

ГОСУДАРСТВЕННЫЙ СТАНДАРТ СОЮЗА ССР

СОЛЬ БЕРТОЛЕТОВА ТЕХНИЧЕСКАЯ

ТЕХНИЧЕСКИЕ УСЛОВИЯ

FOCT 2713-74

Издание официальное

ГОСУДАРСТВЕННЫЙ СТАНДАРТ СОЮЗА ССР

СОЛЬ БЕРТОЛЕТОВА ТЕХНИЧЕСКАЯ

Технические условия

LOCI

Potassium chlorate for industrial use. Specifications 2713-74

OKII 21 4721

Срок действия

с 01.01.75 до 01.01.95

Несоблюдение стандарта преследуется по закону

Настоящий стандарт распространяется на техническую бертолетову соль, представляющую собой калиевую соль хлорноватой кислоты.

Формула КСІОз.

Молекулярная масса (по международным атомным массам 1985 г.) — 122,55.

(Измененная редакция, Изм. № 3).

1. МАРКИ И ТЕХНИЧЕСКИЕ ТРЕБОВАНИЯ

1.1. Техническая бертолетова соль должна изготовляться в соответствии с требованиями настоящего стандарта по технологическому регламенту, утвержденному в установленном порядке.

1.2. В зависимости от дисперсности техническую бертолетову

соль получают двух марок:

А — кристаллическая;

Б — тонкодисперсный порошок.

 По физико-химическим показателям техническая бертолетова соль должна соответствовать нормам, указанным в таблице.

Наименопание показятеля	Норыя для марки	
	ОКП 21 4721 0100	OKΠ 4721 0200
 Внешний вид 	Неслеживающиеся кристаллы и по рошок белого и желтоватого цвет:	
 Массовая доля хлорноватокислого калия (КСІО₅) в пересчете на сухое ве- щество, %, не менее Массовая доля воды, %, не более 	99,8 0.05	99,8 6
Массовая доля не растворимых в воде веществ, %, не более Массовая доля хлорядов в пересче-	0,03	0,03
ге на хлористый кальций (CaCl ₂), %, не более 6. Массовая доля сульфатов в перс-	0,03	0,03
счете на сернокислый кальций (CaSO ₄), %, не болес 7. Массовая доля броматов в пересче-	0,03	0,03
ге на бромноватокислый калий (КВгО ₂), %, не более 8. Массовая доля щелочи в пересчеге	0,008	0,008
на окись кальция (CaO), %, не более 9. Массовая доля органических ве-	0,015	0,015
цеств, %, не более 10. Массовая доля флотамина, %, не	0,005	0,008
более 11. Фракционный состав:	Не нормируется	0,02
массовая доля продукта на сите с сеткой № 01 по ГОСТ 6613—86, %. не менее массовая доля продукта на сите с сеткой № 05 по ГОСТ 6613—86, не	60	-
более массовая доля продукта под ситом	0,3	-
с сеткой № 0071 по ГОСТ 6613—86, %, не менее массовая доля продукта под ситом		7 5
с сеткой № 01 по ГОСТ 6613-86, %, не менее		90

Примечания:

 Фракционный состав, массовую долю органических веществ определяют по требованию потребителя.

2. По согласованию с потребителем допускается изготовление продукта мар-

ки А с массовой долей органических веществ не более 0,008%.

По требованию потребителя продукт марки А должен изготовляться с остатком на сите с сеткой № 01 по ГОСТ 6613—86 в пределах 30—60%, на сите с сеткой № 05 по ГОСТ 6613—86 — не более 0.5%.

(Измененная редакция, Изм. № 1, 2, 3). 1.4. (Исключен, Изм. № 3).

1а. ТРЕБОВАНИЯ БЕЗОПАСНОСТИ

1а.1. Техническая бертолетова соль токсична, переводит гемоглобин крови в метагемоглобин и вызывает распад эритроцитов.

В исключительных случаях возможны острые отравления на производстве — при вдыхании и заглатывании больших количеств

пыли или при случайном приеме внутрь.

1а.2. Техническая бертолетова соль термически нестойкое вещество, являющееся сильным окислителем. Взрывчатые и окислительные свойства бертолетовой соли появляются при нагревании выше 400°С, при механическом воздействии на нагретый и расплавленный продукт, а также при взаимодействии с органическими веществами, с легкоокисляющимися веществами, с концентрированной серной кислотой.

1а.3. Все производственные помещения должны быть оборудованы приточно-вытяжной вентиляцией. Оборудование должно быть снабжено средствами, исключающими выделение аэрозолей берто-

летовой соли в помещения.

1а 4. Весь производственный персонал должен быть обеспечен специальной одеждой в соответствии с типовыми нормами выдачи специальной одежды и индивидуальными средствами защиты органов дыхания и эрения: противогаз марки ФГ-13-В или БКФ, очки и защитные перчатки.

1а.5. Необходимо пользоваться только инструментом, не дающим искры; не допускается пользование открытым огнем и зажи-

гательными средствами.

1а.6. При загорании бертолетовой соли или тары с бертолето-

вой солью — тущить водой.

- 1а 7. При загорании специальной одежды работающий должен окунуться в резервуар, специально установленный и всегда заполненный чистой водой.
- 1а.8. До прибытия врача при отравлении дать обильное теплое питье раствора питьевой соды, обеспечить согревание тела пострадавшего. При попадании бертолетовой соли на кожные покровы следует смыть водой.

1а.9. Рассыпанный продукт необходимо собрать и остатки

смыть водой.

1а.10. Уборка помещения влажная или вакуумная.

(Введен дополнительно, Изм. № 2).

2. ПРАВИЛА ПРИЕМКИ

2.1. Техническая бертолетова соль должна поставляться партиями. Партией считают количество продукта однородного по своим качественным показателям, одновременно отправляемого

в один адрес и сопровождаемого одним документом о качестве, но не более 50 т.

Документ о качестве должен содержать:

наименование предприятия-изготовителя и его товарный знак; наименование продукта, марку;

номер партин;

дату изготовления;

массу брутто и нетто в килограммах;

результаты анализов или подтверждение о соответствии качества продукта требованиям настоящего стандарта;

подтверждение о нанесении на упаковку знака опасности по ГОСТ 19433—88, шифр группы;

обозначение настоящего стандарта.

(Измененная редакция, Изм. № 2, 3).

2.2. Для проверки качества технической бертолетовой соли пробу отбирают от 5% единиц продукции, но не менее чем от 10 единиц при малых партиях.

(Измененная редакция, Изм. № 1).

2.3. При получении неудовлетворительных результатов анализа хотя бы по одному из показателей проводят повторный анализ пробы, отобранной от удвоенного количества единиц продукции той же партии. Результаты повторного анализа являются окончательными и распространяются на всю партию.

3. МЕТОДЫ АНАЛИЗА

 3.1а. Общие указания по проведению анализа — по ГОСТ 27025—86.

Допускается использование аппаратуры с техническими и метрологическими характеристиками, а также реактивов по качеству не ниже указанных в иастоящем стандарте.

(Введен дополнительно, Изм. № 3).

3.1. Точечные пробы технической бертолетовой соли отбирают при помощи щупа, изготовленного из меди или бронзы, погружая его на 4/5 глубины единицы продукции по вертикальной оси.

Масса точечной пробы должна быть не менее 100 г.

(Измененная редакция, Изм. № 3).

 З.2. Отобранные пробы соединяют вместе на сухом листе винипласта, стеклопластика или стекла, тщательно перемешивают и

сокращают до получения средней пробы массой 1000 г.

Среднюю пробу помещают в чистую сухую стеклянную банку с притертой пробкой. На банку накленват этикетку с обозначением наименования марки продукта, даты и места отбора пробы, фамилия пробоотборщика. Банку опечатывают и направляют в лабораторию для анализа.

(Измененная редакция, Изм. № 3).

 З.З. Внешний вид продукта определяют визуально

3.4. Определение массовой доли хлорноватокислого калия в пересчете на сухое вещество

Массовую долю хлорноватокислого калия (X) в пересчете на сухое вещество в процентах вычисляют по формуле

$$X = 100 - P$$
.

где P — сумма массовых долей примесей (показатели 4—9 таблицы), %.

(Измененная редакция, Изм. № 2, 3).

3.5. Определение массовой доли воды

3.5.1. Массовую долю воды определяют по ГОСТ 14870—77 методом высушивания.

Масса навески продукта должна быть 4,9-5,1 г.

Допускаемая абсолютная суммарная погрешность результата определения $\pm 0,008\%$ для марки A и $\pm 0,3\%$ для марки B при доверительной вероятности $P\!=\!0,95$.

(Измененная редакция, Изм. № 2, 3).

3.5.2. Обработка результатов

Массовую долю воды (Х1) в процентах вычисляют по формуле

$$X_1 = \frac{(m-m_1)\cdot 100}{m}$$
,

где т — масса навески бертолетовой соли, г.

ти — масса навески бертолетовой соли после сушки, г.

За результат анализа принимают среднее арифметическое результатов двух параллельных определений, допускаемые расхождения между которыми не должны превышать для продукта марки A — 0,005%, для продукта марки Б — 0,3%.

(Измененная редакция, Изм. № 2).

 3.6. Определение массовой доли нерастворимых в воде веществ

3.6.1а. Аппаратура, реактивы, растворы

Весы лабораторные по ГОСТ 24104—88 2-го класса точности с наибольшим пределом взвешивания 200 г и 3-го класса точности с наибольшим пределом взвешивания 500 г.

Цилиндр по ГОСТ 1770-74 исполнения 1 или 3 вместимостью

25, 500 см3.

Тигель фильтрующий по ГОСТ 25336—82 типа ТФ ПОР 16 или тигель Гуча по ГОСТ 9147—80.

Баня водяная.

Шкаф сушильный, обеспечивающий температуру (107±2)°С. Посуда лабораторная по ГОСТ 25336—82.

Фильтр «белая лента».

Вода дистиллированная по ГОСТ 6709—72 или вода эквивалентной чистоты.

(Введен дополнительно, Изм. № 3).

3.6.1. Проведение анализа

25—27 г продукта в пересчете на сухое вещество взвешивают (результаты взвешивания в граммах записывают до второго десятичного знака). Навеску продукта количественно переносят в стакан, растворяют в 400 см³ воды, накрывают часовым стеклом и нагревают на водяной бане в течение 1 ч.

Затем раствор фильтруют через тигель с вставленным в него обеззоленным фильтром, предварительно высушенным при темпе-

ратуре (107 ± 2)°С и взвешенным до постоянной массы.

Фильтр с остатком промывают 8 раз горячей водой порциями по 25 см³. Затем фильтр сушат до постоянной массы при температуре (107 ± 2)°С и взвешивают (результаты взвешивания фильтра записывают в граммах до четвертого десятичного знака).

Тигель с высушенным на фильтре остатком хранят для опре-

деления массовой доли органических веществ (п. 3.11).

(Измененная редакция, Изм. № 3).

3.6.2. Обработка результатов

Массовую долю нерастворимых в воде веществ (X_2) в процентах вычисляют по формуле

$$X_2 = \frac{(m_1 - m_2) \cdot 100}{m}$$
,

где m — масса навески бертолетовой соли, г;

 тигля с остатком на фильтре после высушивания, г;

т. — масса тигля с беззольным фильтром, г.

За результат анализа принимают среднее арифметическое результатов двух параллельных определений, допускаемые расхождения между которыми не должны превышать 0,003% при доверительной вероятности P=0,95.

Допускаемая абсолютная суммариая погрешность результата определений $\pm 0,003\%$ при доверительной вероятности P=0,95.

(Измененная редакция, Изм. № 2, 3).

3.7. Определение массовой доли хлоридов в пересчете на хлористый кальций

3.7.1. Аппаратура, реактивы, растворы

Весы лабораторные по ГОСТ 24104—88 2-го класса точности с наибольшим пределом взвешивания 200 г и 3-го класса точности с наибольшим пределом взвешивания 500 г

Бюретка по ГОСТ 20292—74 исполнения 7 вместимостью 10 см³. Цилиндр по ГОСТ 1770- 74 исполнения 1 или 3 вместимостью 250 см³.

Посуда лабораторная по ГОСТ 25336-82.

Вода дистиллированная по ГОСТ 6709—72 или вода эквивален-

Бромфеноловый синий водорастворимый.

Дифенилкарбазон.

Кислота азотная по ГОСТ 4461—77, раствор концентрации c (HNO₃) = 2 моль/дм³ (2 н.).

Ртуть (II) азотнокислая 1-водная по ГОСТ 4520—78, раствор концентрации с [¹/2(Hg(NO₃)₂·H₂O)]=0,05 моль/дм³ (0,05 н.), готовят по ГОСТ 25794.3—83.

Смешанный индикатор готовят следующим образом. (1,0000 ± ±0,0002) г дифенилкарбазона и (0,0500 ±0,0002) г бромфенолового синего взвешивают и растворяют в 100 см³ теплого этилового спирта.

Спирт этиловый ректификованный технический по ГОСТ

18300-87 высшего сорта.

3.7.2. Проведение анализа

Около 10 г бертолетовой соли в пересчете на сухое вещество взвешивают (результаты взвешивания в граммах записывают до второго десятичного знака), помещают в коннческую колбу вместимостью 500 см³, растворяют в 200 см³ горячей воды, охлаждают, прибавляют 10 капель смешанного индикатора и по каплям раствор азотной кислоты до появления желтой окраски. Затем вносят еще три капли избытка раствора азотной кислоты и титруют содержимое колбы раствором азотнокислой ртути (II) до перехода желтой окраски раствора в лилово-фиолетовую.

Одновременно проводят контрольный опыт в тех же условиях и с теми же объемами реактивов.

3.7.3. Обработка результатов

Массовую долю хлоридов в пересчете на хлористый кальций (X_3) в процентах вычисляют по формуле

$$X_3 = \frac{(V-V_1) \cdot 0.002775 \cdot 100}{m}$$
,

где V — объем раствора азотнокислой ртути (II) концентрации точно 0,05 моль/дм³ (0,05 н.), израсходованный на титрование анализируемой пробы, см³;

V₁ — объем раствора азотнокислой ртути (II) концентрации точно 0,05 моль/дм³ (0,05 н.), израсходованный на титрование в контрольном опыте, см³;

0,002775 — масса хлористого кальция, соответствующая 1 см³ раствора азотнокислой ртути (II) концентрации точно 0,05 моль/дм³ (0,05 н.), г;

т — масса навески бертолетовой соли, г.

За результат анализа принимают среднее арифметическое результатов двух параллельных определений, допускаемые расхож-

дения между которыми не должны превышать 0,002% при доверительной вероятности P=0,95.

Допускаемая абсолютная суммарная погрешность результата определения $\pm 0,002\%$ при доверительной вероятности P=0,95.

3.7-3.7.3. (Измененная редакция, Изм. № 2, 3).

3.8. Определение массовой доли сульфатов в пересчете на сернокислый кальций

3.8.1. Аппаратура, реактивы, растворы

Весы лабораторные по ГОСТ 24104—88 3-го класса точности с наибольшим пределом взвешивания 500 г.

Бюретка по ГОСТ 20292-74 исполнения 1 или 3 вместимостью

50 см3.

Колбы мерные по ГОСТ 1770-74 вместимостью 50 и 100 см³.

Пипетки по ГОСТ 20292—74 исполнения 2 вместимостью 10 и 50 см³, исполнения 6 или 7 вместимостью 10 см³.

Цилиндры мерные по ГОСТ 1770—74 исполнения 1 или 3 вместимостью 10 или 25 см³ и 500 см³.

Фотоэлектроколориметр любой марки.

Барий хлористый по ГОСТ 4108—72, дважды перекристаллизованный.

Вода дистиллированная по ГОСТ 6709—72 или вода эквивалентной чистоты.

Глицерин по ГОСТ 6259-75.

Кислота соляная по ГОСТ 3118-77.

Натрий хлористый по ГОСТ 4233-77.

Расівор, со́держащий сульфаты, готовят по ГОСТ 4212—76. Рабочий свежеприготовленный раствор должен содержать 0,1 мг SO_4^{2-} в 1 см³.

Раствор 1, готовят следующим образом: в 500 см³ воды растворяют (120,00±0,01) г хлористого натрия, добавляют 10 см³ соляной кислоты, 500 см³ глицерина, (50,00±0,01) г хлористого бария и тщательно перемешивают.

(Измененная редакция, Изм. № 3).

3.8.2. Подготовка к анализу

3.8.2.1. Построение градуировочного графика

Готовят растворы сравнения. Для этого в конические колбы вместимостью 100 см³ вносят 2, 4, 6, 8, 10 см³ рабочего раствора сульфатов, доводят объемы растворов в колбах из бюретки водой до 50 см³ и перемешивают.

Одновременно готовят контрольный раствор, не содержащий сульфатов.

Во все растворы вносят пипеткой 10 см³ раствора 1, перемешивают 1 мин и оставляют в покое на 10 мин. Через 10 мин растворы перемешивают 15 с и измеряют оптическую плотность их по отношению к контрольному раствору на фотоэлектроколориметре при длине волны около 430 нм в кюветах с толщиной поглощающего свет слоя 50 мм.

По полученным данным строят градуировочный график, откладывая по оси абсцисс массу сульфатов в миллиграммах, добавленную в растворы сравнения, а по оси ординат — соответствующие им величины оптической плотности.

3.8.3. Проведение анализа

4,5—5,5 г продукта в пересчете на сухое вещество взвешивают (результаты взвешивания в граммах записывают до второго десятичного знака), растворяют в воде в мерной колбе вместимостью 100 см³, доводят объем раствора в колбе водой до метки, тщательно перемешивают и фильтруют через фильтр «синяя лента».

50 см³ фильтрата помещают в коническую колбу вместимостью 100 см³, прибавляют к нему пипеткой 10 см³ раствора 1 и далее определение проводят так же, как при построении градуировочно-

го графика.

3.8.4. Обработка результатов

Массовую долю сульфатов в пересчете на сернокислый кальций (X_4) в процентах вычисляют по формуле

$$X_4 = \frac{m \cdot 1,4172 \cdot 100 \cdot 100}{m_1 \cdot 50 \cdot 1000}$$
,

где m — масса сульфатов, найдениая по градуировочному графику, мг;

1,4172 — коэффициент пересчета SO₄ на CaSO₄;

т. — масса навески бертолетовой соли, г.

За результат анализа принимают среднее арифметическое результатов двух параллельных определений, допускаемые расхождения между которыми не должны превышать 0,004%.

Допускаемая абсолютная суммарная погрешность результата определений ±0,005% при доверительной вероятности P=0,95.

Примечание. После проведения каждого анализа кюветы следует тщательно промывать во избежание оседания на их стенках частиц BaSO₄.

Допускается определение массовой доли сульфатов проводить

фототурбидиметрическим методом по ГОСТ 10671.5-74.

При разногласиях в оценке массовой доли сульфатов анализ проводят по п. 3.8.3.

3.8.3—3.8.4. (Измененная редакция, Изм. № 3).

3.8-3.8.4. (Измененная редакция, Изм. № 2).

3.9. Определение массовой доли броматов в пересчете на бромноватокислый калий

3.9.1. Аппаратура, реактивы, растворы

Весы лабораторные по ГОСТ 24104—88 3-го класса точности с наибольшим пределом взвешивания 500 г.

Бюретка по ГОСТ 20292—74 исполнения 6 вместимостью 5 см³ или исполнения 7 вместимостью 10 см³.

Цилиндры мерные по ГОСТ 1770—74 исполнения 1 или 3 вместимостью 10 и 100 см³.

Посуда лабораторная по ГОСТ 25336-82.

Калий йодистый по ГОСТ 4232—74, раствор с массовой долей 10%.

Кислота серная по ГОСТ 4204-77, раствор концентрации

 $c(^{1}/_{2}H_{2}SO_{4})=1$ моль/дм³ (1 н.).

Натрий серноватистокислый (тиосульфат натрия) 5-водный по ГОСТ 27068—86, раствор концентрации c (Na₂S₂O₃·5H₂O) = =0,01 моль/дм³, готовят по ГОСТ 25794.2—83.

Крахмал растворимый по ГОСТ 10163-76, раствор с массовой

долей 1%.

Вода дистиллированная по ГОСТ 6709—72 или вода эквивалентной чистоты.

(Измененная редакция, Изм. № 2, 3).

3.9.2. Проведение анализа

4—5 г продукта в пересчете на сухое вещество взвешивают (результаты взвешивания в граммах записывают до второго десятичного знака), помещают в коническую колбу вместимостью 250 см³ с притертой пробкой и растворяют в 100 см³ воды. Приливают 5 см³ раствора йодистого калия и 5 см³ раствора серной кислоты. Раствор перемешивают, закрывают колбу пробкой и помещают в темное место.

Через 30 мин титруют выделившийся йод раствором серноватистокислого натрия до перехода окраски раствора в светло-желтую. Затем прибавляют 2—3 см³ раствора крахмала и продолжают титрование до обесцвечивания раствора. Одновременно проводят контрольный опыт в тех же условиях и с теми же объемами реакти-

BOB.

(Измененная редакция, Изм. № 3).

3.9 3. Обработка результатов

Массовую долю броматов в пересчете на бромноватокислый калий (X_5) в процентах вычисляют по формуле

$$X_5 = \frac{(V_1 - V_2) \cdot 0.000278 \cdot 100}{m}$$
,

где V_1 — объем раствора серноватистокислого натрия концентрации точно 0,01 моль/дм³ (0,01 н.), израсходованный на титрование анализируемого раствора, см³;

V₂ — объем раствора серноватистокислого натрия концентрации точно 0,01 моль/дм³ (0,01 н.), израсходованный

на титрование в контрольном опыте, см3;

0,000278 — масса бромноватокислого калия, соответствующая 1 см³ раствора серноватистокислого натрия концентрации точно 0,01 моль/дм³ (0,01 н.), г;

т — масса навески бертолетовой соли, г.

За результат анализа принимают среднее арифметическое результатов двух параллельных определений, допускаемые расхождения между которыми не должны превышать 0,0014% при доверительной вероятности P=0,95.

Допускаемая абсолютная суммарная погрешность результата

определения $\pm 0.005\%$ при доверительной вероятности P = 0.95.

(Измененная редакция, Изм. № 2, 3).

 3.10. Определение массовой доли щелочи в пересчете на окись кальция

3.10.1. Аппаратура, реактивы, растворы

Весы лабораторные по ГОСТ 24104—88 3-го класса точности с наибольшим пределом взвешивания 500 г.

Бюретка по ГОСТ 20292-74 исполнения 6 вместимостью 5 см3

или исполнения 7 вместимостью 10 см³.

Цилиндр мерный по ГОСТ 1770—74 исполнения 1 или 3 вместимостью 250 см³.

Посуда лабораторная по ГОСТ 25336-82.

Вода дистиллированная, не содержащая СО₂; готовят по ГОСТ 4517—87.

Кислота соляная по ГОСТ 3118—77, раствор концентрации с (HCl) = 0,1 моль/дм³ (0,1 н.); готовят по ГОСТ 25794.1—83.

Смещанный индикатор (метиловый красный и метиленовый голубой или метиловый красный и бромкрезоловый зеленый); готовят по ГОСТ 4919.1—77.

3 10.2. Проведение анализа

19,5—20,5 г продукта в пересчете на сухое вещество взвешивают (результат взвешивания в граммах записывают до второго десятичного знака), помещают в коническую колбу вместимостью 500 см³, растворяют в 200 см³ теплой воды.

Раствор охлаждают до комнатной температуры, прибавляют три—четыре капли раствора смешанного индикатора и титруют раствором соляной кислоты до перехода зеленой окраски раствора в розово-фиолетовую.

Одновременно проводят контрольный опыт в тех же условиях с теми же объемами реактивов.

3.10.3. Обработка резильтатов

Массовую долю щелочи в пересчете на окись кальция (X_6) в процентах вычисляют по формуле

$$X_6 = \frac{(V - V_1) - 0.0028 \cdot 100}{m}$$
,

где V — объем раствора соляной кислоты концентрации точно 0,1 моль/дм³ (0,1 н.), израсходованный на титрование анализируемой пробы, см³;

V₁ — объем раствора соляной кислоты концентрации точно

0,1 моль/дм³ (0,1 н.), израсходованный на титрование в контрольном опыте, см³;

0,0028 — масса окиси кальция, соответствующая 1 см³ раствора соляной кислоты концентрации точно 0,1 моль/дм³ (0,1 н.), г;

т — масса навески бертолетовой соли, г.

За результат анализа принимают среднее арифметическое результата двух параллельных определений, допускаемые расхождения между которыми не должны превышать 0,003% при доверительной вероятности P=0,95.

Допускаемая абсолютная суммарная погрешность результата определения $\pm 0,003\%$ при доверительной вероятности P = 0,95.

3.10-3.10.3. (Измененная редакция, Изм. № 2, 3).

3.11. Определение массовой доли органических веществ

3.11.1. Аппаратура, реактивы, растворы

Весы лабораторные по ГОСТ 24104—88 2-го класса точности с наибольшим пределом взвешивания 200 г.

Цилиндр мерный по ГОСТ 1770-74 исполнения 1 или 3 вмести-

мостью 10 или 25 см³.

Шкаф сушильный, обеспечивающий температуру (107 ± 2) °C. Печь муфельная, обеспечивающая температуру (475 ± 25) °C.

Тигель фарфоровый по ГОСТ 9147—80 или тигель платиновый по ГОСТ 6563—75.

Кислота соляная по ГОСТ 3118-77.

Серебро азотнокислое по ГОСТ 1277—75, раствор с массовой долей 1%.

Вода дистиллированная по ГОСТ 6709—72 или вода эквивалентной чистоты.

(Измененная редакция, Изм. № 2, 3).

3.11.2. Проведение анализа

Остаток, полученный при определении массовой доли нерастворимых в воде веществ (п. 3.6), осторожно обрабатывают несколько раз соляной кислотой порциями по 10 см³, промывают остаток на фильтре горячей водой до отрицательной реакции на хлор — ион (проба с азотнокислым серебром), сушат при (107 ± ±2)°С, до постоянной массы. Беззольный фильтр с осадком осторожно переносят в прокаленный до постоянной массы фарфоровый или платиновый тигель. Фильтр сжигают, прокаливают при температуре (475 ± 25)°С до постоянной массы. Результаты всех взвешиваний в граммах записывают до четвертого десятичного знака.

(Измененная редакция, Изм. № 3).

3.11.3. Обработка результатов

Массовую долю органических веществ (X_T) в процентах вычисляют по формуле

$$X_7 = \frac{[(m_1 - m_2) - m_3] \cdot 100}{m}$$
,

где m -- масса навески анализируемой бертолетовой соли, взятая для определения массовой доли нерастворимых в воде веществ (п. 3.6), г;

ти — масса фарфорового или платинового тигля с остатком на беззольном фильтре до прокаливания, г;

та масса фарфорового или платинового тигля после прокаливания, г;

та — масса беззольного фильтра, г.

За результат анализа принимают среднее арифметическое результатов двух параллельных определений, допускаемые расхождения между которыми не должны превышать 0,003% при доверительной вероятности P=0.95.

Допускаемая абсолютная суммарная погрешность результата определения $\pm 0.003\%$ при доверительной вероятности P = 0.95.

(Измененная редакция, Изм. № 2, 3).

3.12—3.12.2, 3.13—3.13.4, 3.14—3.14.2. (Исключены, Изм. № 2). 3.15. Определение массовой доли флотамина

Метод основан на образовании окрашенного комплекса флотамина с метиловым оранжевым с последующей экстракцией комплекса дихлорэтаном и фотометрированием интенсивности окраски.

(Измененная редакция, Изм. № 3).

3.15.1. Аппаратура, реактивы, растворы

Весы лабораторные по ГОСТ 24104—88 2-го класса точности с наибольшим пределом взвешивания 200 г и 3-го класса точности с наибольшим пределом взвешивания 500 г.

Колбы мерные по ГОСТ 1770-74 вместимостью 250, 500,

1000 cm3.

Пипетка по ГОСТ 20292—74 исполнения 2 и 6 или 7 вместимостью 10 см³.

Цилиндры мерные по ГОСТ 1770—74 исполнения 1 или 3 вместимостью 10 (25 или 50) и 250 см³.

Фотоэлектроколориметр любой марки.

Посуда лабораторная по ГОСТ 25336-82.

Калий хлористый по ГОСТ 4234-77.

Калий хлорноватокислый, готовят следующим образом: (5,00±0,01) г препарата взвешивают, помещают в мерную колбу вместимостью 500 см³ и растворяют в воде, затем доводят объем раствора водой до метки и перемешивают.

Кислота уксусная по ГОСТ 61-75.

Натрия гидроокись по ГОСТ 4328-77.

Натрий уксуснокислый по ГОСТ 199-78.

Буферный раствор, готовят следующим образом:

 $(37,00\pm0,01)$ г уксуснокислого натрия и $(62,50\pm0,01)$ г хлорис-

того калия взвешивают, растворяют в воде в мерной колбе вместимостью 250 см³, объем раствора доводят водой до метки и перемешивают.

Метиловый оранжевый (индикатор).

Спирт изопропиловый по ГОСТ 9805-84.

Дихлорэтан технический по ГОСТ 1942-86.

Вода дистиллированная по ГОСТ 6709-- 72 или вода эквивалентной чистоты.

Флотамин технический по ГОСТ 23717-79.

(Измененная редакция, Изм. № 2, 3).

3.15.2. Приготовление растворов

3.15.2.1. Приготовление раствора метилового оранжевого

(0,1000±0,0002) г метилового оранжевого взвешивают и растворяют в 200 см³ воды при нагревании до 70—80°С. После охлаждения раствор переносят в мерную колбу вместимостью 1000 см³, куда предварительно наливают 200 см³ буферного раствора, прибавляют 100 см³ уксусной кислоты, раствор тщательно перемешивают, затем доводят объем водой до метки и снова перемешивают.

Раствор годен в течение недели. При появлении мути или осад-

ка готовят новый раствор.

(Измененная редакция, Изм. № 3).

3.15.2.2. Приготовление образцового раствора,

содержащего флотамин

Для этой цели изготовитель тонкодисперсной бертолетовой соли отправляет потребителю контрольную пробу флотамина (60—70 г), отобранную из использованного при выработке про-

дукта (для каждой партии).

Для приготовления образцового раствора используют флотамин, подготовленный следующим образом: около 50 г флотамина расплавляют в стакане на водяной бане при 65—75°С при тщательном перемещивании стеклянной палочкой. После оседания на дно нерасплавившегося осадка с поверхности расплава снимают фильтровальной бумагой хлопья и сливают часть расплавленного прозрачного расплава в стаканчик.

Стаканчик для взвешивания с флотамином закрывают крыш-

кой и хранят в эксикаторе над твердой гидроокисью натрия.

Перед взятием навески флотамина на приготовление образцового раствора с поверхности снимают слой толщиной 1—2 мм.

(0,0040 ± 0,0002) г приготовленного препарата взвешивают в стаканчике вместимостью 25 см³. Стаканчик с навеской помещают на водяную баню и выдерживают при 65—75°С в течение 10 мин.

По окончании выдержки прибавляют 10 см³ уксусной кислоты, тщательно перемешивают раствор, после чего количественно переводят в мерную колбу вместимостью 1000 см³, доводят объем раствора водой до метки и перемешивают. 1 см³ приготовленного раствора содержит 0,004 мг флотамина. Раствор используют свежеприготовленным.

(Измененная редакция, Изм. № 2, 3).

3.15.3. Построение градуировочного графика

В делительные воронки вместимостью 250 см³ приливают по 10 см³ раствора хлорноватокислого калия, вносят по 2; 3; 4; 5; 6 см³ образцового раствора и доводят объем растворов водой до 100 см³.

Затем прибавляют 5 см³ раствора метилового оранжевого, раствор перемешивают и оставляют стоять 10 мин. По окончании выдержки прибавляют 25 см³ дихлорэтана и встряхивают содержимое воронки в течение 5 мин. Полученные растворы соответственно содержат 0,008; 0,012; 0,016; 0,020 и 0,024 мг флотамина.

После расслаивания нижний органический слой сливают в кювету с толщиной поглощающего свет слоя 50 мм, отбрасывая

первые капли раствора.

К раствору в кювете прибавляют 1,5 см³ изопропилового спирта для осветления, осторожно перемешивают раствор палочкой и измеряют оптическую плотность по отношению к дихлорэтану, используя светофильтр с длиной волны 400—450 нм (для прибора типа ФЭК-56—434 нм).

При фотометрировании каждого из растворов замер повто-

ряют трижды и находят среднее арифметическое значение.

По полученным данным строят градуировочный график, откладывая по оси абсцисе содержание флотамина, введенного в образцовые растворы, в миллиграммах, а по оси ординат — соответствующие величины оптических плотностей.

Градунровочную кривую строят по средним величинам из трех параллельных; допускаемое расхождение между параллельными определениями оптической плотности должно быть не более 0.015 единиц.

3.15.4. Проведение анализа

4,5—5,5 г продукта в пересчете на сухое вещество взвешивают в стаканчике вместимостью 25 см³ (результат взвешивания в граммах записывают до второго десятичного знака). К навеске прибавляют 5 см³ уксусной кислоты, перемешивают содержимое стаканчика, после этого количественно переводят в мерную колбу вместимостью 500 см³. Раствор тщательно перемешивают, затем доводят объем водой до метки и снова перемешивают.

10 см³ приготовленного раствора переносят пипеткой в делительную воронку, прибавляют воды до 100 см³ и 5 см³ раствора метилового оранжевого.

Содержимое воронки перемешивают и далее поступают так, как указано в п. 3.15.3.

(Измененная редакция, Изм. № 3).

3.15.5. Обработка результатов

Массовую долю флотамина (X_9) в процентах вычисляют по формуле

$$X_9 = \frac{m \cdot 500 \cdot 100}{m_1 \cdot 10 \cdot 1000}$$
,

где т— масса флотамина, найденная по градуировочному графику, мг;

т. — масса навески бертолетовой соли, г.

За результат анализа принимают среднее арифметическое результатов двух параллельных определений, допускаемые расхождения между которыми не должны превышать 0,002% при доверительной вероятности P=0,95.

Допускаемая абсолютная суммарная погрешность результата определений $\pm 0,002\%$ при доверительной вероятности P=0,95.

(Измененная редакция, Изм. № 2, 3).

3.16. Определение фракционного состава

3.16 l. Annaparypa

Прибор для рассева марки 028M с комплектом сит из сеток № 01, 05 и 0071 по ГОСТ 6613—86 с поддоном и крышкой. Допускается применение просеивающего аппарата по ГОСТ 16187—70 либо другой аппарат, позволяющий осуществить рассев механическим способом.

Алюминиевые противни размером 25×30 см.

Весы лабораторные по ГОСТ 24104—88 3-го класса точности с наибольшим пределом взвешивания 500 г.

Шкаф сушильный, обеспечивающий температуру (107±2)°С.

Посуда лабораторная по ГОСТ 25336—82. Шпатель фарфоровый по ГОСТ 9147—80.

(Измененная редакция, Изм. № 3).

3.16.2. Подготовка пробы продукта

Около 120 г бертолетовой соли, отобранной из средней пробы, помещают на алюминиевый противень и сущат сначала 3 ч на воздухе, перемешивая фарфоровым шпателем через 15 мин, а затем 2 ч в сушильном шкафу при температуре (107±2)°С, перемешивая три раза через 5 мин, а затем каждые 15 мин. После сушки продукт охлаждают в эксикаторе. Образовавшиеся при сушке комочки осторожно разминают резиновой пробкой.

3.16.3. Проведение анализа

Перед началом работы необходимо проверить заземление прибора, чистоту сит и действие прибора на холостом ходу.

30-32 г сухого продукта взвешивают и помещают на верхнее сито. Нижнее сито устанавливают в поддон, верхнее — эчкрывают крышкой.

 Время рассева — 30 мин. После рассева остатки продукта на каждом сите и в поддоне высыпают отдельно на глянцевую бумагу, тщательно прочищают поддон, дно и стенки сит мягкой кисточкой. Каждый из остатков взвешивают. Результат взвешиваний в граммах сухого продукта, остатков записывают до второго десятичного знака.

Допускается во время рассева очищать нижние поверхности сит мягкой кисточкой.

3.16.2; 3.16.3. (Измененная редакция, Изм. № 2, 3).

3.16.4. Обработка результатов

Массовую долю продукта на сите с сеткой № 01 (X_{10}) и № 05 (X_{11}) в процентах вычисляют по формулам:

$$X_{10} = \frac{m_1 \cdot 100}{m}$$
,
 $X_{11} = \frac{m_2 \cdot 100}{m}$,

где т - масса навески пробы, г;

ти — масса продукта на сите с сеткой № 01, г;

т₂ — масса продукта на сите с сеткой № 05, г.

Массовую долю продукта под ситом с сеткой № 0071 (X_{12}) и № 01 (X_{13}) в процентах вычисляют по формулам:

$$X_{12} = \frac{m_3 \cdot 100}{m}$$
,
 $X_{13} = \frac{m_4 \cdot 100}{m}$,

где т - масса навески пробы, г;

m₃ — масса продукта под ситом с сеткой № 0071, г;

ть — масса продукта под ситом с сеткой № 01, г,

Суммарная масса остатков на ситах и в поддоне не должна отличаться от массы, взятой для рассева навески, больше чем на 3%.

(Измененная редакция, Изм. № 2, 3).

4. УПАКОВКА, МАРКИРОВКА, ТРАНСПОРТИРОВАНИЕ И ХРАНЕНИЕ

4.1. Техническую бертолетову соль упаковывают в мешки-вкладыши из полиэтиленовой пленки по ГОСТ 10354—82, толщиной не менее 0,100 мм, вложенные в оцинкованные барабаны по ГОСТ 5044—79, типов I или III, исполнений Б₁, В₁, В₂ вместимостью не более 100 дм³, или в картонно-навивные барабаны по ГОСТ 17065—77 вместимостью не более 53 дм³ и общей толщиной фанерного дна не менее 8 мм, или в деревянные бочки по ГОСТ 8777—80 вместимостью не более 100 дм³, или в фанерные барабаны по ГОСТ 9338—80, или в полиэтиленовые бочки вместимостью не более 100 дм³.

(Измененная редакция, Изм. № 3).

 Полиэтиленовые мешки-вкладыши заваривают или завязывают шпагатом или жгутом из полиэтиленовой пленки при

перегнутой горловине на 180°.

4.3. В одну из упаковочных единиц каждой партии бертолетовой соли марки Б вкладывают контрольную пробу флотамина (октадециламина) в количестве 60—70 г, отобранного из использованного при выработке данной партии продукта. Пробу укладывают в полиэтиленовый пакетик и используют для проведения анализа по п. 3.15.2.2. На грузовое место, в которое вложен пакетик с пробой флотамина, наносится яркая красная полоса длиной 30 см и шириной 5 см.

4.4. Упакованный в барабаны и деревянные бочки продукт транспортируют пакетами в соответствии с ГОСТ 21929—76 и ГОСТ 26663—85 на плоских деревянных поддонах по ГОСТ 9557—87. Габаритные размеры пакета — по ГОСТ 24597—81. Масса бочто пакета — не более 1 т. Средства скрепления пакетов —

no ΓOCT 21650-76.

Полиэтиленовые бочки с продуктом устанавливают в вертикальном положении. Каждый следующий ряд грузят на настил из досок или фанеры. Штабеля закрепляют досками.

Дверные проемы железнодорожных вагонов зашивают досками или щитами: первый — до загрузки вагона, второй — после заг-

рузки вагона.

4.5. Транспортная маркировка — по ГОСТ 14192—77 с нанесением манипуляционного знака «Герметичная упаковка», знака опасности по ГОСТ 19433—88 (класе 5, подкласе 5.1, шифр группы 5112, серийный номер ООН 1485).

Маркировка упакованной продукции должна содержать следу-

ющие дополнительные данные;

наименование завода-изготовителя и его товарный знак;

наименование продукта, его марку;

массу брутто и нетто;

номер партии и дату изготовления; знак опасности по ГОСТ 19433—88;

обозначение настоящего стандарта.

4.6. Техническую бертолетову соль транспортируют транспортом любого вида в соответствии с правилами перевозок опасных грузов, действующими на транспорте данного вида.

Не допускается транспортировать бертолетову соль вместе с

другими продуктами.

По железной дороге транспортирование продукта осуществляется в крытых железнодорожных вагонах повагонными отправками.

4.4-4.6. (Измененная редакция, Изм. № 3).

4.7. Бертолетову соль хранят в закрытых специальных помещениях, предназначенных для хранения взрывоопасных грузов. Не допускается хранение бертолетовой соли в одном месте более 200 т.

Не допускается хранение бертолетовой соли в таре с нарушенной герметичностью, вместе с горючими веществами, солями аммиака и кислотами.

5. ГАРАНТИИ ИЗГОТОВИТЕЛЯ

5.1. Изготовитель должен гарантировать соответствие качества технической бертолетовой соли требованиям настоящего стандарта при соблюдении условий транспортирования и хранения.

Гарантийный срок хранения продукта — 6 мес со дня изго-

товления.

5.1; 5.2. (Измененная редакция, Изм. № 2).

Разд. 6. (Исключен, Изм. № 2).

ИНФОРМАЦИОННЫЕ ДАННЫЕ

1. РАЗРАБОТАН И ВНЕСЕН Министерством химической промышленности СССР

ИСПОЛНИТЕЛИ

- Л. А. Ошин, С. И. Статкевич, Г. Г. Ершова, М. Л. Михель, Г. М. Шефер, В. А. Резииченко, А. X. Каганов
- УТВЕРЖДЕН И ВВЕДЕН В ДЕЙСТВИЕ Постановлением Государственного комитета стандартов Совета Министров СССР от 07.01.74 № 13
- 3. B3AMEH FOCT 2713-70
- 4. ССЫЛОЧНЫЕ НОРМАТИВНО-ТЕХНИЧЕСКИЕ ДОКУМЕНТЫ

Обозначение НТД, на который дана ссылка	Номер пункта, подпункта	
ГОСТ 61—75	3.15.1	
FOCT 199—78	3.15.1	
FOCT 1277—75	3.11.1	
ГОСТ 1770—74	3.6.1a, 3.7.1, 3.8.1, 3.9.1, 3.10.1, 3.11.1, 3.15.1	
FOCT 1942—86	3.15.1	
FOCT 3118-77	3.8.1, 3.10.1, 3.11.1	
FOCT 4108-72	3.8.1	
FOCT 4204-77	3.9.1	
ГОСТ 4212—76 ГОСТ 4232—74	3.8.1	
TOCT 4232—74	3.8.1	
OCT 4234-77	3.15.1	
OCT 432877	3.15.1	
COCT 4461—77	3.7.1	
ΓΟCT 451787 ΓΟCT 452078	3.10.1	
FOCT 4919.1—77	3.10.1	
FOCT 5044-79	4.1	
FOCT 6259—75	3.8.1	
ГОСТ 6613—86 ГОСТ 6709—72	1.3, 3.16.1 3.6.1a, 3.7.1, 3.8.1, 3.9.1,	
10C1 6709—72	3.11.1, 3.15.1	
FOCT 8777—80	4.1	
FOCT 914780	3.6.1a, 3.11.1, 3.16.1	
TOCT 9338-80	4.1	
FOCT 9557—87 FOCT 9805—84	4.4 3.15.1	
ГОСТ 10163—76	3.9.1	
ГОСТ 10354—82	4.1	
FOCT 10671.5-74	3.8.1	
FOCT 1419277	4.5	

Продолжение

Обозначение НТД, на который дана ссылка	Номер пункта, подпункта	
FOCT 14870—77	3.5.1	
FOCT 1618770	3.16.1	
FOCT 17065—77	4.1	
ГОСТ 18300—87 ГОСТ 19433—88	3.7.1	
ГОСТ 19433—88 ГОСТ 20292—74	2 1, 4.5 3.7.1, 3.8.1, 3.9.1, 3.10.1,	
1001 20292-14	3 15.1	
FOCT 21650-76	4.4	
FOCT 21929-76	4.4	
FOCT 23717-79	3.15.1	
FOCT 24104-88	3.6.1a, 3.7.1, 3.8.1, 3.9.1,	
	3.10.1, 3.11.1, 3.15.1, 3.16.1	
FOCT 24597-81	4.4	
ГОСТ 25336—82	3.6.1a, 3.7.1, 3.9.1, 3.10.1,	
	3.15.1, 3.16.1	
ГОСТ 25794.2—83	3 9.1	
ГОСТ 25794.3—83	3.7.1	
FOCT 26663—85	4.4	
FOCT 27025-86	3.1a	
FOCT 27068 86	3.9.1	

- Срок действия продлен до 01.01.95 Постановлением Госстандарта СССР от 29.03.89 № 865.
- ПЕРЕИЗДАНИЕ [апрель 1989 г.] с Изменениями № 1, 2, 3, утвержденными в октябре 1979 г., ноябре 1984 г., марте 1989 г. [ИУС 12—79, 2—85, 7—89].

Редавтор Н. П. Щукина Технический редавтор Э. В. Митяй Корректор Л. В. Сницарчук

Сдамо в наб. 15.05 89 Подп. в печ. 25.07.89 1,5 усл. п. л. 1,5 усл. кр.-отт. 1,42 уч. над. л. Тир. 8000 Цена 5 к.

Ордена «Знак Почета» Издательство стандартов, 123557, Москва, ГСП, Новопресменский пер., д. 3. Вильнюсская типография Издательства стандартов, ул. Дариус и Гирено, 39. Зак. 1283.