МЕЖГОСУДАРСТВЕННЫЙ СТАНДАРТ

флюсы для электрошлакового переплава МЕТОД ОПРЕДЕЛЕНИЯ ДВУОКИСИ ТИТАНА

надание официальное

Предисловие

1 ПОДГОТОВЛЕН Российской Федерацией — Техническим комитетом ТК 145 «Методы контроля металлопродукции»

ВНЕСЕН Техническим секретариатом Межгосударственного Совета по стандартизации, метрологии и сертификации

2 ПРИНЯТ Межгосударственным Советом по стандартизации, метрологии и сертификации 17 февраля 1993 г.

За принятие проголосовали:

Наименование государства	Нанменование национального органа по стандартизации				
Республика Армения	Армгосстандарт				
Республика Беларусь	Белстандарт				
Республика Казахетан	Госстандарт Республики Казахстан				
Республика Молдова	Молдовастандарт				
Российская Федерация	Госстандарт России				
Туркменистан	Туркмонгосстандарт				
Республика Узбекистан	Узгосстандарт				
Украина	Госстандарт Укранны				

- 3 Постановлением Комитета Российской Федерации по стандартизации, метрологии и сертификации от 14.06.95 № 300 межгосударственный стандарт ГОСТ 21639.5—93 введен в действие непосредственно в качестве государственного стандарта Российской Федерации с 1 января 1996 г.
- 4 B3AMEH FOCT 21639.5-76

© ИПК Издательство стандартов, 1995

Настоящий стандарт не может быть полиостью или частично воспроизведен, тиражирован и распространен в качестве официального издания на герритории Российской Федерации без разрешения Госстандарта России

FOCT 21639.5-93

СОДЕРЖАНИЕ

1	Область применения						1.7		1
2	Нормативные ссылки			1				4	2
3	Общие требования .								2
4	Аппаратура, реактивы и	pac	творі	ы		1.			2
5	Проведение анализа		1						3
6	Обработка результатов		,						4

Флюсы для электрошлакового переплава

МЕТОД ОПРЕДЕЛЕНИЯ ДВУОКИСИ ТИТАНА

Fluxes for electrostag remelting Method for determination of titanium dioxide

Дата введения 1996-01-01

І ОБЛАСТЬ ПРИМЕНЕНИЯ

Настоящий стандарт устанавливает фотометрический метод определения двуокиси титана в флюсах для электрошлакового переплава при массовой доле от 0.01 до 0.5 %.

Метод основан на образовании окращенного в желтый цвет комплексного соединения титана с диантипирилметаном в солянокислой среде и измерении степени поглощения полученного раствора на спектрофотометре или фотоэлектроколориметре.

2 НОРМАТИВНЫЕ ССЫЛКИ

В настоящем стандарте использованы ссылки на следующие стандарты.

ГОСТ 3118-77 Кислота соляная. Технические условия

ГОСТ 3760-79 Аммиак водный. Технические условия

ГОСТ 4204-77 Кислота серная. Технические условия

ГОСТ 4461-77 Кислота азотная. Технические условия

ГОСТ 7172-76 Калий пиросерновислый. Технические условия

ГОСТ 9656-75 Кислота борная Технические условия

ГОСТ 19807—91 Титан и сплавы титановые деформируемые. Марки

ГОСТ 21639.0—93 Флюсы для электрошлакового переплава.
Общие требования к методам анализа.

з ОБЩИЕ ТРЕБОВАНИЯ

Общие требования к методам анализа — по ГОСТ 21639.0.

4 АППАРАТУРА, РЕАКТИВЫ И РАСТВОРЫ

Спектрофотометр или фотоэлектроколориметр. Кислота аскорбиновая, раствор с массовой концентрацией 50 г/лм³.

Кислота серная по ГОСТ 4204 и разбавленная 1:5 и 1.9.

Кислота соляная по ГОСТ 3118, разбавленная 1.1.

Кислота хлорная с массовой концентрацией 1510 г/дм³, разбавленная 1:1, насыщенная борной кислотой при температуре 45—55°C.

Кислота борная по ГОСТ 9656. Кислота азотная по ГОСТ 4461. Аммиак водный по ГОСТ 3760.

Метиловый красный.

Калий пиросернокислый по ГОСТ 7172.

Диантипирилметан, раствор с массовой концентрацией 10 г/дм⁴: 10 г диантипирилметана растворяют в 300—400 см³ воды, содержащей 15 см³ серной кислоты. Раствор фильтруют в мервую колбу 1 дм³, добавляют 5 г аскорбиновой кислоты, доливают до метки водой и перемешивают.

Титан металлический по ГОСТ 19807.

Титана двуокись.

Стандартный раствор А: готовят из титана металлического (вариант I) и из двуокиси титана (вариант II).

Вариант 1: 0,5995 г металлического титана растворяют в 50—100 см³ серной кислоты (1:5). После растворения титана добавляют по канлям азотную кислоту до обесцвечивания раствора в выпаривают до появления густых белых паров серной кислоты. После одлаждения обмывают стеики стакана водой и снова выпаривают до наров серной кислоты. Эту операцию повторяют. Раствор после охлаждения переводят в мерную колбу вместимостью 1 дм³, доливают до метки серной кислотой (1:5) и перемешивают.

Вариант II: 1,0 г двуокиси титана помещают в платиновую чашку и сплавляют с 12 г пиросернокислого калия при температуре 800—850 °C. Сплав растворяют в 400 см серной кислоты (1:5) при слабом нагревании. После полного растворения сплава раствор фильтруют через фильтр средней плотносты в мерную колбу вместим остью 1 дм додивают до метки водой и перемешивают.

Раствор Б: 10 см³ раствора А помещают в мерную колбу вместимостью 100 см³, доливают до метки серной кислотой (1:9) и перемещивают.

Массовую концентрацию раствора сернокислого титана устанавливают следующим образом: 50 см³ раствора А помещают в стакан вместимостью 300 см³, нейтрализуют аммиаком по метиловому красному и приливают 3—4 см³ аммиака в избыток. Раствор с выпавшим осадком нагревают до кипения, осадок отфильтровывают через фильтр средней плотности и промывают 4—5 раз горячей водой с добавлением аммиака (2--3 капли). Фильтр с осадком помещают в предварительно прокаленный до постоянной массы платиновый тигель, высушивают, озоляют и прокаливают при температуре (1000±20) °С до постоянной массы.

Одновременно проводят контрольный опыт на загрязнение ре-

активов.

Массовую концентрацию раствора сернокислого титана (T), выраженную в г двуокиси титана на 1 см³ раствора, вычисляют по формуле

$$T = \frac{(m-m_1)-(m_2-m_3)}{V} .$$

где т - масса тигля с осадком двуокиси титана, г;

 m_1 — масса пустого тигля, г;

та — масса тигля с осадком контрольного опыта, г;

та — масса пустого тигля контрольного опыта, г;

V — объем раствора сернокислого титана, взятый для установки массовой концентрации, см³.

5 ПРОВЕДЕНИЕ АНАЛИЗА

5.1 Навеску флюса массой 0,5 г помещают в платиновую или стеклоуглеродистую чашку, смачивают водой, приливают 5 см³ азотной кислоты и нагревают в течение 5—7 мин. Затем добавляют 10 см³ хлорной кислоты, насыщенной борной кислотой, и выпаривают досуха. Сухой остаток осторожно нагревают, затем прокаливают при температуре 750 -800 °С в течение 2—3 мин.

Прокаленный остаток сплавляют с 4—5 г пиросернокислого калия при температуре 750 -800 °С. В чашку наливают 50 см³ раствора сернои вислоты (1:9) и нагревают при перемешивании па-

лочкой до растворения осадка.

Содержимое чашки переводят в мерную колбу 100 см³, охлаждают, доводят до метки серной кислотой (1:9) и перемешивают. Нерастворившиеся бернокислые соли кальция отфильтровывают

через сухой фильтр в сухую колбу, отбрасывая первые порции

фильтрата.

Аликвотную часть фильтрата 50 см³ (при массовой доле двуокиси титана от 0,01 до 0,1 %) или 10 см³ (при массовой доле двуокиси титана свыше 0,1 %) помещают в мерную колбу вместимостью 100 см³. Прибавляют 5 см⁴ раствора аскорбиновой кислоты, перемешивают, выдерживают 10 мин до полного восстановления железа. Прибавляют 10 см³ соляной кислоты, 25 см³ раствора диантипирилметана, доводят до метки водой и перемешивают. Оптическую плотность раствора измеряют через 45 –50 мин на спектрофотометре при длине волны 395 им или фотоэлсктроколориметре в диапазоне длин волн от 400 до 440 нм.

Раствором сравнения служит раствор контрольного опыта.

5.2 Для построения градуировочного графика в изть мерных колб вместимостью 100 см' вводят 0,25; 0,5; 1,0; 2,0; 3,0 см³ ставдартного раствора Б, что соответствует 0,00025; 0,00005; 0,0001; 0,0002; 0,0003 г двуокиси титана. Затем в каждую колбу прибавляют по 5 см¹ аскорбиновой кислоты, 10 см¹ соляной кислоты, 25 см³ раствора диантипирилметана. Раствор в колбах доводят до метки водой и перемешивают. Оптическую плотность раствора измеряют через 45—50 мия на снектрофотометре при длине волны 395 нм или фотоэлектроколориметре в дианазоне длин волн от 400 до 440 им.

Для раствора сравнения применяют воду.

По найденным значениям оптической плотности растворов с учетом поправки на содержание титана в реактивах строят градуировочный график.

6 ОБРАБОТКА РЕЗУЛЬТАТОВ

61 Массовую долю двуокиен тигана (X) в процентах вычисляют по формуле

$$X = \frac{m_1 \cdot 100}{m}$$
,

где m_t — масса двуокиси титана, найденивя по градупровочному графику, г;

 т – масса навески, соответствующая аликвотной части раствора, г.

6.2 Нормы точности и нормативы контроля точности определения массовой доли двуокиси титана приведены в габлице 1.

FOCT 21639.5-93

Таблица 1 — Нормативы контроля точности

	Долускаемые расхождения, %								
Массовая доля двуокеся питама, %	потрешнести результатов внаянза, А	даух средних ре лудатов вналаза, всполнениях в раз личных условият в	деух парадзель ных определения бл	треч парадледь ных определений ds	результатов внали за стандартного образца от эттесто ванного завтелят б				
От 0.01 до 0.02 вилюч Св 0.02 > 0.05 > > 0.05 > 0.1 > > 0.1 > 0.2 > 0.5 >	0,007 0,013 0,024 0,04 0,06	0,009 0,017 0,03 0,05 0,07	0,008 0,014 0,025 0,04 0,06	0,009 0,017 0,031 0,05 0,07	0,005 0,009 0,016 0,02 0,04				

УДК66.046.52:546.824-31:006.354 ОКС 71.040.040 В09 ОКСТУ 0709

Ключевые слова: флюсы, электрошлаковый переплав, метод определения двуокиси титана, аппаратура, реактивы, растворы, массовая концентрация раствора, массовая доля

6