21106.27

ГОСУДАРСТВЕННЫЙ СТАНДАРТ СОЮЗА ССР

ЛАМПЫ ГЕНЕРАТОРНЫЕ МОЩНОСТЬЮ, РАССЕИВАЕМОЙ АНОДОМ, СВЫШЕ 25 Вт

МЕТОД ИЗМЕРЕНИЯ ОТНОСИТЕЛЬНОГО УРОВНЯ КОМБИНАЦИОННЫХ СОСТАВЛЯЮЩИХ

FOCT 21106.2-75

Издание официальное

ГОСУДАРСТВЕННЫЯ КОМИТЕТ СТАНДАРТОВ

СОВЕТА МИНИСТРОВ СССР

ТОСУДАРСТВЕННЫЙ СТАНДАРТ СОЮЗА ССР

ЛАМПЫ ГЕНЕРАТОРНЫЕ МОЩНОСТЬЮ, РАССЕИВАЕМОЙ АНОДОМ, СВЫШЕ 25 Вт

МЕТОД ИЗМЕРЕНИЯ ОТНОСИТЕЛЬНОГО УРОВНЯ КОМБИНАЦИОННЫХ СОСТАВЛЯЮЩИХ

FOCT 21106.2-75

Издание официальное

ЛАМПЫ ГЕНЕРАТОРНЫЕ МОЩНОСТЬЮ, РАССЕИВАЕМОЙ АНОДОМ, СВЫШЕ 25 Вт

Метод измерения относительного уровня комбинационных составляющих ГОСТ 21106.2—75

Oscillator tubes anode dissipated more than 25 W. Test method for relative level of combinative products,

Постановлением Государственного комитета стандартов Совета Министров СССР от 27 августа 1975 г. № 2268 срок деяствия установлен

до 01.01.77

Несоблюдение стандарта преследуется по закону

Настоящий стандарт распространяется на генераторные лампы мощностью, рассеиваемой анодом, свыше 25 Вт, предназначенные для усиления мощности на частотах до 300 МГц, и устанавливает метод измерения относительного уровня комбинационных составляющих.

1. АППАРАТУРА

- 1.1. Требования к аппаратуре должны соответствовать ГОСТ 21106.0—75.
- 1.2. Функциональная электрическая схема установки для измерения относительного уровня комбинационных составляющих* должна соответствовать указанным на черт. 1 для ламп с катодом косвенного накала и на черт. 2 для ламп с катодом прямого накала.
- Требования к элементам функциональной электрической схемы.
- 1.3.1. Емкость разделительного конденсатора C1 должна быть такой, чтобы падение напряжения переменного тока на нем не превышало 1% от значения переменной составляющей напряжения между управляющей сеткой и катодом лампы.

Термины, применяемые в настоящем стандарте, приведены в справочном приложении 1.

1.3.2. Блокировочные конденсаторы С4, С5 и дроссель Др2 в цепи экранирующей сетки (черт. 1, 2) и блокировочные конденсаторы С9, С10, С11, С12 в цепи катода (черт. 2) должны обеспечивать блокировку указанных цепей относительно общей точки схемы в диапазоне гармоник средней частоты от fo до 4 fo и в диапазоне гармоник частот огибающей от 2 for.2.1 до 4 for.2N.2N-1.

Емкость блокировочных конденсаторов по гармоникам огибающей и средней частот рассчитывают по формулам (3), (5), (6),

(7), приведенным в приложении 2.

1.3.3. Блокировочный конденсатор С2 и дроссель Др1 в цепи управляющей сетки при работе лампы с сеточными токами должны обеспечивать блокировку в диапазоне частот огибающей от 2 for.2.1 до 4 for.2 № 2.1.

Емкость блокировочного конденсатора рассчитывают по фор-

муле (2), приведенной в приложении 2.

1.3.4. Блокировочный конденсатор С7 и дроссель ДрЗ в цепи анода (черт. 1, 2) должны обеспечивать блокировку указанной цепи относительно общей точки схемы в диапазоне частот огибающей от 2 for.2.1 до 4 for.2N.2N-1.

Емкость блокировочного конденсатора рассчитывают по фор-

муле (4), приведенной в приложении 2.

1.3.5. Относительные уровни напряжений гармоник средней частоты и частоты огибающей испытательного сигнала на блокировочных конденсаторах и дросселях, проверенные в соответствии с разд. 2 приложения 2, должны быть не более значений, указанных в табл. 1, 2 приложения 2.

1.3.6. Сопротивления резисторов R2 и R3 (черт. 2), предназначенных для снижения фона накала, следует выбирать так, чтобы падение напряжения на них за счет протекания постоянной составляющей тока катода не превышало 2% от значения напря-

жения источника смещения.

1.4. Требования к анодному контуру:

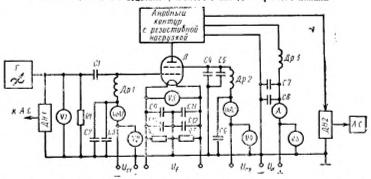
1.4.1. Полоса пропускания амплитудно-частотной характеристики анодного контура на уровне минус 0,5 дБ должна быть не


менее 14 fng.2N,2N-1.

1.4.2. Относительные уровни напряжений гармоник средней частоты испытательного сигнала, кроме первой, на анодном контуре, проверенные в соответствии с разд. 2 приложения 2, должны соответствовать табл. 2 приложения 2.

1.5. Требования к генератору:

Генератор, применяемый для подачи напряжения на управляющую сетку лампы, должен обеспечивать как одночастотный, так и один или несколько двухчастотных сигналов.


1.5.2. Уровень собственных комбинационных составляющих на выходе генератора должен быть не менее чем на 8 дВ ниже уровня комбинационных составляющих на выходе лампы. Функциональная электрическая схема для измерения относительного уровня комбинационных составляющих ламп с катодом косвенного накала

RI—резистор, предвазначенный для согласовании выходного сопротивлении генератора с аходими сопротивлением каскада; CI—разделительный конденсатор; C2, C4, C7—блоки-реобчные конденсаторы по гармопикам средней частоты отбающей; C3, C5, C6, C8—блокиреовучные конденсаторы по гармопикам средней частоты, A—анперметр; mAI, MAI—жилинаниерметры; VI, V2, V3, V4, V5—одальтиерры; T—генератор; TAI, TAI2, TAI3—проссели; T4—памеа] T4T4T5—делителы навряжения; T5—анализатор спектра.

Черт. 1

Функциональная электрическая схема для измерения относительного уровня комбинационных составляющих дамп с катодом прямого накала

- 1.5.3. Нестабильность средней частоты должна быть не ниже 5⋅10⁻⁵.
- 1.5.4. Средняя частота должна быть выбрана в диапазоне от 0,1 до 10 МГп.
- 1.5.5. Разнос по частоте между составляющими одного двухчастотного сигнала следует выбирать в пределах от 400 до 4000 Гц.
- 1.5.6. Многочастотный сигнал должен удовлетворять следующим требованиям;
- а) средние частоты двухчастотных сигналов должны быть равными;
- б) разносы по частоте огибающих соседних двухчастотных сигналов должны быть равны и выбираться в диапазоне от 100 до 200 Гп;
- в) разность между максимальной и минимальной частотами огибающих сигналов должна превышать не менее, чем в 2 раза минимальную частоту огибающей.
- 1.5.7. Выходное сопротивление генератора с учетом сопротивления резистора R1 не должно превышать 10% значения активной составляющей входного сопротивления каскада на лампе.
- 1.5.8. Уровень паразитной амплитудной модуляции выходного сигнала не должен быть более минус 30 дБ.
- Уровень 2-й гармоники средней частоты в выходном сигнале не должен быть более минус 40 дБ.
 - 1.6. Требования к анализатору спектра:
- 1.6.1. Анализатор спектра должен иметь динамический диапазон не менее, чем на 10 дБ больше измеряемого уровня комбинационных составляющих.
- 1.6.2. Полоса обзора анализатора спектра должна быть не менее 16 for., где for. — максимальная частота огибающей.
- 1.6.3. Разрешающая способность анализатора спектра на уровне минус 30 дБ по отношению к сигналу основной частоты должна быть не хуже 50 Гп.
- 1.6.4. Погрешность измерения отношения амплитуд дискретных составляющих спектра не должна превышать ±2 дВ.
 - 1.7. Требования к делителю напряжения:
- 1.7.1. Коэффициент деления делителя должен быть таким, чтобы обеспечить на входе анализатора спектра необходимый уровень напряжения. Параметры элементов делителя следует выбирать так, чтобы изменение параметров цепей, к которым подключают делитель, не превышало ±1%.
 - 1.8. Требования к источникам питания:
- 1.8.1. Источники питания управляющей и экранирующей сеток должны быть стабилизированными.

Изменение выходного напряжения нерегулируемых источников питания управляющей и экранирующей сеток должно быть не более $\pm 0.5\%$ при изменении напряжения сети на $\pm 15\%$ и изменении нагрузки от нуля до максимального значения.

Изменение выходного напряжения регулируемых источников питания управляющей и экранирующей сеток должно быть не более $\pm 0.5\%$ при изменении напряжения питающей сети на $\pm 15\%$.

В технически обоснованных случаях источники питания анода

и накала могут быть стабилизированными.

1.8.2. Қоэффициент пульсации источника питання управляю-

щей и экранирующей сеток не должен превышать 0,3%.

Рекомендуется резонансную частоту фильтров источников питания выбирать ниже удвоенной частоты огибающей испытательного сигнала.

2. ПРОВЕДЕНИЕ ИЗМЕРЕНИЯ

Требования к проведению измерения должны соответствовать ГОСТ 21106.0—75.

2.2. Измерение относительного уровня комбинационных составляющих основано на свойстве лампы из-за нелинейности характеристики создавать при воздействии на нее испытательным сигналом комбинационные составляющие, относительный уровень кото-

рых измеряют анализатором спектра.

2.2.1. Относительный уровень комбинационных составляющих должен быть отнесен к выходной мощности в пике огибающей при работе лампы в телеграфном режиме при усилении одночастотного сигнала. Частоту этого сигнала выбирают равной средней частоте или ближайшей к средней частоте основной составляющей испытательного сигнала.

2.3. Измерение относительного уровня комбинационных состав-

ляющих включает следующие основные этапы:

установление электрического режима измерения;

измерение выходной мощности лампы;

измерение относительного уровня комбинационных составляюших.

- 2.3.1. При переходе от измерения выходной мощности в пике огибающей к измерению относительного уровня комбинационных составляющих перестройку анодного контура не производят; отношение амплитуды одночастотного сигнала к амплитуде основной составляющей испытательного сигнала на входе лампы должно быть равно 2N, где N целые положительные числа, определяющие число двухчастотных сигналов.
 - 2.3.2. Последовательность проведения измерения:
- а) устанавливают электрический режим измерения и в соответствии с технической документацией на лампы конкретных типов измеряют выходную мощность лампы;

Crp. 6 FOCT 21106.2-75

б) фиксируют уровень одночастотного сигнала;

в) отключают одночастотный сигнал;

 r) на вход каскада подают испытательный сигнал с пик-фактором, заданным в технической документации на лампы конкретных типов;

 д) с помощью анализатора спектра проводят измерения относительного уровня комбинационных составляющих.

В технически обоснованных случаях допускается иная последовательность проведения измерения, что оговаривается в технической документации на лампы конкретных типов.

3. ОБРАБОТКА РЕЗУЛЬТАТОВ, ПОКАЗАТЕЛИ ТОЧНОСТИ ИЗМЕРЕНИЯ

Погрешность измерения определяется погрешностью метода измерения, обусловленной выбором основных элементов схемы, приведенным в приложении 2, и не превышающей ±2 дБ, погрешностью анализатора спектра и классом точности измерительных приборов и погрешностью за счет установления и поддержания электрического режима измерения. Указанные погрешности суммируются как независимые составляющие погрешности измерения.

4. ТРЕБОВАНИЯ БЕЗОПАСНОСТИ

Требования безопасности при проведении измерений — по ГОСТ 21106.0—75.

ОСНОВНЫЕ ТЕРМИНЫ И ОПРЕДЕЛЕНИЯ

Термин	Определение
1. Внутренняя модуляция генераторной лампы 2. Внутренняя модуляция 2N-частотным сигналом	По ГОСТ 20412—75 Генерирование мощности на комбинационных частотах, возникающее при воздействии на генераторную лампу с нелинейной характеристикой 2V-частотным сигналом, где N=1, 2, 3 и т. д.— целые положительные числа, определяющие число двухчастотных сигначисла, определяющие число двухчастотных сигна-
3. Выходная мощность в виже огибающей	лов. Выходная мощность лампы, соответствующая амплитуде огибающей, определяемая по формуле $P_{\text{вых}} = \frac{U^2 \ m_{\text{min}x}}{2 \ R_{\text{axis}}}, \qquad \qquad (1)$
4. Испытательный сигнал	где $U_{m_{\text{пик}}}$ — амплитуда напряжения средней частоты в пике огибающей на анодном контуре; $R_{\text{вив}}$ — эквивалентное сопротивление анодного контура. Совокупность двухчастотных сигналов, имеющих развиме мощности. Пр и м е ч а в и е. Отдельные виды спектров испытательного сигнала представлены на черт. 1, 2 По ГОСТ 20412—75
Комбинационная составляющая выходного сиг- няла генераторной лампы Комбинационная составляющая двухчастотного выходного сигнала	Составляющая выходного сигнала генераторной лампы, характеризуемая мощностью ($P_{\rm комб}, 2s+1$ на частоте, образованной внутренней модуляцией) двухчастотемы сигналом. Примечания: 1. Значение и порядок частоты определяют из выражения
, , , , , , , , , , , , , , , , , , ,	$t_{2n+1} \begin{cases} (n+1) f_2 - nf_1, \\ (n+1) f_1 - nf_2, \end{cases}$ (2)
	где f_{2n+1} — частота комбинационной составляющей; $2n+1$ — порядок комбинационной составляющей; $n=1,2,3$ н т. A — целые положительные числа; f_1 и f_3 — частоты составляющих испытательного сигнала.

Термии

Определение

 Комбинационная составляющая многочастотного сигнала

8. Основная составляющая спектра испытательного сигнала

 Отвосительный уровень комбинационной составляющей выходного сигнада генераторной дампы Вид слектра выходного сигнала генератовной лампы при воздействии на нее двухчастотным сигналом представлен на черт. 3.

Составляющай выходного сигнала генераторной лампы, характеризуемая мощностью (P f(p+q+...+r) на частоте, образованной внутренней модуляцией многочастотным сигналом.

Примечания: 1. Значение и порядок частоты определяют из выражения

$$f_{(p+q+...+r)} = f_0 \pm P f_{or,2,1} \pm q f_{or,4,3} \pm r f_{or,2,N,2N-1},$$
 (3)

где $f_{(p+q+\ldots+r)}$ — частота комбинационной составляющей:

 $f_0 = rac{f_{2N} + f_{2N-1}}{2}$ — средняя частота 2N-частот-

$$f_{\rm or,\,2.\,1}\!=\!\!\frac{f_2\!-\!f_1}{2}\,\text{ и }f_{\rm or,\,2N,2N-1}\!-\!\frac{f_{2N}\!-\!f_{2N-1}}{2}\!-\!{\rm qac}\!\!-\!\!$$

тоты огибающих двухчастотных сигналов; f_{2N} и f_{2N-1} — частоты составляющих 2N-частотного сигнала.

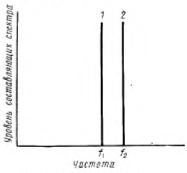
 Вид спектра выходного сигнала генераторной лампы при воздействии на нее многочастотным сигналом представлен на черт. 4.

Составляющая испытательного сигнала, характеризуемая мощностью основной составляющей (Росп) на одной из частот испытательного сиг-

примечание. Мощность основней составляющей определяют по формуле

$$P_{\text{ocu.}} = \frac{P_{\text{max. max}}}{4N^2}.$$
 (4)

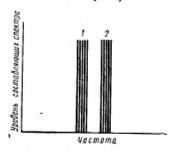
По ГОСТ 20412—75
Примечания: 1. Относительный уровень комбинационных составляющих для двухчастотного сигнала определяют по формуле


$$K_{f2a+1} = +10 \lg \frac{P_{f2a+1}}{P_{ocs.}} = +20 \lg \frac{U_{m_{KOM5},2a+1}}{U_{m_{ocs.}}}$$
, (5).

где Umnem6.2s+1 — амплитуда напряжения комбинационной составляющей повинка:

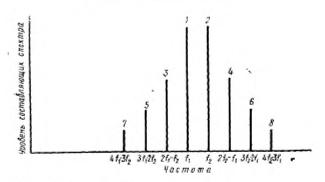
U поев. — амплитуда напряжения основной составляющей.

Термин	Определение					
10. Пик-фактор испыта- тельного сигнала	2. Относительный уровень комбинационных составляющих для многочастотного сигнала определяют по формуле $K_{f(p+q+\ldots+r)} = +20 \text{ Ig } \frac{U_{m \text{ комб. } (p+q+\ldots+r)}}{U_{m \text{ оси.}}}, \tag{6}$ где $U_{m \text{комб. } (p+q+\ldots+r)} = -\text{амплитуда напряжения комбинационной составляющей } (p+q+\ldots+r)$ порядка. Отношение максимальной амплитуды напряжения, которое может принамать испытательный сигнал, к его эффектному значению. При меча ние. Пик-фактор может быть выражен через число двухчастотных сигналов, образующих испытательный сигнал					


Спектр двухчастотного испытательного сигнала (N=1)

I и 2-основные составляющие

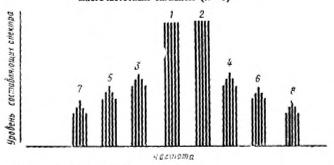
Черт. 1


Спектр многочастотного испытательного сигнала (N-5)

I и 2-основные составляющие

Черт. 2

Спектр сигнала на выходе лампы при воздействии на нее двухчастотным сигналом (N-1)



I и 2-основные составляющие;

7 к 2—основане составляющие 3-то порядка; 5 и 6—комбинационные составляющие 5-то порядка; 7 и 3—комбинационные составляющие 5-то порядка;

Черт. 3

Спектр сигнала на выходе лампы при воздействии на нее многочастотным сигналом (N=5)

1 и 2-основные составляющие;
3 и 4-жомбинационные составляющие 3-го порядка;
5 и 6-комбинационные составляющие 3-го порядка;
7 и 8-жомбинационные составляющие 7-го порядка;

Черт. 4

Расчет основных элементов принципиальной электрической схемы и проверка реальной погрешности метода измерения по выбранным элементам схемы.

1. РАСЧЕТ ЭЛЕМЕНТОВ ЭЛЕКТРИЧЕСКИХ СХЕМ

1.1. Расчет элементов функциональной электрической схемы проводят, из принимаемой погрешности метода измерения и требуемого относительного уровия комбинационных составляющих третьего порядка, установленных в табл. 1, 2.

Значение сопротивлений резисторов R2 и R3 (Ом), предназначенимх для

снижения фона накала, определяют по формуле

$$R_3 < \frac{0.04 \ U_{c1}}{I_a}; R_3 = R_2,$$
 (1)

где U_{cl} -напряжение источника смещения, B;

I_к—постоянная составляющая тока катода при максимальной мощности в пике огибающей, определяемая по анодно-сеточным характеристикам, А.

 Емкость блокировочных конденсаторов (пФ) по частотам гармоник огнбающей определяют по формулам

$$C_{2} \gg \frac{1,05 \cdot I_{c1} \cdot 10}{\omega_{or,2N,2N-1} \cdot U_{sx}};$$
(2)

$$C_{4} > \frac{220 - 4_{c2,or.2}}{20};$$

$$C_{4} > \frac{2,15 \cdot I_{c2} \cdot 10}{c_{or.2N,2N-1} \cdot U_{c2}};$$
(3)

$$C_{\gamma} \ge \frac{2 \cdot 15 \cdot I_{n} \cdot 10}{\omega_{\text{or},2N,2N-1} \cdot U_{n}};$$

$$(4)$$

$$C_{10} > \frac{\frac{220 - s_{\text{K,DT},2}}{20}}{\omega_{\text{OC},2N,2N-1} \cdot U_{\text{BX}}}; C_{12} = C_{10},$$
 (5)

где $I_{\rm K}$, $I_{\rm CI}$, $I_{\rm C2}$ и $I_{\rm A}$ — постоянные составляющие тока в цепях катода, управляющей сетки, экранирующей сетки и внода соответственно при максимальной мощности в пиме огибающей, определяемые по анодно-сеточным характеристикам, A;

в в.ог.2, вс.1.ог.2 и вс.2.ог.2 — относительные уровни напряжений переменных составляющих тока в цепях катода, управляющей сетки и экранирующей сетки соответственно на частоте 2-й гармоники огновющей непытательного сигнала, указанные в табл. 1, минус дБ;

€ s. от. 2 — относительный уровень напряжения переменной составляющей тока анода на частоте 2-й гармоники огибающей испытательного сигнала, указанный в табл. 2, минус дБ;

©02. 2N. 2N -1 — частота огибающей испытательного сигнала, рад/с: $U_{\rm BX}$ — амилитуда входного напряжения одночастотного сигнала, В;

 U_{c2} — напряжение источника питания экранирующей сетки,

Uв — напряжение источника питания анода, В.

1.4. Емкость блокировочных конденсаторов (пФ) по гармоникам средней частоты определяют по формулам

$$C_b \gg \frac{5 \cdot I_{c2m2} \cdot 10^{\frac{220 - s_{c2cp2}}{20}}}{\omega_0 U_{c2}};$$
 (6)

$$C_{9} > \frac{2.5 \cdot I_{\text{Km}2} \cdot 10^{\frac{220 - e_{\text{KCD}} \cdot 2}{2\nu}}}{\omega_{0} U_{\text{MX}}}; C_{11} = C_{9},$$
 (7)

где $I_{\nu m 2}$ и $I_{c_{2m 2}}$ — амплитудные значения 2-й гармоники тока в цепях соответственно катода и экранирующей сетки при максимальной мощности в пике огибающей, определяемые по анодно-сеточным характеристикам, А;

 $\mathbf{e}_{\kappa \text{ ср. 2}} + \mathbf{e}_{\text{c 2 ср. 2}}$ — относительные уровни напряжений переменных составляющих тока в цепях катода и экранирующей сетки соответственно на частоте 2-й гармоники средней частоты испытательного сигнала, указанные в табл. 2, минус дБ;

— средняя частота невытательного сигнала, рад/с.

2. ОПРЕДЕЛЕНИЕ ОТНОСИТЕЛЬНЫХ УРОВНЕЙ НАПРЯЖЕНИЙ ГАРМОНИК СРЕДНЕЙ ЧАСТОТЫ И ОГИБАЮЩЕЙ

2.1. Напряжение гармоник средней частоты на блокировочных элементах в цепях катода, управляющей сетки и экранирующей сетки измеряют в диапазоне от fo до 4fo при измерении выходной мощности лампы по п. 2.3.2a.

Относительные уровни напряжений переменных составляющих тока катода, управляющей сетки и экранирующей сетки соответственно на частоте л-гармоинки средней частоты (минус дБ) определяют по формулам

$$\mathbf{s}_{\pi \text{ cp. } n} = 20 \text{ ig } \frac{U_{\mathbf{x} mn}}{U_{\mathbf{a}\mathbf{x}}};$$
 (8)

$$\varepsilon_{c \ 1 \ cp. \ n} = 20 \ lg \frac{U_{c \ 1 \ mn}}{U_{sx}};$$
 (9)
 $\varepsilon_{c \ 2 \ cp. \ n} = 20 \ lg \frac{U_{c \ 1 \ mn}}{U_{c}},$ (10)

$$\varepsilon_{\text{c 2 cp. A}} = 20 \text{ lg } \frac{U_{\text{c 3 ma}}}{U_{\text{c3}}},$$
 (10)

где $U_{\kappa m n}$, $U_{cim n}$ и $U_{cim n}$ — амплитуды напряжений переменных составляющих тока в цепях катода, управляющей сетки и экранирующей сетки соответственно на частоте и-гармоники средней частоты испытательного сигнала, В;

U_{вх} — амрлитуда входного напряження одночастотного сигнала, В;

U_{с2} — напряжение источника питания экранирующей сетки, В.

 Напряжение гармоник средней частоты на анодном контуре измеряют в диапазоне от 2fo до 4fo при измерения выходной мощности лампы по п. 2.3.2a.

Относительный уровень напряжения переменной составляющей тока анода на частоте п-гармониви средней частоты испытательного сигнала (минус дБ) определяют по формуле

$$e_{a. \text{ cp. } n} = 20 \text{ lg } \frac{U_{a.mn}}{U_a}$$
, (11)

єде $U_{a \otimes n}$ — амплитуда напряжения переменной составляющей тока анода на частоте n-гармоники средвей частоты испытательного сигнала, B; U_a — напряжение источника питания анода, B,

 Напряжение гармоник частоты огибающей на блокировочных элементах в целях катода, управляющей сетки, экранирующей сетки и энода измеряют в

днапазоне от $2f_0$ до $4f_0$ в режиме измерения по п. 2.3.2г при N=1.

Относительные уровый напряжений переменных составляющих тока соответственно катода, управляющей сетки, экранирующей сетки и анода на частоте л-гармоники отноающей испытательного сигнала (минус дБ) определяют поформулам

$$\epsilon_{\kappa \text{ or, } \kappa} = 20 \text{ ig } \frac{U_{\kappa \text{ m or, } \kappa}}{U_{\kappa \kappa}};$$
 (12).

$$s_{c_1 \text{ or, } n} = 20 \text{ lg } \frac{U_{c_1 \text{ m or, } n}}{U_{mx}};$$
 (13)

$$\varepsilon_{c_s \text{ or. } n} = 20 \text{ ig } \frac{U_{c2 \text{ m or. } n}}{U_{c2}};$$
 (14)

$$e_{s \text{ or, } n} = 20 \text{ lg } \frac{U_{s \text{ m or, } n}}{U_{s}}$$
, (15)

где $U_{\kappa,m,\,\mathrm{or},\,n},\,U_{\mathrm{cl}\,m,\,\mathrm{or},\,n},\,U_{\mathrm{c2}\,m,\,\mathrm{or}\,n}$ и $U_{a\,m,\,\mathrm{or},\,n}$ — амплитудные значения напряжений переменных составляющих тока в цепях катода, управляющей сетки, экравирующей сетки и анода соответственно на частоте n-гармоники огибающей испытательного сигылад В;

Uвх — эмплитуда входного напряжения одночастотного сигнала, В;

U_{c2} — напряжение источника питания экранирующей сетки, В.

U_а — напряжение источника питания анода, В.

 Для измерения уровия напряжения рекомендуется применять селективные милливольтметры типа В6-1 или В6-2.

3. ОПРЕДЕЛЕНИЕ ПОГРЕШНОСТИ МЕТОДА ИЗМЕРЕНИЯ ОТНОСИТЕЛЬНОГО УРОВНЯ КОМБИНАЦИОННЫХ СОСТАВЛЯЮЩИХ ТРЕТЬЕГО ПОРЯДКА

Относительную погрешность метода измерения (%) определяют по формуле

$$\delta = \begin{pmatrix} \frac{a_{c} + 1 & oz + 2^{-1}}{20} & \frac{a_{c} + 1 & oz + 2^{-1}}{20} & \frac{a_{c} + 1 & oz + 4^{-1}}{20} \\ & + 10 & + 10 & + 10 \end{pmatrix} + \frac{a_{c} + 1 & oz + 4^{-1}}{20} +$$

где

 $\varepsilon_{\rm c\ l\ or,\ l_{\rm c}}$ $\varepsilon_{\rm c\ l\ or,\ 2}$ — относительные уровни напряжений, определяемые по формуле (13); є 1 ср. 2, є 1 ср. 4 — относительные уровни напряжений, определяемые по формуле (9): ве 2 ог. 2, вс 2 ог. 4 — относительные урован напряжений, определяемые по формуле (14):

8c 2 cp. 1, 8c 2 cp. 2, 8c 2 cp. 3, 8c 2 cp. 4 — относительные уровни напряжений, оп-

ределяемые по формуле (10);

Вког. 2. Вког. 4 — относительные уровни напряжения, оп-

ределяемые по формуле (12); 8_{к ср. 1, 8 к ср. 2, 8 к ср. 3, 8 к ср. 4 — относительные уровии напряжений, оп-} ределяемые по формуле (8);

е ог. 2, е ог. 4 — относительные уровни напряжений, он-

ределяемые по формуле (15); Ea ср. 2, Ea ср. 3, Ea ср. 4 — относительные уровни напряжений, оп-

ределяемые по формуле (11); К f2 -- относительный уровень комбинационных составляющих третьего порядка, указанный в табл. 1; 2 мастоящего приложения, минус дБ.

Примечание. Погрешность метода измерения, выраженияя в децибелах, определяется по следующей формуле

$$\delta' = 20 \lg \left(i + \frac{\delta}{100} \right),$$
 (17)

где б — относительная погрешиость, %.

Таблица 1

Относительные уровни напряжений гармоник средней частоты и огибающей испытательного сигнала на блокировочных элементах цепей управляющей сетки, экранирующей сетки и катода

Myc syc aB	5%							10%		20%					
	*cp. 1	⁴ cp. 2 ⁴ cp. 3		or. 2	*or. 4		*cp.2 *cp.3		*or.2	eor.4		tep.2		eor.2	*ora4
30	58	64	84	70	90	52	58	78	64	84	46	52	72	58	78
35	58	69	89	75	95	52	63	83	69	89	46	57	77	63	83
40	58	74	94	80	100	52	68	88	74	94	46	62	82	68	88
43	58	74	97	83	103	52	71	91	77	97	46	65	85	71	91
45	58	79	99	85	105	52	73	93	79	99	46	67	87	73	93

есв. 1 — относительный уровень напряжения 1-й гармоники средней частоты в цепях катода и экранирующей сетки:

 $\epsilon_{\rm cp.~2,~}$ $\epsilon_{\rm cp.~3,~}$ $\epsilon_{\rm cp.~4}$ — относительные уровни напряжений соответственно 2, З и 4-й гармоняк средней частоты в цепях катода, управляющей сетки и экранирующей сетки;

е_{ог. 2.} е_{ог. 4} — относительные уровни напряжений соответственно 2 и 4-й гармоник огибающей в цепях катода, управляющей сетки и экранирующей сетки.

Таблица 2

Относительные уровни напряжений гармоник средней частоты и огибающей вспытательного сигнала на элементах анодной цепя

<i>Ку</i> ₅ . м инус хБ	Относительный уровень напряжения, минус дь, при относительной погрешности метода измерения												
		5	%			10	×		20%				
	ep. 2 ep. 3	tер. 4	or. 2	*or. 4	cp. 2 cp. 3	*cp. 4	cor. 2	*or. 4	*cp. 2 *cp. 3	°cp. 4	*or. 2	*or.4	
30	54	74	60	60	48	68	54	74	42	62	48	68	
35	59	79	65	85	53	73	59	79	47	67	53	73	
40	64	84	70	90	58	78	64	84	52	72	£8	78	
43	67	87	73	93	61	13	67	87	55	75	61	81	
45	69	89	75	95	63	83	69	89	57	77	63	83	

8 ср. 3. 8 ср. 4 — относительные уровни напряжений соответственно 2;
 3 и 4-й гармоник средней частоты на анодном контуре;

Еог. 2. Еог. 4 — относительные уровни напряжений соответственно 2
 и 4-й гармоник огибающей на блокировочных элементах анодной цепи.

Допускается откловение отдельных измерениях относительных уровней напряжений гармоник средней частоты и отновищей от указанных в табляцах в большую сторому. При этом относительная погрещность метода измерения относительного уровия комбинационных составляющих третьего порядка, рассчитанная по формуле (16) настоящего приложения, должна соответствовать погрешности метода измерения, указанной в табл. 1 и 2 настоящего приложения

Редактор Л. А. Мальшев Технический редактор О. Н. Никитина Корректор А. В. Прокофьева

CRIRCO & Rad. 17.10.75 Flogs. a new 10.12.75 1,25 th. n. Tap. 8005 Hear 7 non.