ХЛОР ЖИДКИЙ технические условия

Издание официальное

Предисловие

1 РАЗРАБОТАН Госстандартом России

ВНЕСЕН Техническим секретариатом Межгосударственного Совета по стандартизации, метрологии и сертификации

2 ПРИНЯТ Межгосударственным Советом по стандартизации, метрологии и сертификации 21 октября 1993 г.

За принятие проголосовали:

Наименование государства	Наименование национального органа по стандартизации	
Осспублика Беларусь	Белетандарт	
Осспублика Кыргызстан	Кыргызстандарт	
Осспублика Молдона	Молловястандарт	
Оссийская Федерация	Госсинтарт России	
Осспублика Таджикистан	Таджикстандарт	
Туркмениет ан	Туркчена партосинененция	
Украниа	Госстандарт Украины	

3 Постановлением Комитета Российской Федерации по стандартизации, метрологии и сертификации от 02.06.94 № 160 межгосударственный стандарт ГОСТ 6718—93 введен в действие непосредственно в качестве государственного стандарта Российской Федерации с 01.01.95

4 B3AMEH FOCT 6718-86

© Издательство стандартов, 1995

Настоящий стандарт не может быть полностью или частично воспроизведен, тиражирован и распространен на территории Российской Федерации в качестве официального издания без разрешения Госстандарта России

МЕЖГОСУДАРСТВЕННЫЯ СТАНДАРТ

хлор жидкия

Технические условия

FOCT 6718—93

Liquid chlorine. Specifications

(ИСО 2120—72, ИСО 2121—72)

OKII 21 1431

Дата введения 01.01.95

Настоящий стандарт распространяется на жидкий хлор, применяемый для производства отбеливающих средств, солей, хлорорганических соединений, а также для очистки и стерилизации питьевой воды.

Формула: Cl2.

Относительная молекулярная масса (по международным относительным атомным массам 1987 г.) — 70,90.

І. ТЕХНИЧЕСКИЕ ТРЕБОВАНИЯ

1.1. Жидкий хлор должен изготовляться в соответствии с требованиями настоящего стандарта по технологическому регламенту, утвержденному в установленном порядке.

1.2. По физико-химическим показателям жидкий хлор должен

соответствовать нормам, указанным в таблице.

1.3. Маркировка

На цистернах должны быть нанесены специальные трафареты в соответствии с правилами перевозки грузов, действующими на железнодорожном транспорте,

Транспортная маркировка — по ГОСТ 14192.

На специализированные контейнеры и баллоны наносят надписи «Хлор», «Ядовитый газ».

1.	Норма		
Наименование показателя	Высший сорт ОКП 21 1431 0120	Первый сорт ОКП 21 1431 0130	
1. Объемная доля хлора,			
%, не менсе	99,8	99,6	
Массовая доля воды, не более З. Массовая доля трех-	0,01	0,04	
хлористого азота, %, не более	0,002	0,004	
4. Массовая доля нелету- чего остатка, %, не более	0,015	0,10	

Маркировка, характеризующая транспортную опасность груза, — по ГОСТ 19433 с нанесением знака опасности (класс 2, подкласс 2.2, категория 4, номера чертежей знака опасности: основного — 6а, дополнительного — 5 и 8, классификационный шифр 2243), серийного номера 00Н 1017.

1.4. Упаковка

Жидкий хлор заливают в специализированные контейнеры вместимостью 800 дм³, баллоны малого и среднего объема по ГОСТ 949.

На 1 дм³ вместимости баллона допускается наполнение не более 1,25 кг жидкого хлора, а на 1 дм³ вместимости контейнера не более 1,20 кг жидкого хлора.

Подготовку и наполнение жидким хлором специализированных контейнеров и баллонов проводят в соответствии с правилами устройства и безопасной эксплуатации сосудов, работающих под давлением, утвержденными Госгортехнадзором и правилами безопасности для производства, хранения и транспортировки хлора ПБХ—83.

2. ТРЕБОВАНИЯ БЕЗОПАСНОСТИ

 Жидкий хлор — жидкость янтарного цвета, обладающая раздражающим и удушающим действием.

Хлор относится к высокоопасным веществам. Глубоко проникая в дыхательные пути, хлор поражает легочную ткань и вызывает отек легких. Хлор вызывает острые дерматиты с потением, покраснением и отечностью.

Большую опасность для пораженного хлором представляют осложнения — воспаление легких и нарушение со стороны сердечно-сосудистой системы. Предельно допустимая концентрация хлора в воздухе рабочей зоны производственных помещений — 1 мг/м³ (2-й класс опасности по ГОСТ 12.1.007),

- 2.2. Хлор негорюч. Жидкий хлор является сильным окислителем, поддерживает горение многих органических веществ (масел, жиров, растворителей), пожароопасен при контакте с горючими веществами. Скипидар, титан и порошки металлов в атмосфере хлора способны самовозгораться при комнатной температуре. Хлор с водородом образует взрывоопасные смеси.
- Для определения и регистрации содержания хлора в воздухе производственных помещений используют автоматические стационарные или переносные газоанализаторы.
- 2.4. Для защиты органов дыхания от паров газообразного хлора применяют промышленные фильтрующие противогазы марки В или БКФ (ГОСТ 12.4.121), если объемная доля хлора в воздухе не будет превышать 0,5 %, а объемная доля кислорода будет составлять не менее 18 %.

При концентрациях, превышающих указанные, необходимо пользоваться кислородно-изолирующими приборами типа КИП-8, РВЛ-1, ИП-4 или АДИ-ГС, АСВ-2.

В помещениях для производства и хранения жидкого хлора на видном месте должен быть вывешен знак по ГОСТ 12.4.026 «Работать с применением средств защиты органов дыхания!».

2.5. Для профилактики отравления необходимы систематический контроль за герметичностью оборудования и бесперебойная эффективная вентиляция, а также применение средств защиты органов дыхания и кожи (специальная одежда и обувь) по нормативно-технической документации.

Эксплуатация баллонов, контейнеров, цистерн и хранилищ (танков) с жидким хлором — в соответствии с правилами устройства и безопасной эксплуатации сосудов, находящихся под давлением, утвержденными Госгортехнадзором, и правилами безопасности для производства, хранения и гранспортировки хлора ПБХ—83.

2.6. При отравлении хлором пострадавшего необходимо вывести из зараженной атмосферы, освободить от затрудняющей дыхание одежды, вызвать врача, обеспечить покой, тепло, дать молоко с содой.

з. ПРИЕМКА

3.1. Жидкий хлор принимают партиями. Партией считают количество продукта, однородного по своим показателям и сопровождаемого одним документом о качестве.

Документ о качестве должен содержать:

товарный знак и (или) наименование предприятия-изготовителя:

наименование продукта, его сорт;

номер партии;

номера цистерн, контейнеров или баллонов, входящих в партию;

дату заполнения тары;

массу нетто и брутто;

количество тарных мест в партии;

результаты проведенных анализов или подтверждение соответствия качества продукта требованиям настоящего стандарта; классификационный шифр по ГОСТ 19433;

обозначение настоящего стандарта.

3.2. Для проверки качества жидкого хлора у изготовителя отбирают пробу из хранилища (танка), предназначенного для наполнения жидким хлором цистери, контейнеров или баллонов.

Для проверки у потребителя качества жидкого хлора, транспортируемого в контейнерах, пробы отбирают из 5 % контейнеров или из одного контейнера при партиях менее 20 контейнеров, при транспортировании жидкого хлора в баллонах — из 2 % баллонов, но не менее двух или из одной цистерны каждой партии.

3.3. При получении неудовлетворительных результатов анализа хотя бы по одному из показателей проводят повторный анализ на удвоенной выборке или удвоенном количестве проб, взятых от той же партии.

Результаты повторного анализа распространяются на всю

партию.

4. МЕТОДЫ АНАЛИЗА

4.1. Отбор проб

 4.1.1. Пробу жидкого хлора из хранилища (танка), цистерны, контейнера, баллона отбирают в баллоны по ГОСТ 949 вместимо-

стью до 5 дм3, оборудованные одним или двумя вентилями.

4.1.2. Перед отбором пробы баллон (с заглушкой) взвешивают и вакуумируют до остаточного давления 2·104 Па (0,2 кгс/см²). После вакуумирования баллон подсоединяют к штуцеру вентиля (ТУ 302—07—435) на линии слива из хранилища (танка, цистерны, либо к штуцеру вентиля контейнера или баллона. Открывают вентиль на линии слива хранилища (танка), цистерны, контейнера или баллона и постепенно открывают вентиль на баллоне для анализа.

После заполнения вентиль на линии слива из хранилища (танка), цистерны, контейнера или баллона закрывают, а затем закрывают вентиль на баллоне. Баллон отсоединяют, на штуцер

ставят заглушку и баллон с пробой взвещивают,

Заполнение баллона с использованием двух вентилей проводят следующим образом. Вентиль, снабженный сифонной трубкой, присоединяют к вакуумной линии. Конец сифонной трубки должен быть расположен по длине корпуса баллона, соответствующей его заполнению примерно на 80 % объема. Второй вентиль подсоединяют к штуцеру вентиля на линии слива из хранилища (танка), цистерны, либо к штуцеру вентиля контейнера или баллона. Открывают вентиль вакуумной линии и присоединенный к ней вентиль баллона и вакуумируют баллон до остаточного давления 2·104 Па (0,2 кгс/см²). Затем открывают вентиль на линии слива, постепенно открывают вентиль на баллоне для анализа и заполняют баллон жидким хлором. Баллон считают заполненным, если в смотровом окне вакуумной линии начинают появляться брызги жидкого хлора.

Допускается использование вентилей без сифонных трубок.

Допускаются другие безопасные способы заполнения баллонов.

На 1 дм³ вместимости баллона допускается наполнение не более 1,25 кг жидкого хлора.

4.1.3. На баллон с пробой жидкого хлора наклеивают этикетку с указанием:

наименования продукта;

номера партии;

даты отбора пробы;

фамилии лица, отобравшего пробу.

Общие указания по проведению анализа — по ГОСТ 27025.

Допускается применение других средств измерений с метрологическими характеристиками и оборудования с техническими характеристиками не хуже, а также реактивов по качеству не ниже указанных.

Округление результатов анализа до того десятичного знака, который указан в таблице технических требований.

4.3. При подготовке и проведении анализов баллон с пробой жидкого хлора устанавливают на подставке. К вентилю баллона присоединяют тройник, выполненный из коррознонностойкой стали по ГОСТ 9941, внутренним диаметром 8 мм.

Длина отводов тройника — около 50 мм. Два отвода снабжены резьбой для присоединения игольчатых вентилей — для отбора пробы продукта и для подачи азота или воздуха. Игольчатые вентили должны быть изготовлены из коррознонностойкой стали с условным проходом трубопровода 6 мм.

К игольчатому вентилю для отбора пробы продукта присоединяют испаритель, помещенный в термостат, для испарения жидко-

го продукта.

Допускается проводить испарение жидкого продукта без использования испарителя и термостата (или термостата) при проведении анализа, как указано в пп. 4.4, 4.5 и 4.6

Далее установку собирают в соответствии с указаниями для

каждого метода анализа.

Перед сборкой тройник, игольчатые вентили, испаритель промывают ацетоном (ГОСТ 2603) или четыреххлористым углеродом (ГОСТ 20288) и высушивают азотом или воздухом массовой концентрации водяных паров не более 0,007 г/м³ при нормальных условиях в течение 5—10 мин. Методика осушки азота или воздуха приведена в приложении 1.

Все соединительные линии установки должны быть проверены на отсутствие утечки хлора с помощью ваты, смоченной водным аммиаком (ГОСТ 9) или раствором йодистого калия с массовой

долей 30 % (готовят по ГОСТ 4517).

При определении массовой доли воды, треххлористого азота и нелетучего остатка колбы для поглощения анализируемой пробы продукта охлаждают (водой со льдом или снегом) для предотвращения потери массы содержимого колбы.

4.4. Определение объемной доли хлора

Метод основан на измерении объема примесей в испаренном продукте, оставшихся после поглощения хлора раствором роданистого калия или тиосульфата натрия. Объемную долю хлора (в процентах) рассчитывают, вычитая из 100 % объемную долю непоглощенных примесей.

4.4.1. Аппаратура, реактивы, растворы

Прибор для определения объема примесей в хлоре (черт. 1). Цена деления бюретки $0.1~{\rm cm^3}~$ (черт. 1a) и $0.2~{\rm cm^3}~$ (черт. 1б), основные погрешности — не более $\pm 0.1~{\rm cm^3}~$ и $0.2~{\rm cm^3}~$ соответственно.

Весы лабораторные по ГОСТ 24104 4-го класса точности с наибольшим пределом взвешивания 500 г.

Термостат водяной, обеспечивающий температуру в пределах 15-40°C.

Термометр ртутный лабораторный по ТУ 25—2021.003.

Термометр стеклянный ртутный электроконтактный по ГОСТ 9871 с диапазоном измерений температур от 0 до 100°C. Секундомер по ТУ 25—1819.0021 и ТУ 25—1894.003.

Реометр стеклянный лабораторный капиллярный по ГОСТ 9932, заполненный жидкостью М-1 по ОСТ 95.419 и отградуированный по хлору, азоту или воздуху на объемный расход (0,4± +0,1) дм3/мин, или расходомер.

Цилиндр по ГОСТ 1770 вместимостью 500 или 1000 см3.

Склянки для промывания газов по ГОСТ 25336 любого типа. Колба коническая типа Кн по ГОСТ 25336 вместимостью

3000 см⁸.

Азот газообразный по ГОСТ 9293 или воздух массовой концентрации водяных паров не более 0,007 г/м3 при нормальных услови-ЯX.

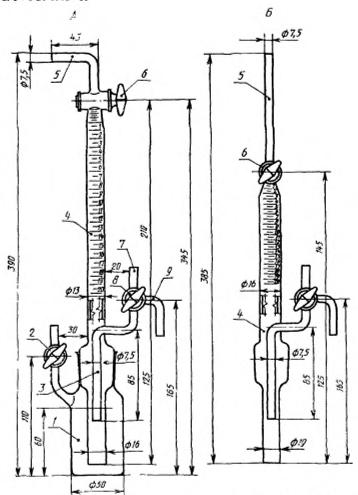
Вода дистиллированияя по ГОСТ 6709.

Натрий серноватистокислый (тносульфат натрия) по ГОСТ 27068.

Калий роданистый по ГОСТ 4139.

Натр едкий технический по ГОСТ 2263 или натр едкий очищенный по ГОСТ 11078, раствор массовой концентрации 200-—250 г/лм³.

Натрий хлористый по ГОСТ 4233.


Раствор для поглощения хлора готовят следующи образом: в 1 дм³ воды растворяют 25 г роданистого калия и 270 г хлористого натрия или в 1 дм³ воды растворяют 100 г тносульфата натрия и 270 г хлористого натрия.

4.4.2. Подготовка к анализу

Для определения объемной доли хлора собирают установку, учитывая требования п. 4.3. В качестве испарителя применяют змеевик, выполненный из коррозионностойкой стальной трубы по ГОСТ 9941 диаметром 8 мм, диаметр витка — 60 мм, количество витков — два, высота испарителя — около 150 мм.

В склянку со шлифом 1 (черт. 1) наливают 90 см3 раствора для поглощения хлора, открывают кран 2 и тем же раствором путем засасывания его через отростки 5 и 7 заполняют бюретку и отросток 3. Раствор в склянке со шлифом I должен оставаться выше нижнего конца бюретки.

Затем прибор взвешивают. Результат взвешивания записывают в граммах с двумя десятичными знаками.

I — склиния со шлифом; 2 — кран, 4, 7, 4 — отростки крана 8; 4 — бюретка со шлифом (A — цена деления — 0.1 см², B — цена деления — 0.2 см²); 5 отросток бюретки, B — грехкодовой кран Черт, I

После этого к испарителю присоединяют реометр, склянку для промывания газов и трехходовой кран Один отвод трехходового крана соединяют с линией сброса, другой - с отростком 7 Отросток 9 через склянку для промывания газов также соединяют с линией сброса

4.4 3. Проведение анализа

После сборки установки продувают соединительные трубки ис-

паренным анализируемым продуктом.

Для этого трехходовой кран ставят на соединение с отростками 7 и 9 и пропускают хлор в течение 2-3 мин при объемном расходе (0.4 ± 0.1) дм³/мин в линию сброса.

После продувки поворачивают кран 8 на соединение с прибором, регулируя подачу испаренного продукта так, чтобы он поступал в бюретку отдельными пузырьками, примерно 1 пузырек в се-KVHAV.

Когда уровень жидкости в бюретке опустится до 15-20 см³. краном 8 переключают хлор на выпуск через отросток 9 в линию

сброса и закрывают игольчатый вентиль

Закрыв кран 2, осторожно встряхивают прибор до полного поглощения хлора Полноту поглощения хлора определяют по прекращению подъема жидкости в бюретке при открытом кране 2

Операцию пропускания газа через прибор повторяют несколько раз до тех пор, пока объем непоглощенных примесей в бюрет-

ке не достигнет 1,5-4,0 см3

Затем отсчитывают объем примесен V_1 , собранных в бюретке, прибор отсоединяют, взвешивают, результат взвещивания записывают в граммах с двумя десятичными знаками

Допускается минимальный объем непоглощенных примесей 0,8 см3 при использовании бюретки с ценой деления 0,1 см3 (A,

черт 1)

В случае разногласий в оценке качества продукта этот объем для обеих бюреток должен быть не менее 1.5 см3

4 4 4 Обработка результатов

Объем анализируемой пробы в пересчете на хлор (V), см3, вычисляют по формуле

$$V = \frac{(m_2 - m_1)(t + 273)}{273 \ 3,211 \cdot 10^{-3}} ,$$

где m₁ — масса прибора до поглощения пробы, r,

 m_2 — масса прибора после поглощения пробы, г, 3,211-10 3 — плотность хлора при температуре 0 $^{\circ}$ С и давлении 101,3 кПа (760 мм рт ст), г/см3,

температура окружающей среды, °С

Объемную долю хлора (Х) в процентах вычисляют по формуле

$$X = 100 - \frac{V_1}{V + V_1} \cdot 100$$
,

где V_1 — объем непоглощенных примесей, см³.

За результат анализа принимают среднее арифметическое результатов двух параллельных определений, абсолютное расхождение между которыми не превышает допускаемое расхождение, равное 0.05 %, при доверительной вероятности P = 0.95.

Допускаемая абсолютная суммарная погрешность результата определения $\pm 0.05 \%$ для продукта высшего сорта и $\pm 0.09 \%$ для продукта первого сорта при доверительной вероятности Р=0,95.

Допускается определение объемной доли хлора в соответствии с методикой международного стандарта ИСО 2120, приведенной в приложении 3.

4.5. Определение массовой доли воды

Метод основан на абсорбции воды при пропускании испаренной пробы жидкого продукта через поглотители, содержащие ангидрон, и определении массы поглощенной воды взвешиванием.

4.5.1. Аппаратура, реактивы, растворы

Реометр стеклянный лабораторный капиллярный по ГОСТ 9932, заполненный жидкостью М-1 по ОСТ 95.419 и отградуированный по хлору, азоту или воздуху на объемный расход (0,4± ±0.1) дм3/мин, или расходомер.

Термостат водяной, обеспечивающий температуру в пределах

15—80 °C.

Термометр стеклянный ртутный электроконтактный по ГОСТ 9871 с диапазоном измерений температур от 0 до 100 °C. Секундомер по ТУ 25—1819.0021 и ТУ 25—1894.003.

Цилиндр по ГОСТ 1770 вместимостью 500 или 1000 см3.

Трубки соединительные хлоркальциевые типа ТХ-U по ГОСТ 25336. исполнения 3 высотой 100 или 150 мм (поглотительные трубки).

Эксикатор по ГОСТ 25336.

Склянки для промывания газов по ГОСТ 25336.

Колбы конические типа Кн по ГОСТ 25336 вместимостью 3000 см3.

Весы лабораторные по ГОСТ 24104 2-го и 4-го классов точности с наибольшими пределами взвешивания 200 г и 5 кг соответствен-

Фильтр газовый стеклянный типа ФГ-32 класса ПОР-40 по ΓΟCT 25336.

Волокно стеклянное супертонкое.

Смазка УПИ по ОСТ 95.419.

Вода дистиллированная по ГОСТ 6709.

Ацетон по ГОСТ 2603.

Азот газообразный по ГОСТ 9293 или воздух массовой концентрации водяных паров не более 0,007 г/м3 при нормальных условиях.

Магний хлорнокислый (ангидрон) среднегранулированный массовой долей воды не более 16 % (определение по приложению 2); для работы используют гранулы размером 3-5 мм; препарат изолируют от воздействия атмосферной влаги.

Натр едкий технический по ГОСТ 2263 или натр едкий очищенный по ГОСТ 11078, раствор массовой концентрации 200-

—250 г/дм³.

4.5.2. Подготовка к анализу

Для определения массовой доли воды собирают установку, учитывая требования п. 4.3.

При этом используют испаритель, описанный в п. 4.4.2.

Испаритель через трехходовой кран (другой отвод которого соединяют с линией сброса), газовый фильтр и склянку для промывания газов соединяют с тремя поглотителями. соединяют между собой последовательно встык соединительными трубками наименьшей длины. К последнему поглотителю подсоединяют реометр, склянку для промывания газов и через трехходовой кран (другой отвод которого соединяют с линией сброса) колбу с раствором едкого натра для поглощения анализируемой пробы продукта.

Поглотительные трубки, используемые для анализа впервые, моют водой, ацетоном, сушат азотом (воздухом), после чего заполняют на ²/₃ высоты ангидроном. Заполнение поглотительных трубок ангидроном следует проводить в сухой камере любой конструкции (боксе), изолированной от воздействия атмосферной влаги. В выходное колено поглотителей помещают тампон из стекловолокна. Краны поглотителей смазывают смазкой УПИ и закрепляют с помощью резинового кольца.

Допускается заполнение ангидроном поглотительных любым другим способом, гарантирующим содержание воды в ан-

гидроне, находящемсся в трубках, не более 16 %.

При работе с ангидроном необходимо во избежание взрыва не допускать его контакта с органическими веществами, минеральными кислотами и аммонийными солями.

Если ангидрон используют впервые, его необходимо обработать хлором. Для этого испаритель соединяют через трехходовой краи с линией сброса, обеспечивая равномерное поступление газообразного продукта. Затем испаритель через трехходовой кран соединяют последовательно с газовым фильтром, склянкой для промывания газов, тремя поглотителями, реометром и через трехходовой кран с линией сброса. Пропускают испаренный пролукт в течение 2 ч с объемным расходом (0,4±0,1) дм³/мин.

Затем через эту систему пропускают азот или воздух с объем-

ным расходом (0,4+0,1) дм3/мин в течение 20 мин.

По окончании продувки закрывают краны поглотителей, разъединяют их, вытирают чистой фланелевой салфеткой, слегка смоченной ацетоном, выдерживают 10—15 мин в эксикаторе и взвешивают Результат взвешивания записывают в граммах с четырьмя десятичными знаками. Взвешивание проводят с тарированием, используя для этого пустую U-образную закрытую трубку. С пустой трубкой, используемой для тарирования, проводят аналогичные процедуры (протирка, выдерживание в эксикаторе. Допускается способ взвешивания без тарирования.

В колбу для поглощения анализируемой пробы продукта наливают 2 дм³ раствора едкого натра, закрывают пробкой и взвешивают. Результат взвешивания в граммах записывают в целых числах. Колбу соединяют через трехходовой кран со склянкой для

промывания газов и реометр с поглотителями.

4.5.3. Проведение анализа

Открывают игольчатый вентиль для отбора пробы и пропускают испаренный продукт через поглотители в колбу для поглощения анализируемой пробы в течение 2 ч.

Затем переключают трехходовой кран после испарителя на ли-

нию сброса.

Закрывают игольчатый вентиль, отсоединяют колбу для поглощения анализируемой пробы, закрывают ее пробкой и взвешивают. Результат взвешивания в граммах записывают в целых числах. Затем через поглотители пропускают азот (воздух) в линию сброса в течение 20 мин с объемным расходом (0,4±0,1) дм³/мин.

По окончании продувки закрывают краны поглотителей, разъединяют их, вытирают фланелевой салфеткой, смоченной ацетоном, выдерживают в эксикаторе 10—15 мин и взвешивают тем же способом, что в п. 4.5.2. Результат взвешивания в граммах записывают с четырьмя десятичными знаками.

Если после проведения последующих анализов масса вещества, поглощенного во втором поглотителе, на 20 % больше массы вещества, поглощенного в первом поглотителе, следует первый поглотитель заполнить свежим ангидроном. Наличие третьего поглотителя дает возможность установить (таким же образом) момент, когда следует заменить содержимое второго поглотителя. Третий

поглотитель служит в качестве дополнительного контрольного со-

суда,

При проведении последующих анализов поглотители подсоединяют к системе в одной и той же последовательности по отношению к точке отбора хлора.

4.5.4. Обработка результатов

Массовую долю воды (Х1) в процентах вычисляют по формуле

$$X_1 = \frac{m_1 + m_2}{m} \cdot 100$$
,

где m_1 и m_2 — масса воды, поглощенная ангидроном соответственно в первом и втором поглотителях, г,

т — масса поглощенной пробы продукта, г.

За результат анализа принимают среднее арифметическое результатов двух параллельных определений, абсолютное расхождение между которыми не превышает допускаемое расхождение, равное 0,005 % для продукта высшего сорта и 0,01 % для продукта первого сорта, при доверительной вероятности P = 0.95.

Допускаемая абсолютная суммарная погрешность результата определения ±0,0035 % для продукта высшего сорта и ±0,007 % для продукта первого сорта при доверительной вероятности P =

=0,95.

Допускается проводить определение массовой доли воды в соответствии с методикой международного стандарта ИСО 2121, приведенной в приложении 4.

4.6. Определение массовой доли треххлористого азота

Метод основан на разложении треххлористого азота в испаренном продукте соляной кислотой с последующим выделением аммиака из щелочного раствора дистилляцией и колориметрическим определением с реактивом Несслера.

4.6.1. Аппаратура, реактивы, растворы

Фотоэлектроколориметр или спектрофотометр.

Реометр стеклянный лабораторный капиллярный по ГОСТ 9932, заполненный жидкостью М-1 по ОСТ 95.419 и отградуированный по хлору, азоту или воздуху на объемный расход 0,2 дм³/мин, или расходомер.

Весы лабораторные по ГОСТ 24104 2-го и 4-го классов точности с наибольшими пределами взвешивания 200 г и 1 кг соответст-

венно.

Термостат водяной, обеспечивающий температуру в пределах 15—40 °C.

Склянки для промывания газов типа СН по ГОСТ 25336 исполнения 2 вместимостью 100 см3.

Колбы типа Кн по ГОСТ 25336 исполнения вместимостью: 500 см3 н исполнения 2 вместимостью 2000 см3.

Колба типа П по ГОСТ 25336 исполнения вместимостью

500 см3.

Каплеуловитель по ГОСТ 25336 исполнения-КО-60.

Холодильник типа ХШ по ГОСТ 25336.

Мензурка по ГОСТ 1770 вместимостью 100 см³.

Колбы по ГОСТ 1770 исполнения 2 вместимостью 50 и 100 см³ Цилиндры по ГОСТ 1770 исполнения 1 или 3 вместимостью 50, 100 и 250 см³, исполнения 3 вместимостью 25 см³

Пинетки вместимостью 1, 5 и 25 см³.

Кислота соляная по ГОСТ 14261 концентрированная, ос. ч. н

раствор молярной концентрации 0,1 моль/дм⁸.

Натр едкий технический по ГОСТ 2263 или натр едкий очищенный по ГОСТ 11078, раствор массовой концентрации 200--250 r/am3.

Натрия гидроокись по ГОСТ 4328, раствор с массовой долей 40 %, не содержащий аммония, готовят по ГОСТ 4517 и раствор молярной концентрации 0,1 моль/дм3.

Натрий углекислый по ГОСТ 83.

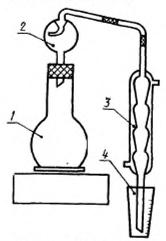
Аммоний хлористый по ГОСТ 3773, раствор, содержащий аммоний массовой концентрации 1 мг/см3, готовят по ГОСТ 4212 и раствор, содержащий аммоний массовой концентрации 0,1 мг/см3, готовят соответствующим разбавлением основного раствора.

Реактив Несслера, готовят по ГОСТ 4517.

Калия-натрия тартрат (калий-натрий виннокислый 4-водный),

раствор с массовой долей 20 %, готовят по ГОСТ 4517. Азот газообразный по ГОСТ 9293 или воздух массовой концентрации водяных паров не более 0.007 г/м3 при нормальных условиях.

Вода дистиллированная по ГОСТ 6709.


4.6.2 Установка для отделения аммиака дистилляцией (черт. 2) Перед началом работы установку для дистилляции очищают водяным паром, для чего в колбе кипятят воду до исчезновения в дистилляте следов солей аммония (проба с реактивом Несслера).

Все резиновые детали (трубки, пробки) установки для отделения аммиака дистилляцией кипятят в воде с добавлением углекислого натрия (5 г на 0,5 дм³ воды), после чего промывают водой.

Определение аммония необходимо проводить в комнате, изолированной от помещений, в которых работают с аммиаком и аммонийными солями.

4.6.2.1. Построение градуировочного графика Для приготовления растворов сравнения в колбы вместимо-

Установка для дистилляции

1 — Колба; 2 каплеуловитель; 3 колодильник; 4 — мензурка Черт, 2

стью 500 см³ наливают 200 см³ воды и пипеткой вводят 0,8; 1,6; 2,4; 3,2; 4,0 см³ раствора, содержащего аммоний массовой концентрации 0,1 мг/см³, что соответствует содержанию аммония 0,08; 0,16; 0,24; 0,32; 0,40 мг.

Одновременно готовят контрольный раствор, не содержащий аммония.

В каждую колбу пипеткой прибавляют по 5 см³ раствора гидроокиси натрия с массовой долей 40 %, перемешивают и быстро присоединяют к установке для дистилляции аммиака. В мензуркиприемники дистиллята прибавляют пипетками по 5 см³ воды и 5 см³ раствора соляной кислоты молярной концентрации 0,1 моль/ /дм³ и опускают в жидкость стеклянные отводные трубки холодильников.

Содержимое колб нагревают до кипения и из каждой отгоняют

(70±5) см3 раствора.

По окончании отгонки растворы из мензурки переносят в мерные колбы вместимостью 100 см³, доводят объем водой до метки и тщательно перемешивают. Затем пипеткой отбирают по 25 см³ раствора из каждой колбы и переносят в мерные колбы вместимостью 50 см³, прибавляют пипеткой по 1 см³ раствора виннокис-лого калия-натрия, по 1 см³ раствора гидроокиси натрия молярной концентрации 0,1 моль/дм³ и по 1 см³ реактива Несслера. Объем раствора в колбе доводят водой до метки, перемешивают и через 20 мип измеряют оптическую плотность по отношению к воде в кюветах с толщиной поглощающего свет слоя 50 мм в диапазоне 400-450 нм.

Из оптической плотности растворов сравнения вычитают оптическую плотность контрольного раствора и по полученным данным строят градуировочный график зависимости оптической плотности раствора от концентрации аммония, откладывая по оси абсцисс концентрацию аммония, а ло оси ординат — соответствующую им оптическую плотность растворов в масштабе: 0,08 мг — 4 см, 0,05 единиц оптической плотности — 1 см.

4.6.2.2. Подготовка к отбору пробы продукта Для определення массовой доли треххлористого азота собира-ют установку, учитывая требования п. 4.3. При этом используют испаритель, описанный в п. 4.4.2.

Испаритель присоединяют к реометру, затем к трехходовому крану (другой отвод которого соединяют с линией сброса), последовательно к трем склянкам с насадками, двухходовому крану и двум колбам для поглощения анализируемой пробы продукта. В склянки с насадками наливают по 50 см³ концентрированной соляной кислоты.

В колбы для поглощения анализируемой пробы продукта (исполнения 1 вместимостью 500 см³) наливают по 0,4 дм³ раствора едкого натра массовой концентрации 200—250 г/дм³, закрывают пробками и взвешивают. Результат взвешивания записывают в граммах с двумя десятичными знаками.

4.6.3. Проведение анализа

Открывают игольчатый вентиль для отбора анализируемой пробы продукта и пропускают испаренный продукт ечрез всю систему в течение 1 ч с объемным расходом около 0,2 дм³/мин.

Затем трехходовой кран переключают на линию сброса, закрывают двухходовой кран и отсоединяют склянки и колбы для поглощения знализируемой пробы. Закрывают вентиль баллона, полностью открывают игольчатый вентиль до прекращения выделения газа, псле чего его закрывают.

ния газа, поле чего его закрывают.

Две колбы для поглощения анализируемой пробы продукта закрывают пробками и взвешивают. Результат взвешивания в граммах записывают с двумя десятичными знаками.

Содержимое склянок переносят в плоскодонную колбу вместимостью 500 см3 и упаривают при кипячении до объема 50 см3. Од-

новременно в тех же условиях упаривают контрольный раствор

(150 см³ концентрированной соляной кислоты).

По окончании упаривания анализируемый и контрольный растворы охлаждают до комнатной температуры, добавляют в колбы по 200 см³ воды, 35 см³ раствора гидроокиси натрия с массовой долей 40 % и быстро присоединяют к установкам для дистилляции аммиака

Далее анализ проводят, как при построении градуировочного графика. Массу аммония в миллиграммах определяют, пользуясь градуировочным графиком.

4.6.4. Обработка результатов

Массовую долю треххлористого азота (X_2) в процентах вычисляют по формуле

$$X_2 - \frac{m_1 \cdot 6.675 \cdot 100}{1000 \cdot m}$$
,

где m_1 — масса аммония, найденная по градуировочному графику, мг;

т - масса поглощенной пробы продукта, г;

6,675 — коэффициент пересчета аммония на треххлористый азот. За результат анализа принимают среднее арифметическое результатов двух параллельных определений, абсолютное расхождение между которыми не превышает допускаемое расхождение, равное 0,0005 %, при доверительной вероятности P = 0,95.

Допускаемая абсолютная суммарная погрешность результата определения $\pm 0,00035$ % для продукта высшего сорта и $\pm 0,0004$ % для продукта 1-го сорта при доверительной вероятности $P\!=\!0,95$.

4.7. Определение массовой доли нелетучего

остатка

Метод основан на испарении анализируемой пробы жидкого продукта и поглощения его раствором едкого натра. Массу нелетучего остатка определяют взвещиванием.

4.7.1. Аппаратура, реактивы, растворы

Весы лабораторные по ГОСТ 24104 2-го и 4-го классов точности с наибольшими пределами взвешивания 200 г и 1 кг соответственно.

Термометр ртутный лабораторный по ТУ 25-2021.003 с днапа-

зоном измерений температуры от минус 30 до плюс 25°C.

Цилиндры по ГОСТ 1770 вместимостью 50 и 500 см³.

Колбы типа Кн по ГОСТ 25336 исполнения 1 вместимостью 100 и 500 см³ с взаимозаменяемым конусом 29/32.

Насадка от склянки для промывания газов типа СН по ГОСТ 25336 исполнения 1 с взаимозаменяемым конусом 29/32. Трубку насадки обрезают таким образом, чтобы ее нижний конец для колбы вместимостью 100 см³ выступал над верхней риской, отмечающей объем 55 см³, на 1,5—2,0 см, а для колбы вместимостью 500 см³ ее нижний конец не доставал диа колбы 1,5—2,0 см.

Азот газообразный по ГОСТ 9293 или воздух массовой концентрации водяных паров не более 0,007 г/м3 при нормальных услови-

X.R

Вода дистиллированная по ГОСТ 6709.

Натр едкий технический по ГОСТ 2263 или натр едкий очищенный по ГОСТ 11078, раствор массовой концентрации 200—250 г/ /дм3.

4.7.2 Подготовка к анализу

При определении массовой доли нелетучего остатка собирают

установку, учитывая требования п. 4.3.

В качестве испарителя и колбы для промывания линии отбора используют коническую колбу вместимостью 100 см³ с взаимозаменяемым конусом 29/32, снабженную насадкой с обрезанной трубкой, с нанесенными рисками, соответствующими объемам 45 и 55 см³.

Для нанесения рисок в цилиндр вместимостью 50 см³ наливают 45 см³ воды комнатной температуры, переливают ее в коническую колбу вместимостью 100 см³ и наносят риску. В тот же цилиндр наливают 10 см³ воды, переливают в ту же колбу и наносят вторую риску.

Тройник и игольчатый вентиль промывают 45—55 см^а жидкого продукта. Для этого игольчатый вентиль соединяют встык через насадку с колбой для промывания линии отбора и линией сброса.

Чистую сухую колбу-испаритель продувают азотом (воздухом), закрывают стеклянной пробкой и взвещивают. Результат взвешивания записывают в граммах с четырьмя десятичными знаками. Колбу-испаритель помещают в термостат с охлаждающей смесью, обеспечивающей температуру не выше минус 20 °C. В две конические колбы вместимостью 500 см³ наливают по

В две конические колбы вместимостью 500 см³ наливают по 400 см³ раствора едкого натра, закрывают стеклянными пробками и взвешивают. Результаты взвешивания записывают в граммах с

двумя десятичными знаками.

4.7.3. Проведение анализа

К игольчатому вентилю через насадку присоединяют колбуиспаритель и последовательно три конические колбы вместимостью 500 см³. Первая колба по ходу тока газа — пустая, две следующие — с раствором едкого натра.

Открывают игольчатый вентиль для отбора пробы жидкого

продукта и в колбу-испаритель наливают 45—55 см^а жидкого продукта. Закрывают вентиль баллона, снимают охлаждение колбыиспарителя и испаряют пробу продукта в свободном режиме, по-

глощая его в двух колбах с раствором едкого натра.

После окончания испарения пробы продукта закрывают веятиль баллона, открывают игольчатый вентиль для подачи азота (воздуха) и продувают установку до исчезновения хлора в колбенспарителе и пустой колбе. После окончания продувки разбирают установку. Колбу-испаритель отсоединяют, закрывают стеклянной пробкой, вытирают досуха снаружи фильтровальной бумагой, выдерживают в эксикаторе 10 мин и взвешивают. Результат взвешивания записывают в граммах с четырьмя десятичными знаками.

Колбы с раствором едкого натра закрывают стеклянными пробками, вытирают снаружи фильтровальной бумагой, охлаждают до комнатной температуры и взвешивают. Результаты взвешива-

ния записывают в граммах с двумя десятичными знаками.

4.7.4. Обработка результатов

Массовую долю нелетучего остатка (X_3) в процентах вычисляют по формуле

 $X_3 = \frac{m_1 \cdot 100}{m}$,

где т - масса поглощенной пробы продукта, г;

та. г. масса остатка после испарения пробы жидкого продукта. г.

За результат анализа принимают среднее арифметическое результатов двух параллельных определений, абсолютное расхождение между которыми не превышает допускаемое расхождение, равное 0,005 % для продукта высшего сорта и 0,01 % для продукта первого сорта при доверительной вероятности P = 0,95.

Допускаемая абсолютная суммарная погрешность результата определения ±0,004 % для продукта высшего сорта и ±0,007 % для продукта первого сорта при доверительной вероятности

P = 0.95.

5. ТРАНСПОРТИРОВАНИЕ И ХРАНЕНИЕ

 Жидкий хлор транспортнруют в специальных цистернах грузоотправителя (грузополучателя), рассчитанных на давление и оборудованных теневым кожухом,

На I дм³ вместимости цистерны допускается наполнение не бо-

лее 1,25 кг жидкого хлора.

 Подготовку цистерн к наполнению жидким хлором и наполнение проводят в соответствии с правилами устройства и безопасной эксплуатации сосудов, работающих под давлением, утвержденными Госгортехнадзором и правилами безопасности для производства, хранения и транспортировки хлора ПБХ-83.

5.3. Жидкий хлор в баллонах и контейнерах транспортируют железнодорожным, водным и автомобильным транспортом в соответствии с правилами перевозки грузов, действующими на данном виде транспорта.

Железнодорожным транспортом баллоны с хлором транспортируют в крытых вагонах повагонными отправками и в универсальных контейнерах. Универсальные и специализированные контейнеры с жидким хлором должны перевозиться на открытом подвижном составе в соответствии с условиями ногрузки и крепления грузов, действующими на железнодорожном транспорте,

5.4. При гранспортировании баллоны малого объема с хлором должны быть упакованы в деревянные ящики по ГОСТ 15623 типа II-1 или по ГОСТ 18617 типа II-1 или III-1 и III-2. Масса груза в каждом ящике не должна превышать 65 кг.

Ящики в количестве двух и более грузовых мест по железной дороге транспортируют пакетами на поддонах по ГОСТ 9557. Формирование пакетов на плоских поддонах — по ГОСТ 26663, габаритные размеры — по ГОСТ 24597, средства скрепления — по ГОСТ 21650.

Речным транспортом баллоны с жидким хлором транспортируют с сопровождающим грузовладельца.

5.5. Специализированные контейнеры и баллоны с жидким хлором хранят в соответствии с правилами устройства и безопасной эксплуатации сосудов, работающих под давлением, утвержденными Госгортехнадзором, и правилами безопасности для производства, хранения и транспортировки хлора ПБХ-83.

Не допускается совместное хранение баллонов и контейнеров с жидким хлором и органических веществ, порошков металлов, горючих жидкостей и газов.

6. ГАРАНТИИ ИЗГОТОВИТЕЛЯ

- 6.1. Изготовитель гарантирует соответствие жидкого хлора требованиям настоящего стандарта при соблюдении условий транспортирования и хранения.
 - Гарантийный срок хранения 1 год со дня изготовления.

ПРИЛОЖЕНИЕ 1 Обязательное

МЕТОДИКА СУШКИ ГАЗООБРАЗНОГО АЗОТА ИЛИ ВОЗДУХА

 Для сушки азота или воздуха до массовой концентрации водяных наров не более 0,007 г/м³ при нормальных условиях используют систему склянок для промывания газов типа СПТ по ГОСТ 25336 и U-образных хлоркальциевых трубок по ГОСТ 25336, заполненных ангидроном или цеолитом, прохаленным при температуре 400—500 °C в течение 4 ч.

 Массовую концентрацию водяных паров в азоте или воздухе определяют с помощью кулонометрического измерителя микроконцентрации влаги в газах

типа «Байкал» и «Сибирь».

ПРИЛОЖЕНИЕ 2 Обязательное

МЕТОДИКА ОПРЕДЕЛЕНИЯ МАССОВОЙ ДОЛИ ВОДЫ В АНГИДРОНЕ

Массовую долю воды в ангидроне определяют по ГОСТ 14870 с реактивом Фишера или методом, основанным на измерении теплоты растворения.

Метод, основанный на измеренин теплоты растворения

Аппаратура

Сосуд Дьюара внутренням дваметром 60 им и высотой 100 мм, снабжен-

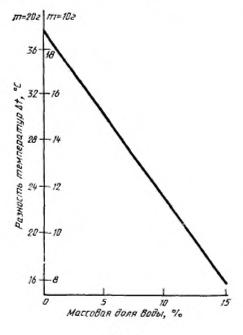
ный пробкой с отверстием для термометра.

Термометр ртугный лабораторный по ТУ 25—2021.003 с ценой деления 1°С. Цилиндр из фильтровальной бумаги диаметром 40 мм и высотой 75 мм, изготовленый из листа размером 150×100 мм, навернутого на форму соответствующего размера.

2. Проведение анализа

В сосуд Дьюара наливают 75 см⁵ дистиллированной воды, закрывают пробкой с термометром и по достижении равновесия измеряют температуру воды

L °C.


20,0 или 10,0 г ангидрона взвешивают в цилиндре из фильтровальной бумаги, записывая результат взвещивания в граммах с одним досятичным знаком. Цилиндр с навеской помещают в сосуд Дьюара с водой, закрывают его пробкой к растворяют навеску

По достижении равновесия измеряют температуру раствора 12°C.

3. Обработка результатов

По разности температур $\Delta t = t_2 - t_1$, пользуясь графиком (черт. 3), находят массовую долю воды в ангидроне. При этом имеют в виду, что массе навески ангидрона 20,0 г на оси ординат соответствуют разности температур от 16 до 40 °C, а массе навески 10,0 г — от 8 до 18 °C.

Зависимость изменения температуры от массовой доли воды в ангидроне

Черт, 3

ПРИЛОЖЕНИЕ 3 Обязательное

ХЛОР ЖИДКИЙ ТЕХНИЧЕСКИЙ, ОБЪЕМНЫЙ МЕТОД ОПРЕДЕЛЕНИЯ СОДЕРЖАНИЯ ХЛОРА В ВЫПАРЕННОМ ПРОДУКТЕ ИСО 2120—72

1. Назначение и область применения

Настоящий стандарт устанавливает метод опредсления содержания хлора (по объему) в жидком техническом хлоре после выпарявания продукта.

2. Сущность метода

От хлора отбирают образцы, полученные газификацией жидкого клора, объемом около 100 мл. Затем абсорбаруют хлор 2 %-вой жидкой цинковой амальгамой в присутствии 1 мл. насыщенного раствора хлористого натрия

Измеряют объем остаточных неконденсирующихся газов таких как H_2 , O_2 , N_2 , CO, CO_2 и т. д. Затем рассчитывают объем хлора на 100 мл выпаренного

образца вычитанием из общего объема.

3. Реактивы

3.1. Цинковая амальгама.

ПРЕДУПРЕЖДЕНИЕ. При транспортировании ртути и цинковой амальтамы следует соблюдать необходимые меры предосторожности, обусловленные токсичностью этих химических продуктов. Работать с этими веществами следует под хорошо вентилируемым вытяжным колпаком. Следует избегать попадания этих веществ на кожу.

В фарфоровую чашку вмествмостью 1 л помещают 4 кг чистой ртуги, добавляют 80 г гранулированного цинка и наливают 0,01 и. раствор серной кислоты. Смесь нагревают до 80 °С, выдерживают при этой температуре до полной амальгамации цинка, время от времени помешивая стеклянной мешалкой, и затем охлаждают. Хранят амальгаму в 0,01 и. серной кислоте во избежание ее окисления на водухе.

3.2. Хлористый натрий, раствор, насыщенный при температуре окружающей

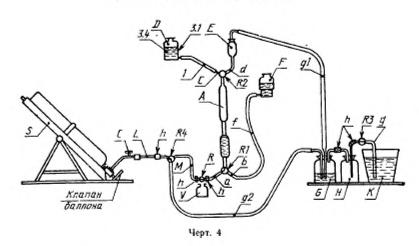
реды

3.3. Гидроокись натрия, 20 %-ный раствор (по массе), плотностью 1,22 г/мл.

3.4. Сериая кислота, приблизительно 2 и. раствор.

3.5. Метиловый спирт технический.

 Консистентная смазка, стойкая к действию хлора. Используются консистентные смазки, основанные на фторированных н хлорфторированных продуктах.


4. Аппаратура

Аппарат (черт, 4), состоящий из следующих частей:

газовой бюретки А вместимостью приблизительно 100 мл. Ее верхняя часть находится под краном и состоит из трубки диаметром 7 мм и вместимостью приблизительно 2 мл. Нижняя часть трубки отградуирована с ценой деления 0,05 мл;

стального игольчатого клапана С:

Схематическое изображение аппарата для определения содержания хлора по объему

колбы D (с боковой насадкой) вместимостью 250 мл, содержащей 150 мл цииховой амальгамы:

верхнего резервуара Е газовой бюретки:

склянки F для приведения уровня вместимостью 250 мл, содержащей 150 мл цинковой амальтамы:

барботера G, содержащего воду для регулирования газового потока и имеющего потруженные трубки внутренним диаметром 5 мм;

предохранительной склянки Н.

приемника K вместимостью 2 л, содержащего 1 л раствора гидроокиси натрия для абсорбщии избыточного хлора;

 фильтра L, состоящего из стальной резьбовой трубки внутренним диаметром около 6 мм и длиной 150 мм, заполненного стекловатой;

стеклянной трубки М внутрениям дваметром 6 мм;

T-образного крана R:

трех U-образных кранов R1, R2 и R4;

прямоугольного крана R3.

наклонной подставки S для склянки с хлором;

сосуда для стока жидкости V:

соединительных частей а, b, c, d;

резиновой трубки ƒ;

трубок из эластомера g, g1, g2, стойких к воздействию хлора,

соединительных частей из эластомера h, стойких к воздействию хлора

5. Проведение испытания

МЕРЫ ПРЕДОСТОРОЖНОСТИ. Для персонала, работающего с хлором, должен быть проведен инструктаж об опасности работы с данным продуктом. Следует соблюдать соответствующие меры предосторожности.

Хлор — это газ нарывного, раздражающего и удушающего действия. Концентрация хлора в атмосфере не должна превышать 1-10-8 (по объему)

или 3 мг/м³.

В связи с этим рекомендуется носить защитную одежду и защитные очки, хорошо проветривать рабочее помещение, учитывая, что этот газ тяжелее воздуха и концентрируется в низких местах

При значительной утечке только персонал, имеющий специальные маски, должен оставаться на зараженных участках. Утечки можно обнаружить при по-

мощи тряпки, смоченной в аммиаке

Лица, получившие отравление газом, должны быть немедление удалены из зоны заражения. Они должны находиться в состоянии покоя, вдали от колодных мест и им в случае необходимости до прибытия врача должна быть оказана первая помощь. Если дыхание пострадавшего останавливается, следует немедление сделать искусственное дыхание.

5.1. Определение

Склянку, содержащую образец анадизируемого жидкого хлора, помещают на наклонную подставку отверстися винз так, чтобы выделяющийся хлор не-

медленно испарялся (черт 4).

После очистки и сушки отдельных частей аппарата их соединяют и поврывают краны R, R1, R2, R3 и R4 тонким слоем консистентной смазки. Краны R1, R2 и R4 закрывают В каждую из склянок D и F помещают 150 мл вмальгамы для создания одинаковых уровней амальгамы. Дают возможность амальгаме стечь в бюретку A из склянки F в направлении соединительной части b. С этой целью поворачивают кран R1, вынимают притертую пробку из контейнера E и поворачивают кран R2 для соединения этого контейнера с бюреткой.

Повторным встрямиванием (вверх и вниз) склянки F полностью удаляют воздух, который может скапливаться в трубке, расположенной между склянкой F и бюреткой A, а также в соединительной части b. Затем опускают склянку F

так, что в бюретке остается небольшое количество амальгамы.

Поворачивают кран RI, соединив бюретку A с соединительной частью a, поворачивают кран R для присоединения соединительной части a к небольшому V для стока жидкости и поворачивают кран R2 с тем, чтобы дать возможность амальгаме, содержащейся в склянке D, стекать через трубку f до тех пор, пока не заполнится соединительная часть c. Затем поворачивают кран R2, соединив бюретку A с верхним контейнером E. Амальгама, останшаяся в бюретке, в дальнейшем стекает в небольшой сосуд V (для стока жидкости) по соединительной части a и через кран R

Быстро поворачивают кран R4, соединив соединительную часть а с бюреткой, закрывают коитеймер Е притертой пробкой и регулируют поворот крана R3 таким образом, чтобы предохранительная склянка Н сообщалась с приемником К, содержащим раствор гидроокиси натрии. Затем поворачивают кран R4 для

соединения игольчатого клапана С с барботером G через трубку g_2 .

Открывают главный клапан на склянке, содержащей образец, осторожно открывают клапан С и вропускают анализируемый хлор в аппарат со скоростью 5 пузырьков в секуиду (число которых подсчитывается при прохождении хлора через барботер G). Кран R4 поворачивают, пропуская хлор в бюретку A с той же скоростью в течение 15 мин и возвращают кран R4 в трежнее положение. Затем закрывают крани R1 и R2 бюретки A и клапан склянки, содержащей хлор, и ожидают прекращения барботирования в барботере G, после чего за-

крывают клапан C и кран R3. Притертую пробку вынимают из контейнера E, затем поворачивают краны R и R4, соединив трубку g_2 и сосуд V для стока жид-кости (с воздуком). В течение 10 мин ожидают, пока температура хлора, охлаждающегося за счет увеличения объема, не достигиет комнатной температуры.

В контейнер E помещают несколько мяллилитров раствора хлористого натрия, затем открывают кран R2 и быстро закрывают его с тем, чтобы в течение враткого времени бюретка A и контейнер E сообщались между собой через соединительную часть d, которая дает возможность повторного установления атмосферного давления в бюретке A посредством утечки небольшого количества избыточного хлора.

Снова открывают кран R2 и наливают в бюретку около 1 мл раствора хлористого натрия, несколько уменьшая давление через соединительную часть в скляньой F, затем открывают кран R1 Раствор хлористого натрия обеспечивает растворение хлористого цинка в результате действия хлора на амальгаму. Затем поворачивают кран R2, соединив бюретку A со склянкой D, содержащей цинковую амальгаму. В то время как последняя стехает вниз в бюретку, склянку медленно поднимают с тем, чтобы вакуум, создавшийся в бюретке, не был слишком значительным.

После абсорбини хлора закрывают кран R2 оставляют открытым кран RI, помещают склянку F рядом с бюреткой A и отпускают се для создания разности (около 20 см) уровней жидкостей в обоих сосудах для дегазирования раствора хлористого натрия. Через 3 мин медленно поднимают склянку F для создания одинаковых уровней амальгамы в обоих сосудах и определяют объем незбсорбированиого газа по делениям на бюретке на уровне мениска раствора хлористого натрия.

Подготовка аппарата для выполнения следующего определения

Кряв R2 поворачивают для соединения бюретки A со склянкой D в перегоняют в нее амальгаму до тех пор, пока она не достигнет первоначального уровния подняв сълянку с контейнером E через соединительную часть d, вынимают из утого контейнера стеклянную притертую пробку и пропускают остальную часть амальгамы из бюретки в склянку F, опуская последнюю. При этом следует из бегать попадания воздуха в соединительную часть D. Затем поворачивают кран R1 в направлении соединительной части a, а кран R—в направлении небольшого сосуда V для стока жидкости. Бюретку очищают через контейнер E сначала раствором сервой кислоты, а затем дистиллированной водой и метиловым спиртом. Затем сущат бюретку в воздушном потоке.

6. Обработка результатов

Содержание хлора в выпаренном образце в объемных процентах определяют по формуле

$$\frac{V_1 - V_2}{V_1} \cdot 100,$$

где V_1 --- вместимость бюретки A_s мл;

 V_2 объем остаточного газа, мл.

ПРИЛОЖЕНИЕ 4 Обязательное

ХЛОР ЖИДКИЙ ТЕХНИЧЕСКИЙ. ВЕСОВОЙ МЕТОД ОПРЕДЕЛЕНИЯ СОДЕРЖАНИЯ ВОДЫ ИСО 2121—72

1. Назначение

Настоящий стандарт устанавливает весовой метод определения содержания «летучей воды», т. с. воды, которая улетучивается одновременно с хлором, получаемым из жидкого технического хлора.

2. Область применения

Метод предназначен для анализа продуктов с содержанием воды более

5-10 -4 (0,0005 %).

Примечание. Данный метод не следует применять для анализа образцов, храницикся в сосудах, подверженных коррозии. В этом случае при определения содержания воды может появиться ошибка, обусловлениях присутствием гигроскоптического хлорида железа.

3. Сущность метода

Абсорбция воды путем пропускания превращенного в газ образца через тарированные поглотители, содержащие фосфорный ангидрид или перхлорат магиия

Удаление газообразного хлора и летучих примесей (за исключением воды) путем продува поглотителей воздухом или сухим азотом, нагретыми до 80 °C. Поглощение хлора, поступающего из поглотителей воды, раствором гидро-

окиси натрия, содержащимся в тарированиом сосуде.

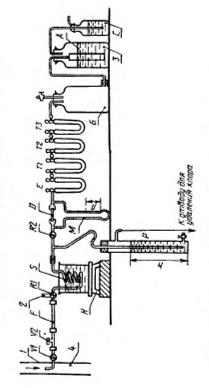
Взвещивание поглотителей и сосуда, содержащего раствор гидроокиси натрия, с целью определения (по разности первоначальных масс) массы обнаруженной воды и массы первоначально отобранного образца.

4. Реактивы

4.1. Абсорбент.

Выбирают один из реактивов:

4.1.1. Фосфорный ангидрид.


4.1.2. Перхлорат магния в виде таблеток или гранул размером 3—5 мм (во избежание потери массы материала в процессе поглощения воды). Двиный реактив не должен содержать более двух молекул гидратной воды (13,9 %). Реактив нельзя применять, если анализируемый хлор содержит органическое вещество.

Сухой воздух или сухой азот.

Осущение этих газов можно осуществлять путем пропускания через башию, содержащую абсорбент (л. 4.1.1 или п. 4.1.2).

4.3. Гидроокись натрия 200 г/л, приблизительно 5 н. раствор.

- 4.4. Йодистый крахмал, раствор, содержащий 5 г/л крахмала и 150 г/л йодистого калия.
 - 4.5. Апетон.

1 — трубка для хлора, 2 — судой воздух или судов взот; 3 — раствор гидроокиси жет-ряя, 4 — место отбора образца

4.6. Консистентная смазка, стойкая к действию хлора Рекомендуются смазки на основе фторированных продуктов.

5. Аппарат

На черт. 5 приведена схема аппарата, предназначенного для определения содержання воды в хдоре. Аппарат включает следующие части:

сосуд А, содержащий 2 л раствора гидроокиси натрия для абсорбирования

образца хлора;

барботер С, содержащий раствор йодистого крахмала, предназначенный для

регулирования степени абсорбции хлора;

капиллярный расходомер D и дифференциальный манометр M, содержащий тетрахлорметан и обеспечивающий пропускную способность газообразного хлора 25 л/ч. Вместо этих приборов можно применять соответствующий поплавковый расходомер;

U-образная трубка E со стеклянными шлифами, наполненная минеральной шерстью, предварительно высушенной в печи при температуре 110°C в течение

1 4:

фильтр F, представляющий собой стальную трубку с резьбой внутренним диаметром около 6 мм, длиной 150 мм, заполненную стекловолокном;

предохранительный сосуд G;

электронагреватель H;

стехлянный затвор Р, заполнениий тетрахлорметаном;

трехходовой запорный кран RI;

проходной запорный кран R2;

стальной змесвик S, погруженный в резервуар с водой, нагретой до 80°C; три U-образные трубки (T1, T2, T3) с притертыми стеклянными пробками, содержащие фосфорный ангидрид или перхлорат магния, покрытые стекловолокиом. Поглотительные трубки следует заполнять фосфорным ангидридом в потоке сухого алога, изолированном от воздействия атмосферной влаги,

Чтобы убедиться в герметичности собранного аппарата, проводят тщательную регулировку соответствующих резьбовых соединений. Масса каждой заполневной трубки, взнешенной отдельно, не должна превышать 100 г. После каждого взвешивания грубки возвращают на прежнее место так, чтобы обеспечить пропускание газа в той же последовательности;

клапан V1:

стальной игольчатый клапан V2;

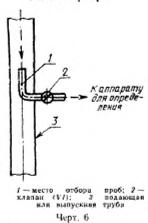
гибкие соединения из резины, стойкой к воздействию хлора.

6. Методика определения

Меры предосторожности.

Персонал, работающий с хлором, должен быть ознакомлен с токсическими свойствами хлора и правилами безопасности, которые необходимо соблюдать,

Хлор — газ нармвного, раздражающего и удушающего действия. Концентрация хлора в атмосфере не должна превышать 1·10-4 (по объему) или 5 мг/м². Рекомендуется применять защитную одежду и защитные очки, тщательно проветривать рабочее помещение, имея в виду, что хлор тяжелее воздуха и накапливается в инжней части помещения.


При значительной утечке газа на зараженном участке должен оставаться лишь персонал, имеющий защитые маски. Утечку можно обнаружить при помощи тряпки, смоченной в аммиаке. Пострадавшие должны быть как можно быстрсе выведены из зараженной зоны без малейшего физического напряжения с их стороны. Они должны находиться в теплом помещении в состоянии покоя. До прибытия врача им должна быть оказана перваи помощь.

В случае прекращения дыхания пострадавшему делают искусственное ды-

6.1. Проба для анализа

В соответствии с рекомендуемой методикой анпарат, содержащий в инсиеные и готовые для проведения определения поглотители, соединяют непосредственно с местом отбора проб (черт. 6). Проба для анализа, взятая таким способом из цистерны во время ее наполнения или освобождения, является вредставительной для данной поставки. При необходимости (если проведение двиной операции невозможно) пробы отбирают чистыми сосудами из нержавеющей стали при условии, что определение проводят немедленно Сосуды после освобождения тщательно очищают, продувая сухим горячим азотом, и используют для дальнейшего отбора проб.

Схема отбора проб

Предварительные операции

Перед наполнением абсорбентом U-образные трубки (T1, T2 и T3) промывают смачала водой, затем ацетоном, после чето высущивают. После наполнения поглотительные трубки закрывают пробками, смазанными небольшим количеством смазки, и помещают в аппарат.

Если абсорбент используется впервые, то подготавливают трубки, помещая их на 2 ч в поток газообразного хлора, движущегося со скоростью 25 л/ч, что-бы дать возможность некоторым примесям, содержащимся в реактиве, прореагаровать с хлором. Без выполнения этой предварительной операции первоначальный результат будет превышать истигное значение.

Затем открывают краны R1 и R2, чтобы обеспечить доступ сухого воздуха или сухого азота в аппарат и закрывают клапаны V1 и V2 для прекращения подачи хлора, продувают поглотительные трубки (10 мви со скоростью 25 л/ч) воздухом или азотом при температуре 80°С для устранения возможных летучих примесей, за исключением воды, оставшейся в поглотительных трубках. Затем удаляют ванну, с горячей водой и продолжают продувание тем же газом при комнатной температуре: еще 10 мин. После этого закрывают краны R1 и R2, отсоединяют поглотительные трубки T1 и T2, протирают их тканью, слегка смоченной в ащетоне, для снятия статического электричества. Через 2—3 мин кажлую трубку взвешивают с точностью до 0.1 мг.

дую трубку взвешивают с точностью до 0,1 мг. В сосуд А наливают 2 л раствора гидроокиси натрия, взвешивают с точно-

стью до 0,5 г и соединяют различные части аппарата.

6.3. Проведение определения

Поочередно открывают клапаны VI и V2, поворачивают кран RI так, чтобы отфильтрованный газообразный хлор поступал в направления затвора P. Через мин открывают проходной кран R2, чтобы поток хлора мог поступать в поглаотительные трубки со скоростью 25 л/ч. Скорость потока хлора определяют по разности уровней л тетрахлорметана, находящегося в двух отводах дифференциального манометра M, расходомера D, или по высоте шарика поплавкового расходомера. Поток хлора обеспечивают регулированием зазора (ширины проходного отверстия) клапанов и высоты h тетрахлорметана в затворе P.

В поглотители должно поступить около 100 л хлора. Точную массу поступившего хлора определяют взвешиванием сосуха A до и после определения.

В конце определения (приблизительно через 4 ч) проверяют, произошло ли полное поглощение хлора. При полном поглощении хлора раствор йодистого крахмала в барботере не должен иметь интенсивную сниюю краску. Когда обнаружено, это количество поглощенного хлора является достаточным, закрывают кланан VI, ждут прекращения потока хлора, регистрируемого манометром M, в закрывают кланан V2. Затем устанавливают запорный кран RI, чтобы обеспечить доступ сухого воздуха или сухого авота в аппарат.

Поглотительные трубки продувают 10 мин (со скоростью 25 л/ч) воздухом или алотом, нагретыми до температуры $80\,^\circ\mathrm{C}$, для устранения хлора в возможных летучих примесей, за исключением воды из хлора, остающейся в поглотительных трубках. Затем убирают ваниу с горячей водой и продолжают продувание тем же газом при комнатной температуре еще 10 мин. После этого закрывают краны RI и R2, отсоединяют поглотительные трубки TI и T2 и протирают их тканью, слегка смоченной в ацетоне для снятия статического электричества. Через 2—3 мин каждую трубку азвешивают с точностью до 0,1 мг. Обычно вода полностью поглощается в трубке TI. Если увеличение массы вещества в трубке T2 на $20\,\%$ больше массы вещества, поглощенной в трубке TI, следует провести повториое определение после вторичного заполнения трубки TI и кондиционирования ее в соответствии с п. 6 2

Наличие трубки ТЗ дает возможность установить (таким же образом) момент, когда следует заменить содержимое трубки Т2. Она служит в качестве

дополнительного, контрольного сосуда.

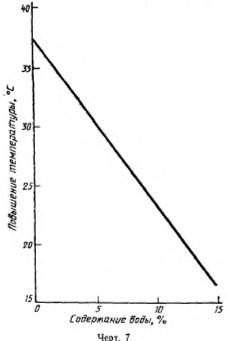
7. Обработка результатов

Содержание воды в граммах на килограмм определяют по формуле

$$\frac{m_1 \cdot 1000}{m_0}$$
,

где m_1 масса взвешенной воды (разность часе вещества в поглотительных трубках T1+T2 до и после прохождения хлора), г;

то— масса пробы для анализа (разность масс вещества в сосуде А до в после определения), г.


Результаты выражают с точностью до второго десятичного знака.

МЕТОД ПРОВЕРКИ СТЕПЕНИ ГИДРАТАЦИИ ПЕРХЛОРАТА МАГНИЯ, ИСПОЛЬЗУЕМОГО В КАЧЕСТВЕ СУШИТЕЛЯ ПРИ ОПРЕДЕЛЕНИИ СОДЕРЖАНИЯ ВОДЫ В ХЛОРЕ

1. Сущность метода

Измеряют прирост (повышение) температуры в результате растворения перхлората магния в воде и определяют соответствующее содержание воды по калибровочной кривой (черт 7).

Градуировочная кривая, указывающая содержание воды в перхлорате магния в зависимосты от повышения температуры, обусловленного его растворением

Черт. 7 2. Аппаратура

 Посеребренный сосуд Дьюзра вместимостью 300 мл. внутренням дваметром приблизительно 60 мм и высотой 100 мм. 2.2. Термометр для измерений от 0 до 100°C с ценой деления 1°C.

2.3. Парафинированная корковая пробка с отверстием для термометра,

предназначенная для сосуда Дьюара.

2.4. Цилиндр из фильтровальной бумаги диаметром 40 мм, высотой 75 мм, открытый в верхней части. Цилиндр изготовлен из прямоугольного листа фильтровальной бумаги размером 100×150 мм. Нижиля кромка цилиндра отогнута внутрь, образуя основание. Форма цилиндра сохраняется при помощи липкой бумаги.

2.5. Градуированный цилиндр вместимостью 100 мл.

3. Методика испытания

31. Проба для анализа

Непосредственно перед испытанием в цилиндр из фильтровальной бумагы отвещивают 20 г перхлората магния (с точностью до 0,1 г) и закрывают его, перегибая фильтровальную бумагу.

3.2. Проведение определения

В сосуд Дьюяра наливают 75 мл дистиллированной воды. Сосуд закрывают парафинированной корковой пробкой с вставленным и нее термометром и

регистрируют температуру воды (в момент достижения равновесия).

В сосуд Дьювара помещают цилиндр из фильтровальной бумаги с пробой для анализа и вынимают пробку. Сосуд встряхивают осторожным круговым движением для ускорения растворения продукта и измеряют температуру в момент достижения равновесия (через 20—25 с).

4. Обработка результатов

По графику, приведенному на черт. 7, определяют содержимое воды в продухте (в процентах по массе) в соответствии с новышением температуры, наблюдаемым в процессе растворения.

информационные данные

ССЫЛОЧНЫЕ НОРМАТИВНО-ТЕХНИЧЕСКИЕ ДОКУМЕНТЫ

Обозначение НТД, на который дана ссылка	Номер пункта, подпункта, приложения
FOCT 992	4.3
ГОСТ 12.1 007—76	2.1
ΓΟCT 12.4.02676	2.4
ΓΟCT 12.4.121—83	2.4
FOCT 8379	4.6.1
ГОСТ 949—73	1.4; 4 1.1
FOCT 1770-74	4.4.1; 4.5.1; 4 6.1; 4.7.1
FOCT 2263—79	4.4.1; 4.5.1; 4.6.1; 4.7.1

Обозначение НТД, на который дана ссылка	Номер пункта, подпункта приложения
TOCT 2603—79	4.3; 4.5.1; 4.7.1
FOCT 377372	4.6.1
COCT 413975	4.4.1
OCT 4212—76	4.6.1
OCT 4233-77	4.2.1
FOCT 432877	4.6.1
FOCT 4517—87	4.3; 4.6.1
FOCT 6709—72	4.4.1; 4.5.1; 4.6.1; 4.7.1
FOCT 9293-74.	4.4.1; 4.5.1; 4.6.1; 4.7.1
FOCT 9557—87	5.4
ГОСТ 9871—75	4.4.1; 4.5.1
FOCT 9932—75	4.4.1; 4.5.1; 4.6.1
ΓOCT 9941—81	4.3; 4.4.2
FOCT 11078—78	4.4.1; 4.5.1; 4.6.1; 4.7.1
FOCT 14192—77	1.3
FOCT 14261—77	4.6.1
ΓOCT 14870 77	Приложение 2
ΓΟCT 15623—84	5.4
FOCT 18617—83	5.4
FOCT 19433—88	1.3; 3.1
ΓΟCT 2028874	4.3
FOCT 21650—76	5.4
FOCT 24104—88	4.4.1; 4.5.1; 4.6.1; 4.7.1
FOCT 2459781	5.4
ΓΟCT 25336—82	4 4.1; 4.5.1; 4.6.1; 4.7.1
	Приложение 1
FOCT 26663—85	5.4
ΓΟCT 27025—86	4.2
FOCT 2706886	4.4.1
OCT 95.419-76	4.4.1; 4.5.1; 4.6.1
TY 25-1819.0021-90	4.4.1; 4.5.1
TY 25-1894.003-90	4.4.1; 4.5.1
TV 252021.00388	4 4.1; 4 7.1, приложение 2
TV 302-07-435-89	4.1.2

Редактор *Л. Д. Курочкина* Технический редактор *В. Н. Прусакова* Корректор *В. И. Варенцова*

Сдано в набор 21.04.95. Подп. в печать 28.05.95. Усл. печ. л. 2.10. Усл. кр.-отг, 2.10, Уч.-кад. л. 2.27. Тир. 645 экз. С 2531,

Ордена «Знак Почета» Издательство стандартов, 107076, Москва, Колодевный пер., 14, Калумская тивография стандартов, ул. Москваская, 256. Зак. 1072 ПЛР № 60-0158