СПЛАВЫ АЛЮМИНИЕВЫЕ ЛИТЕЙНЫЕ И ДЕФОРМИРУЕМЫЕ

Метод определения титана

Издание официальное

Предисловие

1 РАЗРАБОТАН ОАО «Всероссийский институт легких сплавов» (ОАО ВИЛС), Межгосударственным техническим комитетом по стандартизации МТК 297 «Материалы и полуфабрикаты из легких сплавов»

ВНЕСЕН Госстандартом России

2 ПРИНЯТ Межгосударственным Советом по стандартизации, метрологии и сертификации (протокол № 16—99 от 8 октября 1999 г.)

За принятие проголосовали:

Наименование государства	Наименование национального органа по стандартизац		
Азербайджанская Республика	Азгосстандарт		
Республика Армения	Армгосстандарт		
Республика Беларусь	Госстандарт Беларуси		
Республика Казахстан	Госстандарт Республики Казахстан		
Киргизская Республика	Киргизстандарт		
Республика Молдова	Молдовастандарт		
Российская Федерация	Госстандарт России		
Республика Таджикистан	Таджикгосстандарт		
Туркменистан	Главная государственная инспекция Туркменистана		
Украина	Госстандарт Украины		

³ Постановлением Государственного комитета Российской Федерации по стандартизации и метрологии от 18 февраля 2000 г. № 41-ст межгосударственный стандарт ГОСТ 11739.20—99 введен в действие непосредственно в качестве государственного стандарта Российской Федерации с 1 сентября 2000 г.

4 B3AMEH ΓΟCT 11739.20-82

© ИПК Издательство стандартов, 2000

Настоящий стандарт не может быть полностью или частично воспроизведен, тиражирован и распространен в качестве официального издания на территории Российской Федерации без разрешения Госстандарта России

Содержание

1 Область применения
2 Нормативные ссылки
3 Общие требования
4 Сущность метода
5 Аппаратура, реактивы и растворы
6 Проведение анализа
7 Обработка результатов
Приложение А Библиография

межгосударственный стандарт

СПЛАВЫ АЛЮМИНИЕВЫЕ ЛИТЕЙНЫЕ И ДЕФОРМИРУЕМЫЕ

Метод определения титана

Aluminium casting and wrought alloys. Method for determination of titanium

Дата введения 2000-09-01

1 Область применения

Настоящий стандарт устанавливает фотометрический метод определения титана в алюминиевых литейных и деформируемых сплавах при массовой доле титана от 0.003 % до 0.4%.

2 Нормативные ссылки

В настоящем стандарте использованы ссылки на следующие стандарты:

ГОСТ 3118-77 Кислота соляная. Технические условия

ГОСТ 4038-79 Никель (П) хлорид 6-водный. Технические условия

ГОСТ 4165-78 Медь (II) сернокислая 5-водная. Технические условия

ГОСТ 4204-77 Кислота серная. Технические условия

ГОСТ 4461-77 Кислота азотная. Технические условия

ГОСТ 10484—78 Кислота фтористоводородная. Технические условия

ГОСТ 10929-76 Водорода пероксид. Технические условия

ГОСТ 11069-74 Алюминий первичный. Марки

ГОСТ 17746-96 Титан губчатый. Технические условия

ГОСТ 25086—87 Цветные металлы и их сплавы. Общие требования к методам анализа

3 Общие требования

- Общие требования к методам анализа по ГОСТ 25086 с дополнением.
- 3.1.1 За результат анализа принимают среднее арифметическое результатов двух параллельных определений.

4 Сущность метода

Метод основан на растворении пробы в растворе соляной кислоты с добавлением пероксида водорода, устранении влияния железа (III) и ванадия (V) восстановлением аскорбиновой кислотой в присутствии сернокислой меди (II), образовании в растворе соляной кислоты 3 моль/дм³ желтого комплексного соединения титана с диантипирилметаном и измерении оптической плотности раствора при длине волны 400 нм.

5 Аппаратура, реактивы и растворы

Спектрофотометр или фотоэлектроколориметр.

Печь муфельная.

Кислота соляная по ГОСТ 3118 плотностью 1,19 г/см³, растворы 2:1, 1:1 и 1:99.

Кислота серная по ГОСТ 4204 плотностью 1,84 г/см³ и растворы 1:5, 1 моль/дм³ и 0,5 моль/дм³. Кислота азотная по ГОСТ 4461 плотностью 1,35—1,40 г/см³.

Издание официальное

Водорода пероксид по ГОСТ 10929.

Кислота фтористоводородная по ГОСТ 10484.

Медь (II) сернокислая 5-водная по ГОСТ 4165, раствор 50 г/дм³ (в расчете на безводный сульфат меди): 7,8 г 5-водного сульфата меди растворяют в воде, приливают воду до объема 100 см³ и перемешивают.

Кислота аскорбиновая, раствор 20 г/дм³ свежеприготовленный: 2 г аскорбиновой кислоты растворяют в воде, приливают воду до объема 100 см³ и перемешивают.

Диантипирилметан [1], раствор 40 г/дм³: 40 г реагента помещают в коническую колбу вместимостью 1000 см³, приливают 600 см³ раствора соляной кислоты 2:1, встряхивают до полного растворения, доливают раствором соляной кислоты 2:1 до объема 1000 см³ и перемешивают.

Никель (II) хлорид 6-водный по ГОСТ 4038, раствор 2 г/дм3,

Алюминий по ГОСТ 11069 марки А999.

Раствор алюминия 10 г/дм³: 10 г алюминия, не содержащего титана, помещают в коническую колбу вместимостью 1000 см³, приливают 500 см³ раствора соляной кислоты 1:1 и растворяют при умеренном нагревании, добавляя 1 см³ раствора хлорида никеля (II). В раствор добавляют 2—3 капли пероксида водорода и кипятят в течение 3—5 мин для удаления избытка, приливают воду до объема 600 см³, охлаждают до комнатной температуры, переводят в мерную колбу вместимостью 1000 см³, доливают водой до метки и перемешивают.

Титан губчатый по ГОСТ 17746 марки ТГ-90 или титан йодидный.

Стандартные растворы титана.

Раствор А: 0,5 г титана помещают в коническую колбу вместимостью 250 см³, приливают 50 см³ раствора серной кислоты 1:5 и растворяют при нагревании, поддерживая первоначальный объем водой. По окончании растворения добавляют по каплям азотную кислоту до исчезновения фиолетовой окраски, 2—3 капли в избыток и выпаривают до появления белых паров серной кислоты. Раствор охлаждают, стенки колбы обмывают водой и снова выпаривают до появления паров серной кислоты.

Раствор охлаждают, стенки колбы обмывают 50 см³ раствора серной кислоты молярной концентрации 1 моль/дм³ и кипятят 2—3 мин. Раствор охлаждают, переносят в мерную колбу вместимостью 1000 см³, доливают тем же раствором серной кислоты до метки и перемешивают.

1 см3 раствора содержит 0,0005 г титана.

Раствор Б: 10 см³ раствора А переносят в мерную колбу вместимостью 100 см³, доливают раствором серной кислоты молярной концентрации 0,5 моль/дм³ до метки и перемешивают.

1 см³ раствора содержит 0,00005 г титана.

Раствор В: 5 см³ раствора А переносят в мерную колбу вместимостью 250 см³, доливают раствором серной кислоты молярной концентрации 0,5 моль/дм³ до метки и перемешивают.

1 см³ раствора содержит 0,00001 г титана.

Растворы Б и В готовят перед применением.

6 Проведение анализа

6.1 Навеску пробы массой в соответствии с таблицей 1 помещают в коническую колбу вместимостью 250 см³, приливают 20 см³ воды и осторожно, небольшими порциями, 50 см³ раствора соляной кислоты 1:1. Колбу накрывают часовым стеклом, нагревают до растворения навески, добавляют 1 см³ пероксида водорода и кипятят раствор в течение 3— 5 мин.

Таблица 1

Массовая доля гитана,%	Масса мавески пробы,г	Объем алик- вотной части раствора, см	Объем раствора алюминия,см ³	Масса навески в аликвотной части раствора,
От 0,003 до 0,01 включ.	1	25	_	0,25
Св. 0,01 " 0,1 "	1	10	15	0,1
" 0,1 " 0,4 "	0,5	5	20	0.025

^{6.1.1} Прозрачный раствор охлаждают до комнатной температуры, переводят в мерную колбу вместимостью 100 см³, доливают водой до метки и перемешивают.

^{6.1.2} Если остается осадок, указывающий на наличие кремния, раствор фильтруют в мерную колбу

вместимостью 100 см³ через фильтр средней плотности ("белая лента"), осадок на фильтре промывают 2—3 раза горячим раствором соляной кислоты 1:99 порциями по 10 см³ (основной раствор).

Фильтр с осадком помещают в платиновый тигель, высушивают, полностью озоляют, не допуская воспламенения, и прокаливают при температуре 500—600 °С в течение 5—10 мин. После охлаждения в тигель добавляют десять капель серной кислоты, 10 см³ фтористоводородной кислоты и по каплям азотную кислоту (приблизительно 1—2 см³) до получения прозрачного раствора. Раствор выпаривают досуха и прокаливают при температуре 650—700 °С в течение 2—3 мин.

К сухому остатку приливают 5 см³ раствора соляной кислоты 1:1 и растворяют при умеренном нагревании. После охлаждения раствор присоединяют к основному раствору (при необходимости фильтруют), доливают водой до метки и перемешивают.

6.2 Аликвотную часть раствора и раствор алюминия в соответствии с таблицей 1 помещают в мерную колбу вместимостью 50 см³, при отсутствии в сплаве меди добавляют две капли раствора сернокислой меди (II), приливают 1 см³ раствора аскорбиновой кислоты, выдерживают в течение 1—2 мин, приливают 10 см³ раствора диантипирилметана, доливают водой до метки и перемешивают.

6.3 Оптическую плотность раствора измеряют через 5 мин при длине волны 400 нм в кювете с толщиной слоя 30 мм для массовой доли титана от 0,003 % до 0,010 % или 10 мм для массовой доли титана от 0,010 % до 0,40 %. Раствором сравнения служит раствор, в который не введен титан (см. 6.4.1 или 6.4.2).

Массу титана определяют по градуировочному графику.

6.4 Построение градуировочных графиков

6.4.1 При массовой доле титана от 0,003 % до 0,010 %

В семь мерных колб вместимостью 50 см³ каждая приливают по 25 см³ раствора алюминия, в шесть из них отмеряют 0,5; 1,0; 1,5; 2,0; 2,5; 3,0 см³ стандартного раствора В, что соответствует 0,000005; 0,00001; 0,000015; 0,00002; 0,000025; 0,00003 г титана.

6.4.2 При массовой доле титана от 0,010 % до 0,40 %

В шесть мерных колб вместимостью 50 см^3 каждая приливают по 25 см^3 раствора алюминия, в пять из них отмеряют 0.5; 1.0; 1.5; 2.0; 2.5 см^3 стандартного раствора E, что соответствует 0.000025; 0.00005; 0.000075; 0.0001; 0.000125 г титана.

6.4.3 В растворы, полученные по 6.4.1 и 6.4.2, добавляют по две капли раствора сернокислой меди (II) и далее поступают по 6.2 и 6.3. Раствором сравнения служит раствор, в который не введен титан.

По полученным значениям оптической плотности растворов и соответствующим им массам титана строят градуировочный график.

7 Обработка результатов

7.1 Массовую долю титана Х, %, вычисляют по формуле

$$X = \frac{m}{m_*} \cdot 100, \tag{1}$$

где т — масса титана в растворе пробы, найденная по градуировочному графику, г;

т. — масса навески пробы в аликвотной части раствора, г.

Расхождения результатов не должны превышать значений, указанных в таблице 2.

Таблица 2 Впроцентах

Массовая доля титана	Абсодютное допускаемое расхождение		
	результатов нараллельных определений	результатов анализа	
От 0,003 до 0,010 включ.	0,001	0,002	
Св. 0,010 " 0,025 "	0,003	0,005	
" 0.025 " 0.050 "	0,005	0,007	
" 0,050 " 0,100 "	0,007	0.010	
" 0,10 " 0,20 "	0,02	0,03	
" 0,20 " 0,40 "	0,03	0.04	

ПРИЛОЖЕНИЕ А (справочное)

Библиография

[1] ТУ 6-09-3835-74 Диантипирилметан (Львовский завод "Реактив" - г. Львов)

УДК 669.715.001,4:006.354

MKC 77.120.10

B59

OKCTY 1709

Ключевые слова: сплавы алюминиевые, метод определения титана, аппаратура, реактивы, растворы, анализ

Редактор Л.И. Нахимова Технический редактор Л.А. Кутисцова Корректор В.Н. Кануркина Компьютерная верстка С.В. Рабовой

Изд. лиц. № 021007 от 10.08.95, Сдано в набор 21.04.2000. Подписано в печать 01.06.2000. Усл. неч.л. 0.93. Уч. над.л. 0.57. Тираж 297 экз. С 5225. Зак. 509.

ИПК Издательство стандартов, 107076, Москва, Колодезный пер., 14. Набрано в Издательстве на ПЭВМ Филиал ИПК Издательство стандартов — тип. "Московския печатник", 103062, Москва, Лялии пер., 6. Пар № 080102