;

 способ создания контакта с образцом — нажатие давлением (10,0±0,2) кПа через резину твердостью не более 5 кгс/см², определяемой по ГОСТ 20403—75;

 диаметр измерительного электрода — (25,0±0,2) мм. Допускается применение электродов других диаметров, указанных в ГОСТ 6433.2—71;

диаметр охранного электрода — не менее 40 мм;

- испытательное напряжение - (100±2) В;

способ подачи напряжения — фиксированный;

при расчете за d, принимают внутренний диаметр электрода напряжения.

11. Определение прочности сварного шва

Сущность метода заключается в определении прочности при растяже-

(Продолжение см. с. 58)

нии сварного шва путем измерения нагрузки, при которой образец разрушается (момент отрыва сварного шва от материала образца).

11.1. Аппаратура, приспособления и материалы Машина разрывная, имеющая рабочую часть шкалы силоизмерителя в пределах измерения 0—1000 Н (0—100 кгс) с ценой деления не более ±1 %. Машина должна обеспечивать постоянную скорость перемещения подвижного захвата (100±10) мм/мин.

Линейка металлическая по ГОСТ 427-75.

Толщиномер индикаторный ТН (ТР) 10-60 с ценой деления 0,1 мм по ГОСТ 11358-89. Диаметр пятки и наконечника толщиномера — 16 мм.

Оптическое устройство, снабженное измерительной шкалой с ценой деления не более 0,01 мм.

11.2. Отбор образцов

Испытание проводят на трех образцах типа 3 по ГОСТ 11262—80, вырезанных из полосы сваренного линолеума так, чтобы сварной шов проходил перпендикулярно прикладываемой нагрузке.

- 11.3. Подготовка и проведение испытания
- 11.3.1. Образец освобождают от подосновы.
- 11.3.2. Измеряют толщину сварного шва h и ширину образца b на расчетной длине образца не менее чем в трех местах.
- 11.3.3. На образец наносят метки, определяющие подожение кромок зажимов на образце в соответствии с ГОСТ 11262—80.
- 11.3.4. Образец устанавливают в зажимы разрывной машины таким образом, чтобы продольная ось образца совпадала с осью зажимов и направлением движения подвижного зажима.

Результат, полученный на образце, в котором в процессе испытания были обнаружены дефекты, в расчет не принимается.

 Обработка результатов испытания Прочность сварного щва R, Н/см³, вычисляют по формуле

$$R = \frac{P}{S} \,, \tag{12}$$

где Р — нагрузка, при которой образец разрушился, Н;

 S — первоначальная площадь поперечного сечения сварного шва, см², определяемая по формуле

$$S = b \cdot h, \tag{13}$$

где b — ширина образца, см;

h — толщина сварного шва, см.

(Продолжение изменения № 1 к ГОСТ 11529-86)

Результат вычисления прочности сварного шва округляют до 1 H/cm²». Приложение 1. Заменить ссылки: ГОСТ 24104—80 на ГОСТ 24104—88, ГОСТ 6507—78 на ГОСТ 6507—90, ГОСТ 166—80 на ГОСТ 166—89. Приложение 2. Заменить ссылку: ГОСТ 24104—80 на ГОСТ 24104—88.

(ИУС № 8 1999 г)

Редактор В. П. Огурцов Технический редактор Н. С. Гришанова Корректор В. С. Черная

Сдано в наб. 23.10.86 Подл. в печ. 05.12.86 1,5 усл. п. л. 1.75 усл. кр.-отт. 1,42 уч.-изд. к. Тир. 20.000

Ордена «Знак Почета» Издательство стандартов, 123840, Москва, ГСП, Новопресиенский пер., 3 Тип. «Московский печатник». Москва, Лялии пер., 6. Зак. 2948