

ГОСУДАРСТВЕННЫЙ СТАНДАРТ СОЮЗА ССР

СПИРТ ТЕТРАГИДРОФУРФУРИЛОВЫЙ

ТЕХНИЧЕСКИЕ УСЛОВИЯ

FOCT 17477-86

Издание официальное

Цена 5 коп.

РАЗРАБОТАН Главным управлением микробиологической промышленности при Совете Министров СССР

ИСПОЛНИТЕЛИ

М. А. Иванов, К. Г. Шулакова, Л. П. Выродова, А. А. Бутова

ВНЕСЕН Главным управлением микробиологической промышленности при Совете Министров СССР

Заместитель начальника В. И. Огарков

УТВЕРЖДЕН И ВВЕДЕН В ДЕЙСТВИЕ Постановлением Государственного комитета СССР по стандарам от 8 мая 1986 г. № 1186

ГОСУДАРСТВЕННЫЙ СТАНДАРТ СОЮЗА ССР

СПИРТ ТЕТРАГИДРОФУРФУРИЛОВЫЙ Технические условия

ГОСТ 17477—86

Tetrahydrofurfuril alcohol. Specifications

Взамен ГОСТ 17477—75

OKTI 92 9162 0003

Постановлением Государственного комитета СССР по стандартам от 8 мая 1986 г. № 1186 срок действия установлен

c 01.07.87

Несоблюдение стандарта преследуется по закону

Настоящий стандарт распространяется на тетрагидрофурфуриловый спирт, получаемый каталитическим одностадийным гидрированием фурфурола.

Формулы:

эмпирическая C₅H₁₀O₂ структурная H₂C - CH₂ H₉C - CH-CH₉

н₂с сн–сн₂он

Молекулярная масса (по международным атомным массам 1971 г.) — 102, 135.

Показатели технического уровня, установленные настоящим стандартом, предусмотрены для высшей категории качества.

1. ТЕХНИЧЕСКИЕ ТРЕБОВАНИЯ

1.1. Тетрагидрофурфурмловый спирт должен изготовляться в соответствии с требованиями настоящего стандарта по технологическому регламенту, утвержденному в установленном порядке.

1.2. По физико-химическим показателям тетрагидрофурфуриловый спирт должен соответствовать требованиям и нормам, указанным в таблице.

Издание официальное

Перепечатка воспрещена

Наименование показателя	Hops: a	Метод аявляза
I. Внешний вид	Бесцветная или свет- ло-желтая прозрачная жидкость, не солержа- цая чеханических при- месей	По п. 4.2
 Массовая доля фурфурило- вого спирта, %, не более 	0,20	По п. 4.3
 Массовая доля фурфурола, %, не более 	0,005	По п. 4.4
4. Массовая доля воды, %, не более	0.15	По п. 4.5
5. Плотность при 20°C, г/см ³	1,0495 1,0600	По ГОСТ 18995.1—73, разд. 1
 Показатель преломления (n₁²⁰) 	1,45001,4530	Πο ΓΟCT 18995.2—73
7. Массовая доля кислот в пе	12777 A 1117 A	10000.2-70
ресчете на уксусную кисло- ту, %, не более	0,02	По п. 4.6
8. Смешиваемость с водой	Должен выдерживать испытание по п. 4.7	P 10 31 31 31 31 31 31 31 31 31 31 31 31 31

Примечания:

массовой доди кислот в пересчете на уксусную кислоту — до 0,03 %.

2. Показатель 8 таблицы является факультативным до 01.07.88.

2. ТРЕБОВАНИЯ БЕЗОПАСНОСТИ

2.1. Тетрагидрофурфуриловый слирт — горючая жидкость. Температура вспышки (открытый тигель) — не менее 75 °C, температура самовоспламенения — (258 ± 10) °C, температурные пределы воспламенения: нижний — (72 ± 5) °C, верхний — (108 ± 5) °C; концентрационные пределы воспламенения: нижний — 1,5 %, верхний — 9,7 %.

Температуру вспышки, температуру самовоспламенения, температурные и концентрационные пределы воспламенения определяют по ГОСТ 12.1.044--84.

 Тетрагидрофурфуриловый спирт обладает наркотическим действием, раздражающим действием на кожу и слизистые оболочки, кумулирует.

Предельно допустимая концентрация (ПДК) тетрагидрофурфурилового спирта в водоемах санитарно-бытового водоиспользования — 500 мг/м³.

 При работе с тетрагидрофурфуриловым спиртом необходимо применять средства индивидуальной защиты от попадания про-

В пределах гарантийного срока хранения по истечении двух лет со для изготовления допускается изменение следующих показателей: ивссовой доли воды — до 0,2 %;

лукта на кожные покровы и слизистые оболочки, а также соблюдать правила личной гигиены.

При высоких концентрациях тетрагидрофурфурилового спирта, а также в условиях пожара следует использовать фильтрующий

противогаз марки А или М.

2.4. Производственные помещения, в которых проводят работы с тетрагидрофурфуриловым спиртом, должам быть оборудованы приточно-вытяжными вентиляционными установками общего и местного назначения, а также аварийной вентиляцией. Электрооборудование должно быть во взрывобезопасном исполнении.

2.5. При попадании тетрагидрофурфурилового спирта на кожу

или в глаза его необходимо смыть струей воды.

 Средства пожаротушения: распыленная вода, песок, асбестовое одеяло, огнетущитель ОП-5.

3. ПРАВИЛА ПРИЕМКИ

3.1 Тетрагидрофурфурнловый спирт принимают партиями. Партией считают любое количество тетрагидрофурфурнлового спирта, однородного по своим качественным показателям, отправляемого в один адрес и сопровождаемого одним документом о качестве. При отгрузке тетрагидрофурфурилового спирта в железнодорожных и автоцистернах, каждую цистерну принимают за партию.

3.2. Документ о качестве должен содержать:

наименование предприятия-изготовителя и его товарный знак; наименование продукта;

номер партии, количество мест в партин;

массу брутто и нетто;

дату изготовления;

результаты проведенного анализа или подтверждение о соответствии качества продукта требованиям настоящего стандарта;

номер документа о качестве;

обозначение настоящего стандарта.

3.3. Для проверки качества тетрагидрофурфурилового спирта на соответствие его показателей требованиям настоящего стандарта объем выборки — по ГОСТ 2517—80. У изготовителя допускается производить отбор проб из товарного резервуара.

3.4. При получении неудовлетворительных результатов анализа хота бы по одному из показателей проводят повторный анализ на удвоенной выборке или удвоенном количестве проб из цистерны.

Результаты повторного анализа распространяются на всю пар-

THIO.

4. МЕТОДЫ АНАЛИЗА

4.1. Методы отбора проб

4.1.1. Точечные пробы из резервуаров отбирают по ГОСТ 2517—80.

Точечные пробы из цистери отбирают пробоотборником на уровне 200 мм ниже ловерхности продукта, из середины и на уровне 250 мм от диа.

Точечные пробы из бочек отбирают чистой стеклянной трубкой, погружая ее до середины столба жидкости.

Объем точечной пробы должен быть 350 см3.

- 4.1.2. Отобранные точечьые пробы соединяют вместе, тщательно перемешивают, из полученной объединениой пробы отбярают среднюю пробу объемом не менее 1 дм³ и помещают ее в две чистые сухие плотно закрываемые склянки. На склянки наклеивают этикески с обозначениями наименования продукта, номера партин, даты и места отбора пробы, наименования стандарта, фамилии пробоотборщика. Одну склянку передают в лабораторию для проведения анализа, другую хранят шесть месяцев на случай возникновения разногласий в оценке качества продукта.
 - Внешний вид определяют визуально.

Для этого анализируемый продукт наливают в цилиндр из бесцветного стекла по ГОСТ 1770—74 вместимостью 100 см³ и рассматривают его в проходящем свете.

- 4.3. Определение массовой доли фурфурилового спирта
- 4.3.1. Аппаратура, реактивы и растворы

Ячейка кулонометрическая (черт. 1),

Пластина платиновая по ГОСТ 6563—75 размером 10×10 мм. Пластина платиновая по ГОСТ 6563—75 размером 10×5 мм.

Проволока платиновая по ГОСТ 18389--73 длиной 10 см, диаметром около 0,5 мм.

Тигель ТФ-40-ПОР 16 XC по ГОСТ 25336—82 или воронка ВФО-40-ПОР 16 XC по ГОСТ 25336—82.

Мешалка магнитная или механическая.

Стакан стеклянный наружным диаметром 60 мм.

Схема электрическая для кулонометрического титрования (черт. 2), в которую входят:

источник постоянного тока (стабилизированного) 1, обеспечивающий напряжение около 50 В и силу тока до 50 мА;

микровиперметр постоянного тока 8 модификации М класса точности не ниже 1,5, с падением напряжения по шкале 100 мкА не более 20 мВ:

миллиамперметр постоянного тока 12 модификации M класса точности не ниже 1,5, обеспечивающий измерение силы тока до 10 мA;

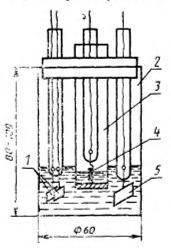
сопротивление переменное (потенциометр) 2 на 5 кОм мощностью не менее 2 Вт; сопротивление переменное (потенциометр) 5 на 100-200 Ом мощностью не менее I Вт;

сопротивление постоянное 4 на 10 кОм мощностью не менее

0,25 Br;

тумблеры (переключателн) 6, 9, 11;

батарея сухая 7 на 1,5 В;


секундомер 10 механический до ГОСТ 5072—79 или электрический.

Кислота соляная по ГОСТ 3118-77, к. ч. или ч. д. а., раствор

концентрации c (HCl) = 1 моль/дм³ (1 н.).

Калий бромистый по ГОСТ 4160—74, х. ч. или ч. д. а., раствор концентрации c (KBr) = 0,1 моль/дм³ (0,1 н.) в растворе соляной кислоты концентрации c (HCl) = 1 моль/дм³ (1 н.).

Ячейка кулонометрическая

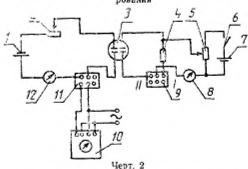
Черт. 1

Допускается использовать любую другую установку для кулонометрического титрования с параметрами, указанными выше.

4.3.2. Описание кулонометрической ячейки

Кулонометрическая ячейка представляет собой стеклянный стакан (анодная камера) 2, закрытый резиновой или корковой пробкой с отверстиями для генераторного анода 5, индикаторных электродов 1, пористого стеклянного фильтра (катодная камера) 3 для внесения пробы (см. черт. 1). Генераторный анод (платиновая пластина размером 10×10 мм) и индикаторные электроды (две платиновые пластины размером 10×5 мм) впанвают с помощью платиновой проволоки в стекляные трубки диаметром 6—8 мм. Электрические контакты изготовляют из медной проволоки, приваренной к платиновой проволоке. Один из контактов индикаторных электродов изолируют. Индикаторные электроды служат для определения конечной точки титрования.

Генераторных катодом 4 служит спираль из платиновой про-


во токи, впаниная в стеклянную трубку.

Генерирование брома, идущего на бромирование фурфурилового спирта, осуществляется на генераторном аноде при силе тока 10 мА по реакции Вг—с→Вг. Ячейка заполняется электролитом раствором бромистого калия в растворе соляной кислоты.

4.3.3. Проведение анализа

В католную камеру кулонометрической ячейки 3 (см. черт. 2) заливают раствор соляной кислоты, в анодную — раствор бромистого калия в соляной кислоте, следя за тем, чтобы электроды и пористая перегородка фильтра были покрыты электролитом.

> Схема электрическая для кулонометрического титровения

После этого включают мешалку и регулированием переменного сопротивления 5 устанавливают индикаторное напряжение 0,2—0,3 В во микроамперметру 8 на шкале 100 мкА. Предварительно тумбтер 9 ставят в такое положение, когда микроамперметр служит вольтметром вследствие подключения дополнительного сопротивления 2, то есть в положение I.

Затем тумблер переключают в положение II, при этом микроамперметр измеряет силу тока в индикаторной цепи. При помощи тумблера II включают генераторный ток и при помощи переменного сочротивления 2 его значение устанавливают равным 10 мА. По мере генерирования брома и его накопления в электролите ток в индикаторной цени возрастает. По достижении 30 мкА генераторный ток выключают и в ячейку вносят 0,5—1,5 см³ анализируемого спирта. При этом индикаторный ток быстро снижается до нуля или до некоторого минимального значения вследствие взаимодействия брома с фурфуриловым спиртом. Снова включают генераторный ток с одновременным включением секуидомера 10 и генераторный ток с одновременным включением секуидомера 10 и генераторвание брома (кулонометрическое титрование) ведут до зафиксированного перед внесением пробы значения индикаторного тока, т. е. до 30 мкА. В этот момент генераторный ток выключают и отмечают время титрования по секуидомеру. Электролит в ячейке меняют после каждого титрования.

4.3.4. Обработка результатов

Массовую долю фурфурилового спирта (X) в процентах вычисляют по формуле

$$X = \frac{t \cdot t \cdot 98, 1 \cdot 100}{2 \cdot 96500 \cdot V \cdot 9}$$

где

і - сила генераторного тока, А;

t — время титрования, с;

 V — объем тетрагидрофурфурилового спирта, взятый для анализа, см³;

е - элотность тетрагидрофурфурилового спирта при температуре 20°С, т/см³;

98,1 молекулярная масса фурфурилового спирта;

 количество электронов в реакции бромирования фурфурилового спирта;

96500 - число Фарадея.

За результат анализа принимают среднее арифметическое результатов двух параллельных определений, допускаемые расхождения между которыми не должны превышать 0,004 % при доверительной вероятности P=0,95. Суммарная погрешность методики равна \pm 0,002 %.

4.4. Определение массовой доли фурфурола
 4.4.1. Аппаратура, реактивы и растворы

Фотоэлектроколориметр любой марки.

Весы лабораторные общего назначения 2-го класса точности по ГОСТ 24104—80 с наибольшим пределом взвешивания 200 г.

Колбы 2—25—2, 2—50—2, 2—100—2, 2—250—2 или 1—25—2, 1—50—2, 1—100—2, 1—250—2 по ГОСТ 1770—74.

Пипетки 4—1—1 и 2—1—25 по ГОСТ 20292—74.

Кислота уксусная по ГОСТ 61-75, х. ч. ледяная.

Вода дистиллированная по ГОСТ 6709--72 или вода эквивалентной чистоты.

Анилин по ГОСТ 5819-78, ч. д. а., свежеперегнанный.

Раствор уксуснокислого анилина; готовят следующим образом: 25 см³ анилина помещают в мерную колбу вместимостью 250 см³ и доводят объем раствора до метки ледяной уксусной кислотой при охлаждении колбы струей воды. Приготовленный раствор годен к

применению в течение 2 сут.

Фурфурол технический по ГОСТ 10437-80 высшего или 1-го сорта, свежеперегнанный; раствор готовят следующим образом: 0,1 см³ фурфурола взвешивают в мерной колбе вместимостью 100 см3, записывая результат взвешивания в граммах с точностью до третьего десятичного знака, доводят объем раствора водой до метки и тщательно перемешнвают. 1 см³ полученного раствора по-мещают в мерную колбу вместимостью 100 см³, доводят объем раствора водой до метки и тщательно перемешивают. Вычисляют массовую концентрацию фурфурола в полученном растворе в миллиграммах на кубический сантиметр.

4.4.2. Построение градунровочного графика

Приготовление растворов сравнения

В восемь мерных колб вместимостью 25 см3 помещают по 10-13 см³ раствора уксуснокислого анилина, затем прибавляют раствор фурфурола в объеме 0,1; 0,2; 0,3; 0,4; 0,5; 0,6; 0,7 и 0,8 см³, следя за тем, чтобы интервал между последующими добавлениями составлял 3 мин.

Полученные растворы доводят раствором уксуснокислого анилина до метки, тщательно перемешивают, выдерживают в темноте и через 10 мин, считая с момента добавления раствора фурфурола, измеряют оптическую плотность приготовленных растворов по отношению к контрольному раствору в кюветах с толщиной поглощающего свет слоя 50 мм при длине волны 540 нм. В качестве контрольного применяют раствор уксуснокислого анилина. По полученным данным строят градунровочный график, откла-

дывая по оси абециее массу фурфурола в миллиграммах в 25 см° раствора, а по оси ординат -- соответствующее значение оптиче-

ской плотности.

Градунровку фотоэлектроколориметра проверяют не реже одного раза в месяц.

4.4.3. Проведение анализа

5 г анализируемого спирта взвешивают, записывая результат взвешивания в граммах с точностью до второго десятичного знака, помещают в мерную колбу вместимостью 25 см³ и доводят объем раствора водой до метки (раствор 1).

При содержании фурфурола менее 0,002 % для приготовления раствора 1 массу навески увеличивают до 10 г и разбавляют в мерной колбе вместимостью 50 см³.

В мерную колбу вместимостью 25 см3 помещают 10--13 см3 раствора уксуснокислого анилина, добавляют пипеткой от 0,2 до 4 см³ раствора 1 и доводят объем раствора до метки раствором уксуснокислого анилина (раствор 2). Измеряют оптическую плот-

ность приготовленного раствора, как указано в п. 4.4.2.

Объем раствора 1 для фотометрирования подбирают таким образом, чтобы значение оптической плотности раствора 2 не превышало 0,65—0,70.

4.4.4. Обработка результатов

Массовую долю фурфурола (X_1) в процентах вычисляют по формуле

$$X_1 = \frac{m_1 \cdot V}{V_1 \cdot m \cdot 1000} \cdot 100,$$

где m — масса навески тетрагидрофурфурилового спирта, взятая для приготовления раствора 1, г;

 т. — масса фурфурола, найденная по градунровочному графику, мг;

V - общий объем раствора I, см3;

 V_1 — объем раствора 1, взятый для приготовления раствора 2,

За результат анализа принимают среднее арифметическое результатов двух параллельных определений, допускаемые расхождения между которыми не должны превышать 0,0004 % при доверительной вероятности $P\!=\!0.95$. Суммарная погрешность методики равна $\pm 0,00025$ %.

4.5. Определение массовой доли воды

Метод основан на взаимодействии гидрида кальция с водой, содержащейся в тетрагидрофурфуриловом спирте, и измерении объема выделившегося при этом водорода.

В качестве растворителя анализируемого спирта используют топливо для реактивных двигателей или керосин любой марки.

4.5 1. Аппаратура, материалы и реактивы

Колба колическая 2 с эришлифованной пробхой-краном 4, имеющей углубление, и с отводной трубкой 3 (черт. 3).

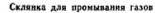
Сзлянка для промывання газов (черт. 4).

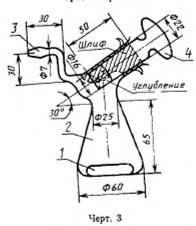
Бюретка газовая вместимостью 50 см³ с ценой деления 0,1 см³, снабженная в верхней части двумя кранами.

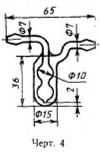
Склянка уравнительная вместимостью 150 см3.

Термометр ртутный стеклянный лабораторный по ГОСТ 215—73 с цегой деления 0,5 °C и пределами измерения от 0 до 55 °C.

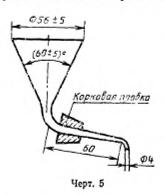
Мешалка магнитная любого типа.

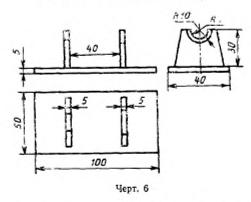

Трубка резиновая вакуумная внутренним диаметром 3—4 мм. Воронка стеклявная с изогнутым концом (черт. 5).


Подставка для стеклянной пробки-крана из органического стекла или дерева (черт. 6).


Барометр любого типа.

Весы лабораторные общего назначения 2-го класса точности по ГОСТ 24104—80 с наибольшим пределом взвешивания 200 г.


Колба коническая с пришлифованной пробкой-краном



Воронка стеклянная с изогнутым концом

Шпатель. Цилиндр 2—50 или 4—50 по ГОСТ 1770—74. Пипетка 4—2—1 по ГОСТ 20292—74. Смазка вакуумная. Кислота серная по ГОСТ 4204—77, х. ч. Гидрид кальция технический.

Подставка для стеклянной пробки-крана

Топливо для реактивных двигателей по ГОСТ 10227- 62 любой марки.

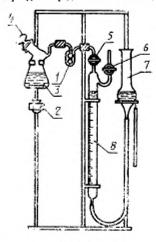
Керосин осветительный по ГОСТ 4753-68 любой марки.

Спирт этиловый ректификованный технический по ГОСТ 18300 -72.

Вода дистиллированная по ГОСТ 6709 - 72 или вода эквивалентной чистоты.

4.5.2. Подготовка к анализу

Для проведения анализа собирают прибор по схеме, указанной на черт. 7.


Газовую бюретку 8 и уравнительную склянку 7 предварительно наполняют дистиллированной водой. Склянку для промывання газов I наполняют серной кислотой или растворителем в таком количестве, чтобы внутренняя трубка склянки была погружена в жиджость на 2—3 мм. Краны 5 и 6, а также шлиф пробхи-крана 4 конической колбы 3 смазывают вакуумной смазкой. На дно колбы помещают размешиватель 1 (см. черт. 3) магнитной мешалки 2.

Прибор в собранном виде проверяют на герметичность следующим образом. Открывают краны 5 и 6 и давлением, создаваемым с помощью уравнительной склянки 7, устанавливают уровень воды в бюретке 8 на нулевое деление. Это положение фиксируют посредством держателя на штативе.

Поворотом крана 6 прибор отключают от атмосферы, уравнительную склянку опускают до низа бюретки 8 и выдерживают в таком положении в течение 15 мин.

После этого поднятием склянки 7 уравновешивают уровни воды в бюретке и склянке. Если при этом уровень в бюретке установит-

Схема прибора для определения массовой доли воды

Черт. 7

ся на нулевом делении, то прибор готов для проведения анализа. В противном случае необходимо обнаружить течь и устранить ее.

После проверки прибора на герметичность пробку-кран 4 вынимают и удаляют со шлифа вакуумную смазку ватой, смоченной этиловым спиртом или бензином.

4 5.3. Проведение анализа

Во время проведения анализа измеряют барометрическое давление и температуру помещения. Колебания температуры не должны превышать 0.5 °C.

Анализируемый спирт и растворитель должны иметь темпера-

туру окружающей среды.

Анализируемый спирт помещают в склянку, заполняя ее на 2/3

объема, и энергично встряхивают в течение 5 мин.

В коническую колбу 3 (см. черт. 7) через воронку с изогнутым концом виосят 40 см³ растворителя, отмеренного чистым сухим цилиндром, и взвешивают, после чего добавляют 0,5—1,0 г анализируемого спирта и снова взвешивают. Результаты обоих взвешиваний в граммах записывают с точностью до третьего десятичного знака. Или в коническую колбу через воронку с изогнутым концом вносят 40 см³ растворителя, отмеренного чистым сухим цилиндром, затем добавляют при помощи пипетки 0,5—1,0 см³ анализируемого спирта.

Шлиф колбы вновь покрывают тонким слоем вакуумной смазки, Чистую и сухую пробку-кран кладут на подставку и с помощью шлателя заполняют гидридом кальция в количестве 1,5—2,0 г. Затем ее осторожно вставляют в шлиф колбы так, чтобы заполненное гидридом кальция углубление пробки было расположено сверxy.

Насыщение пространства прибора парами анализируемой пробы проводят при перемешивании магнитной мешалкой при закрытом кране 6 до тех пор, пока уровень воды в газовой бюретке 8 не станет постоянным. Допускается перемешивать содержимое колбы встряхиванием от руки, при этом колбу следует брать руками только через полотенче. Затем открывают краи 6 газовой бюретки для соединения ее с атмосферой, при помощи уравнительной склянки 7 быстро устанавливают уровень воды в бюретке на нулевое деление и поворотом крана 6 прибор отключают от атмосферы. Пробку-кран 4 поворачивают на 180° и закрепляют резиновым кольцом, при этом гидрид кальция высыпается в анализируемую пробу.

Выделившийся в результате реакции гидрида кальция с водой водород собирают в газовую бюретку, опуская постепенно уравнительную склянку и следя за тем, чтобы в колбе не создавался вакуум. По окончании реакции уравнительную склянку закрепляют на уровне воды в бюретке, выключают мешалку и оставляют колбу в покое на 5 мин. Установив мениски воды в уравнительной склянке и бюретке на одном уровне, отсчитывают объем выделившегося водорода через каждые 5 мин до тех пор, пока результаты двух последовательных отсчетов будут отличаться не более чем 0,1 см3. Результат последнего отсчета используют для расчета.

Предварительно перед каждым анализом проводят контрольный опыт без анализируемой пробы.

4.5.4. Обработка результатов

Массовую долю воды
$$(X_2)$$
 в процентах вычисляют по формуле $X_2 = (V_1 - V) \cdot \frac{273,16}{P} \cdot \frac{(P - P_2)}{(273,16+t)} \cdot \frac{0,000804}{m} \cdot 100 \sim \frac{(V_1 - V)}{m} \cdot K$,

где V - объем водорода, выделившегося в контрольном опыте, см³; V₁ — объем водорода, выделившегося из анализируемой пробы,

 P_1 — барометрическое давление во время анализа, Па (мм. рт.

Р₂ — давление паров воды при температуре анализа, Па (мм

Р — нормальное атмосферное давление, равное 101324,720 Па (760 MM pt. ct.);

0,000804 — масса воды, соответствующая 1 см³ выделившегося водорода, приведенного к температуре 0°C и барометриче-скому давлению 101324,720 Па (760 мм рт. ст.), г; t — температура во время анализа, °C;

т — масса навески анализируемого спирта, г;

$$K = \frac{273,16 \cdot (P_1 - P_2) \cdot 0.000804 \cdot 100}{P \cdot (273,16+t)}$$
.

Значения К при различных температурах и барометрическом давлении приведены в справочном приложении.

При анализе спирта, взятого по объему, в формулу вместо значения массы (m) подставляют произведение объема на плотность

взятого на анализ спирта $(V_2 \cdot \rho)$.

За результат апализа принимают среднее арифметическое результатов двух параллельных определений, допускаемые расхождения между которыми не должны превышать 0,005 % при доверительной вероятности P = 0.95. Суммарная логрешность методики равна ± 0.0025 %.

Допускается массовую долю воды определять по ГОСТ

14870-77 реактивом Фишера.

При разногласиях в оценке массовой доли воды определение проводят по ГОСТ 14870—77.

 4.6. Определение массовой доли кислот в пересчете на уксусную кислоту.

4.6.1. Аппаратура, реактивы и растворы

Бюретка 6-2-5-0,02 по ГОСТ 20292-74.

Колба Ки-1—100 по ГОСТ 25336—82.

Весы лабораторные общего назначения 2-го класса точности по ГОСТ 24104—80 с наибольшим пределом взвешивания 200 г.

Натрия гидроокись по ГОСТ 4328—77, х. ч. раствор концентрации с (NaOH) = 0,01 моль/дм³ (0,01 н); готовят по ГОСТ 25794.1— 83.

Фенолфталени (индикатор) по ГОСТ 5850 72, спиртовой раствор с массовой долей 1 %; готовят по ГОСТ 4919.1 77.

Вода дистиллированная по ГОСТ 6709 - 72 или вода эквивалентной чистоты.

4.6.2. Проведение анализа

Около 10 г анализируемого спирта взвешивают в конической колбе вместимостью 100 см³, записывая результат взвешивания в граммах с точностью до второго десятичного знака, добавляют 15 см³ воды и 5 капель фенолфталенна, затем титруют раствором гидроокиси натрия до появления устойчивой розовой охраски, которая не исчезает в течение минуты.

4.6.3. Обработка результатов

Массовую долю кислот в пересчете на уксусную кислоту (X_3) в процентах вычисляют по формуле

$$X_3 = \frac{V \cdot 0,0006}{m} \cdot 100,$$

тде V — объем раствора гидроокиси натрия концентрации точно 0,01 моль/дм3, израсходованный на титрование, см3;

т — масса навески анализируемого спирта, г:

0,0006 — масса уксусной кислоты, соответствующая 1 см³ раствора гидроокиси натрия концентрации точно 0,01 моль/дм3,

За результат анализа принимают среднее арифметическое результатов двух параллельных определений, допускаемые расхождения между которыми не должны превышать 0,004 % при доверительной вероятности P = 0.95. Суммарная погрешность методики равна ±0.002 %.

4.7. Определение смешиваемости с водой

4.7.1- Метод А

4.7.1.1. Аппаратура и реактивы

Цилиндр 2-100 или 4-100 по ГОСТ 1770-74 из беспветного стекла.

Пипетки 2-2-5, 6-1-5, 2-2-50 по ГОСТ 20292-74.

Вода дистиллированная по ГОСТ 6709-72 или вода эквивалентной чистоты.

4.7.1.2. Проведение анализа

5 см³ анализируемого спирта и 50 см³ воды помещают в ци-линдр. Смесь встряхивают в течение 2 мин и затем дают отстояться в течение 15 мин. Проверяют визуально состояние смеси. Продукт соответствует требованиям настоящего стандарта, если после отстанвания в нем не обнаруживают помутнения, хлопьев и осалка.

4.7.2. Метол Б

4.7.2.1. Аппаратура и реактивы

Фотоэлектроколориметр любой марки.

Колба Кн-2 250—29/32 ТХС по ГОСТ 25336—82. Пипетка 2—2—20 по ГОСТ 20292—74.

Вода дистиллированная по ГОСТ 6709 72 или вода эквивалентной чистоты.

4.7.2.2. Проведение анализа

В коническую колбу помещают 20 см³ анализируемого спирта и 80 см³ воды. Колбу закрывают пробкой, встряхивают в течение 5 мин, затем дают отстояться в течение 15 мин.

Измеряют оптическую плотность приготовленного раствора по стношению к контрольному на фотоэлектроколориметре в кюветах с толщиной поглощающего свет слоя 20 мм при длине волны 400 г.м. В качестве контрольного раствора применяют дистиллированную воду.

4.7.2.3. Обработка результатов

За результат определения принимают среднее арифметическое результатов трех параллельных определений, допускаемые расхождения между которыми не должны превышать 0,005 от среднего

значения оптической плотности при доверительной вероятности P = 0.95.

Продукт соответствует требованиям стандарта, если значение олтической плотности не превышает 0.15.

При разногласиях в оценке смешиваемости с водой определение проводят по методу Б.

5. УПАКОВКА, МАРКИРОВКА, ТРАНСПОРТИРОВАНИЕ И ХРАНЕНИЕ

5.1. Тетрагидрофурфуриловый спирт заливают в стальные железнодорожные цистерны, автоцистерны и стальные сварные бочки типа I по ГОСТ 6247-79 вместимостью 200 или 275 дм3 или типа I по ГОСТ 13950-84 вместимостью 200 дм3.

Бочки с тетрагидрофурфуриловым спиртом герметично закрывают. В качестве прокладочного материала используют паронит по FOCT 481-80.

Бочки и цистерны перед заполнением должны быть промыты и высущены.

Для проверки на герметичность заполненные бочки выдержи-

вают пробкой вниз в течение 6 ч.

Степень (уровень) заполнения цистери и бочек рассчитывают с учетом полного использования их вместимости (грузоподъемности) и объемного расширения продукта при возможном перепаде температур в пути следования.

5.2. Транспортная маркировка по ГОСТ 14192—77.

На каждую бочку с продуктом наносят следующие дополнительные данные:

наименование предприятия-изготовителя и его товарный знак; наименование продукта;

номер партии;

массу брутто и нетто;

дату изготовления;

знак опасности по ГОСТ 19433-81, шифр группы 921;

обозначение настоящего стандарта;

гарантийный срок хранения.

На железнодорожные цистерны должны быть нанесены предупредительные надписи: «Огнеопасно», «Ядовито», а также трафарет приписки.

5.3. Тетрагидрофурфуриловый спирт транспортируют железнодорожным и автомобильным транспортом в крытых транспортных средствах в соответствии с правилами перевозки опасных грузов. действующими на данном виде транспорта.

При транспортировании продукта в железнодорожных цистернах документ о качестве отправляют почтой, копию закрепляют

под колпак цистерны.

 Тетрагидрофурфуриловый спирт хранят в герметично закрытых стальных неоцинкованных горизонтальных цилиндрических

резервуарах.

Спирт в бочках хранят в упаковке изготовителя в закрытых складских помещениях, специально предназначенных для хранения горючих жидкостей.

ВПАТИВОТОТЕН ИНТНАЧАТ .6

6.1. Изготовитель гарантирует соответствие тетрагидрофурфурилового спирта требованиям настоящего стандарта при соблюдении условий транспортирования и хранения.

6.2. Гарантийный срок хранения тетрагидрофурфурилового

спирта — 5 лет со дня изготовления.

Значения К при различных температурах и барометрическом давления

				Bep	ометрическо	Берометрическое давление.	Па (мк	Dr. cr3				
Conne	95191,508	95458,522 (715)	(715)	9891,840 (726)	96258,484	96525,128	96191,772		97325.060	97391,704	97858,348 (734)	98124,342
======================================	0,0716 0,0710 0,0710 0,0707 0,0700 0,0697 0,0699 0,0699 0,0676 0,0656 0,0656 0,0656 0,0659 0,0656 0,0659 0,0659 0,0659 0,0659 0,0659 0,0659 0,0659 0,0659 0,0659 0,0659 0,0659 0,0659 0,0659 0,0659 0,0659 0,0659 0,0659 0,0659	0,0718 0,0712 0,0712 0,0703 0,0895 0,0885 0,0885 0,0885 0,0885 0,0886 0,0860 0,	0,072) 0,0717 0,0717 0,0771 0,0701 0,0701 0,0837 0,0837 0,0838	0.0722 0.0713 0.0713 0.0713 0.0703 0.0703 0.0839 0.0838 0.0838 0.0838 0.0838 0.0838 0.0838 0.0838 0.0838 0.0838 0.0838 0.0838 0.0838 0.0838 0.0838 0.0838 0.0838 0.0838 0.0838	0,0724 0,0724 0,0715 0,0715 0,0708 0,0708 0,0891 0,0891 0,0891 0,0892 0,0893 0,0803 0,	0,0725 0,0723 0,0772 0,0717 0,0717 0,0700 0,0700 0,0530 0,	0,0728 0,0725 0,0725 0,0715 0,0715 0,0715 0,0705 0,0508 0,06	0,0737 0,0727 0,0727 0,0721 0,0714 0,0714 0,0704 0,0885 0,0885 0,0885 0,0885 0,0887 0,	0,0723 0,0723 0,0723 0,0719 0,0716 0,088 0 0 0 0	0,0734 0,0734 0,0725 0,0725 0,0711 0,0711 0,0711 0,0697 0,0697 0,0675 0,0677 0,0675 0,0675 0,0675 0,0675 0,0675 0,0675 0,0675 0,0675 0,0677 0,0675 0,	0,0736 0,0737 0,0723 0,0729 0,0729 0,0739 0,0885 0,0881	0.0739 0.0732 0.0732 0.0723 0.0723 0.0712 0.0712 0.0712 0.0713 0.083 0.0

Продолжение

				Бар	ометраческа	Барометрическое давление.	III (MM	pr. cr.)				
ратура	\$6301,636 (735)	98658,230 (740)	(712)	96191,565	99459,232 (746)	99724,856 (745)	(750)	160258,144		200524,785 (027), (251) (253) (253) (253) (253)	101058,076	(750)
=2	0,0741	0,0743	0,0745	0,0747	0,0749	0,0751	0,0753	0.0755	0,0757	0,0759	0,0761	0,0763
524	0,0734	0,0736	0.0738	0.0740	0.0742	0,0744	0,0746	0,0748	0.0750	0.0752	0,0754	0,0756
13	0,0727	0,0729	0.0731	0,0733	0,0735	0,0737	0,0739	0,0741	0,0743	0,0745	0,0747	0,0749
17	0,0724	0,0726	0,0728	0,0730	0,0732	0,0734	0,0736	0,0738	0,0740		0,0744	0,0746
228	0,0714	0,0718	0.0718	0,0720	0,0722	0,0724	0,0728	0,0728	0,0728	0,0731	0,0733	0,0739
25	0,0707	0.0709	0.0711	0,0713	0.0715	0,0717	0,0719	0.0723	0,0722	0,0724	0,0726	0,0728
193	0,0700	0,070	0.0703	0,0705	0,0707	0,0709	0,0711	0.0713	0.0715	0,0717	0,0719	0.0725
438	0,0690	0,0698	0,0700	0,0702	0,070	0,0700	0,000	0,0709	0,0708	0.0713	0,0715	0,0717
88	0,0589	0,0690	0,0692	0,0694	0.0696	0,0698	0,070,0	0.0702	0.0704	0,0706		0,0710
188	0,0581	0,0683	0,0683	0,0687	0,0683	0,0691	0,0692	0.0694	0,0996	0,0698	200	0,00
8	0,0673	0,0675	0,0677	0,0379	0,0381	0,0683	0,0685	0,0387	0,0688	0,0690		0,0694
323	0,0669	0,0671	0,0373	0,0575	0.0673	0,0679	0,0681	0,0682	0.0680	0,0685		0,0690
8	0,0661	0,0663	0,0665	0,0667	0.0669	0,0670	0,0672	0,0674	0.0676			0,0682
3 13	0,0652	0,0654	0,0656	0,0658	0,0660	0,0662	0,0654	0,0070	0,0667		0,067	0,0673
						_	_					

				Bupor	Барометраческие	давление	Па (им рт	cr)			
Testre.	1015/1,364	101858,608	102121,652	102391,296	100657,940	102524,584 (772)	103191,228	(776)	103724,516	(710)	104257,504
			0 0000	0.000	0.000	o mare	0 0000	0.070	1970.0	0 003	0 0785
=:	0,0765	0.0767	0,0768	0,000	0,0770	0.00	0.0774	0.0776	0.0778	0.0780	0.0782
40	0.00	0,000	0,00	0.0764	0.0766	0.0768	0.0770	0.0772	0.0774	0,0776	0,0778
24	0.0755	0.0757	0,0759	0.0761	0.0763	0,0765	0,0767	0,0769	0,0771	0,0773	0,0775
- v:	0.0751	0.0753	0.0755	0.0757	0,0759	0,0761	0,0763	0,0765	0,0767	0,0769	0,0771
9	0.0748	0,0750	0,0752	0.0754	0,0756	0,0758	0,0760	0,0762	0,0764	0,0766	0,0768
11	0.0744	90.0746	0.0748	0,0750	0,0752	0,0754	0,0756	0,0758	0,0760	0,0762	0,0764
8	0.0741	0.0743	0,0745	0.0747	0,0749	0,0751	0,0753	0,0755	0,0757	0,0759	0,0761
19	0.0737	0.0739	0,0741	0,0743	0,0745	0,0747	0.0749	0,0751	0,0753	0,0755	0,0/0
8	0,0734	96,00,0	0,0738	0,0740	0.0742	0.0744	0,0746	0,0748	0,0750	0,0752	3000
21	0,0730	0,0732	0.0734	0,0736	0,0738	0,0740	0.0742	0.0744	0,0746	0,0748	0,000
22	0,0727	0,0729	0,0731	0,0733	0,0735	0,0/36	0,0738	0,0,0	0,0742	45000	0.0740
R	0,0723	0,0725	0.0727	0,0729	0,0731	0,0733	0.0785	0,0737	0,0739	0.0797	0,0730
24	0,0719	0,0721	0,0723	0,0725	0,0727	0,072	0,0701	0,000	0,0733	0,010	2000
52	0,0715	0,0717	0,0719	0.0721	0.0723	0,0725	0.0727	200	0,0/01	00000	1000
8	0,0712	0.0714	0,0716	0,0718	6170,0	0,0721	0,0723	0,0720	0,0727	0,070	2620
27	0,0708	0,0710	0,0712	0.0714	0.0716	0,00	0,0018	0,0721	0,0720	0.000	0,070
28	0,0704	0,0705	0.0708	0,0710	0,072	0,0714	0,0719	2200	0.00	0.0017	0120
প্ত	0,0700	0,0702	0,0704	0.0700	20,000	0,070	0,010	0000	2000	0.00	0.00
30	0,0696	8690.0	0,0700	0,0702	0,0704	0,0,0	0,0708	90,00	0,0711	0,000	2000
3]	0,0692	0,0694	0,0696	8690'0	0,0700	0,0701	0,0703	0,000	0,0707	0.000	0,070
35	0.0688	0.0690	0.0692	0,0694	0,0695	0,000	0,00%	0,0,0	0,000	0,0700	0,000
38	0.0684	0.0686	0,0687	6890'0	0,0691	0.0693	0.0695	0.0697	0,0699	0,0701	0,0703
×	0,0679	0,0681	0,0683	0,0685	0,0687	0,0689	0,0691	0,0033	0,0694	9,000	0,0008
35	0,0675	0,0677	0,0679	0,0681	0,0682	0,0084	0.0080	0,0008	0,0093	0,0092	0,0034
					_		_	_			

Редактор Н П. Шукина Технический редактор О. Н Никитина Корректор И. Л. Асаузенко

Сдёт в наб. 22.05.86 (1одя, к печ. 06.08.86 1.5 усл. п. п. 1.5 усл. кр. ост. 1.3) уклица, а. Тир. ±2.000

Ордена «Знак Почета» Издательство стандартов. 123840. Москва, ГСП, Новопресненский пер., 3 Тим «Московский печатинк». Москва, Лялин пер., 6. Зак. 2269