

ГОСУДАРСТВЕННЫЙ СТАНДАРТ СОЮЗА ССР

РЕЗИНА

МЕТОД ОПРЕДЕЛЕНИЯ ДИНАМИЧЕСКОГО МОДУЛЯ И МОДУЛЯ ВНУТРЕННЕГО ТРЕНИЯ ПРИ ЗНАКОПЕРЕМЕННОМ ИЗГИБЕ С ВРАЩЕНИЕМ

ΓΟCT 10828-75

Издание официальное

ГОСУДАРСТВЕННЫЙ СТАНДАРТ СОЮЗА ССР

РЕЗИНА

Метод определения динамического модуля и модуля внутреннего трения при знакопеременном изгибе с вращением

Rubber. Method for determination of dynamic modulus and internal friction modulus under variable sign flexure with rotation

ГОСТ 10828—75*

Взамен ГОСТ 10828—64

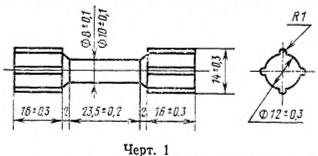
OKII 25 1290

Постановлением Государственного комитета стандартов Совета Министров СССР от 30 декабря 1975 г. № 4095 срок введения установлен

c 01.07.77

Проверен в 1986 г. Постановлением Госстандарта от 23.09.86 № 2753 срок действия продлен

до 01.07.92


Несоблюдение стандарта преследуется по закону

Настоящий стандарт распространяется на резину с твердостью 35—75 единиц по Шору А и устанавливает метод определения динамического модуля и модуля внутреннего трения при знакопеременном изгибе с вращением.

Сущность метода заключается во вращении изогнутого под определенным углом образца и измерении изгибающего и крутящего моментов.

1. МЕТОД ОТБОРА ОБРАЗЦОВ

1.1. Из невулканизованного шнура с круглым сечением диаметром 13—14 мм или квадратным со стороной 12—13 мм нарезают заготовки длиной 59—60 мм и вулканизуют в пресс-формах.

Издание официальное

Перепечатка воспрещена

* Переиздание (январь 1988 г.) с Изменением № 1, утвержденным в январе 1932 г. (ИУС 4—82).

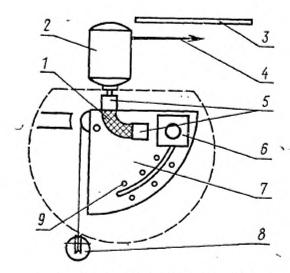
© Издательство стандартов, 1988

1.2. По форме и размерам образцы должны соответствовать черт. 1, при этом диаметр рабочего участка должен быть 8 ± 0.1 или 10 ± 0.1 мм.

Размеры образцов после вулканизации не контролируют. Пре-

дельные отклонения размеров даны для пресс-формы.

(Измененная редакция, Изм. № 1).


1.3. На рабочем участке образца не должно быть пор, поре-

зов, включений и других дефектов.

Количество испытуемых образцов должно быть не менее трех.

2. АППАРАТУРА

2.1. Для проведения испытания применяют прибор, схема одного из возможных вариантов которого приведена на черт. 2. Прибор должен обеспечивать:

1—образец; 2—электродвигатель; 3—шкала крутящих моментов; 4—стрелка; 5—зажимы; 6—стойка для свободной оси зажима; 7—платформа; 8—груз, уравновешивающий изгибающий момент; 9—отверстия для установки заданной деформации образца

Черт. 2

задание чистого изгиба с номинальной амплитудой деформации растяжения на поверхности образца с диаметром рабочего участка 8 мм от 10% до 30% с допускаемой погрешностью ±3% от заданного значения;

интервал изменения амплитуды деформации 2,5%; частоту деформации (2800±200) циклов в минуту;

измерение изгибающего момента от 0 до 0,15 Н м (1500 гс см)

с погрешностью не более ±2,5·10-4 H·м (2,5 гс·см);

измерение крутящего момента от 0 до 0,015 \dot{H} -м (150 гс·см) с погрешностью не более $\pm 1,5\cdot 10^{-4}$ \dot{H} -м (1,5 гс·см) и от 0 до 0,03 \dot{H} -м (300 гс·см) с погрешностью не более $\pm 2,5\cdot 10^{-4}$ \dot{H} -м (2,5 гс·см);

температуру в камере от 50 до 150°C с погрешностью не более

 $\pm 2,0$ °C;

измерение температуры на поверхности образца термопарой с погрешностью не более ±2,0°C;

поддержание заданной деформации на протяжении всего ис-

пытания.

2.2. На приборе должны быть указаны номинальные амплитуды деформации поверхностного слоя образца при чистом изгибе для образца диаметром рабочего участка 8 мм.

Способы задания амплитуд деформаций и измерения изгибающего момента образца приведены в справочном приложении.

Разд. 2. (Измененная редакция, Изм. № 1).

3. ПРОВЕДЕНИЕ ИСПЫТАНИЯ

- 3.1. Образцы испытывают не ранее чем через 16 ч и не позднее чем через 28 сут после вулканизации.
- Образцы испытывают без подогрева камеры с номинальной амплитудой деформации для образца диаметром рабочего участка 8 мм 20%.

Допускается проводить испытания при других значениях ам-

плитуды деформации.

Амплитуду деформации образцов диаметром рабочего участка 10 мм (ε₁₀) в процентах вычисляют по формуле

$$\varepsilon_{10} = \frac{\varepsilon_8 \cdot D_{10}}{D_8},$$

где ε₈ — амплитуда деформации образца диаметром 8 мм, отсчитываемая по шкале прибора, %;

 D_{10} , D_8 — диаметры рабочего участка образца, равные 10 и 8 мм.

3.1; 3.2. (Измененная редакция, Изм. № 1).

- 3.3. Образец закрепляют в зажимах и устанавливают в положение, соответствующее нулевой деформации. Приводят его во вращение с заданной частотой и стрелку, фиксирующую величину крутящего момента, совмещают с нулем шкалы, после чего прибор выключают.
- 3.4. Образец устанавливают на заданную деформацию, уравновешивают возникший изгибающий момент и включают прибор.
- 3.5. В течение 10 мин поддерживают заданную деформацию уравновешивающим изгибающим моментом с погрешностью не более ±1%.

3.6. По истечении 10 мин измеряют крутящий и изгибающий моменты, выключают прибор и не позднее чем через 2 с после остановки образца измеряют температуру на его поверхности.

3.7. Для испытания при повышенных окружающих температурах, температуру в камере доводят до заданной, прогревают образец не менее 10 и не более 20 мин и проводят испытания в

соответствии с требованиями пп. 3.3-3.6.

3.8. Для сопоставления динамических свойств различных резин при одинаковой заданной температуре на поверхности образца испытания каждой резины должны проводиться при нескольких температурах в камере. При этом интервал изменения температуры на поверхности образца должен включать ее заданное значение.

4. ОБРАБОТКА РЕЗУЛЬТАТОВ

4.1. Динамический модуль (E и E_1) и модуль внутреннего трения (K и K_1) в кПа (кгс/см²) вычисляют по формулам:

$$E = \frac{4 M_{\text{H}}}{1000 \Pi \cdot r^{3} \cdot \epsilon}; \qquad K = \frac{4 M_{\text{K}}}{1000 \cdot l \cdot r^{2} \cdot \epsilon^{2}};$$

$$E_{1} = \frac{4 M_{\text{H}}}{1000 \Pi \cdot r^{3}_{1} \cdot \epsilon}; \qquad K_{1} = \frac{4 M_{\text{K}}}{1000 \cdot l \cdot r^{2}_{1} \cdot \epsilon^{2}},$$

где $M_{\rm H}$ — изгибающий момент, Н·м (гс·см); $M_{\rm K}$ — крутящий момент, Н·м (гс·см);

r, r₁ — радиусы рабочих участков образцов, равные 0,004 и 0,005 м (0,4 см и 0,5 см) соответственно;

длина рабочего участка образца, м (см);

ε — амплитуда деформации на поверхности образца (в без-

размерном виде).

4.2. За результат испытания принимают среднее арифметическое показателей не менее трех образцов, отличающихся от среднего не более чем на ±10%.

Результаты сопоставимы на образцах с одинаковым диамет-

ром рабочего участка и испытанных в одинаковых условиях.

4.1; 4.2. (Измененная редакция, Изм. № 1).

4.3. Результаты испытаний записывают в протокол, который должен содержать следующие данные:

обозначение резины;

диаметр рабочего участка образца;

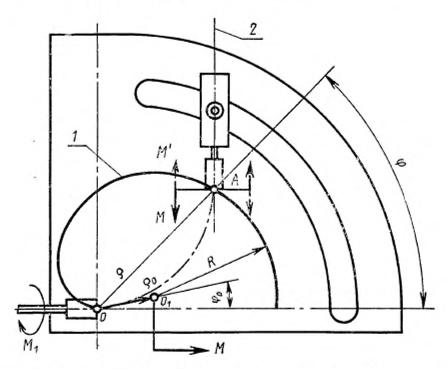
амплитуду деформации;

температуру на поверхности образца и в камере;

результаты испытания: величины крутящего и изгибающего моментов, динамического модуля (Е) и модуля внутреннего трения (К) с соответствующими индексами;

дату испытания;

обозначение настоящего стандарта.


ПРИЛОЖЕНИЕ Справочное

СПОСОБ ЗАДАНИЯ АМПЛИТУД ДЕФОРМАЦИЙ И ИЗМЕРЕНИЯ ИЗГИБАЮЩЕГО МОМЕНТА ОБРАЗЦА

Деформация чистого изгиба характеризуется отсутствием срезывающих усилий и постоянством значений изгибающего момента в поперечных сечениях по длине образца. Радиус кривизны нейтральной оси образца при заданной деформации чистого изгиба имеет постоянное значение.

Такого рода деформация осуществляется приложением к свободному кон-

цу образца сосредоточенного момента (см. чертеж).

І—кривая траектории точки А; 2—касательная к дуге ОА нейтральной оси образца в точке А.

Один конец образца, заключенный в зажим, вращается от мотора, другой (свободный конец) крепится в подшипнике с зажимом на платформе, имеющей возможность вращаться вокруг оси O_1 .

Положения, в которых требуется удерживать свободный конец A рабочего участка образца для создания необходимых амплитуд деформаций чистого изгиба (г) находят из выражений

$$ρ = \frac{l}{\varphi} \cdot \sin \varphi$$
 и $φ = \frac{\varepsilon \cdot l}{D}$,

где Q — радиус-вектор, проведенный из полюса О:

ф — полярный угол;

 І — длина рабочего участка образца; — диаметр рабочего участка образца.

Положение зажима свободного конца образца определяют касательной к дуге OA нейтральной оси образца в точке A (конец рабочего участка образца).

Следует считать, что фактические деформации в образцах будут отличаться от расчетных вследствие нежесткого крепления концов образцов и нелинейности

деформаций для заданных диапазонов их изгиба.

Координаты оси вращения O_1 платформы $\varrho_0 \approx 0.82$ см, $\varphi_0 \approx 0.131$ рад находят графическим построением или расчетным путем, исходя из того, что отрезок кривой $\varrho(\varphi)$ траектории точки A в диапазоне изменения угла φ от 0 до 2,5 рад с достаточным приближением можно заменить дугой окружности радиуса R, проведенной из точки O_1 .

Момент М, требуемый для задания необходимой амплитуды деформации є, вызывает противомомент М' на платформе, который измеряется уравновещивающим моментом M, приложенным к платформе в точке O_1 и действующим в

противоположную сторону,

Редактор Р. С. Федорова Технический редактор Г. А. Теребинкина Корректор В. С. Черная

Сдано в наб. 07.12.87 Подп. в печ. 04.02.88 0.5 усл. п. л. 0,5 усл. кр.-отт. 0,36 уч.-изд. л.

Ордена «Знак Почета» Издательство стандартов, 123840. Москва, ГСП, Новопресненский пер., 3 Тип. «Московский печатник». Москва, Лялин пер., 6. Зак. 1642