ПРОИГРЫВАТЕЛИ КОМПАКТ-ДИСКОВ

ОБЩИЕ ТЕХНИЧЕСКИЕ ТРЕБОВАНИЯ И МЕТОДЫ ИЗМЕРЕНИЙ

Издание официальное

ГОСТ 28375-89

СОДЕРЖАНИЕ

 общие техни 	ІЧЕСКИЕ ТРЕБОВАНИЯ	
2. МЕТОДЫ ИЗМЕ	3	
приложение 1.	Термины, применяемые в настоящем стандарте, и их пояснения	
приложение 2.	Перечень дополнительных параметров проигрывателей, нормы которых должны	
	устанавливаться в ТУ , , , ,	
приложение 3.	Перечень потребительных удобств проигрывателей, которые устанавливают в ТУ 14	
приложение 4.	Фильтр нижних частот ,	
приложение 5.	Взвешивающий фильтр, кривая «А»	
приложение 6.	Фильтр верхних частот	
приложение 7.	Измерительный компакт-диск	
приложение 8.	Измерительный компакт-диск для измерения импульсной характеристики 19	
приложение 9.	Эквиваленты резистивно-емкостной и емкостной нагрузок	
приложение 10.	Метод оценки погрешности методики выполнения измерения	
приложение п.	Перечень рекомендуемой измерительной аппаратуры	
информационн	IЫЕ ДАЯНЫЕ	

МЕЖГОСУЛАРСТВЕННЫЙ СТАНДАРТ

ПРОИГРЫВАТЕЛИ КОМПАКТ-ДИСКОВ

Общие технические требования и методы измерений

Compact disc players.

General technical requirements
and methods of measurement

ΓΟCT 28375-89 (ΜЭК 908-86)

MKC 33.160.30 OKII 65.8500

Дата введения 01.01.91

Настоящий стандарт распространяется на бытовые проигрыватели компакт-дисков (далее — проигрыватели), предназначенные для воспроизведения цифрового звукового сигнала с компакт-диска.

Стандарт устанавливает основные параметры и методы измерений.

Компакт-диски и проигрыватели компакт-дисков являются составными частями системы «Компакт-диск», параметры которой определены ГОСТ 27667 и ГОСТ 28376.

Термины, применяемые в настоящем стандарте, и их пояснения — по ГОСТ 13699, ГОСТ 27667 и приложению 1 настоящего стандарта.

1. ОБЩИЕ ТЕХНИЧЕСКИЕ ТРЕБОВАНИЯ

1.1. Классификация

Проигрыватели по назначению подразделяют на стационарные, переносные и встраиваемые.

1.2. Основные параметры

- 1.2.1. Стационарные проигрыватели по электрическим параметрам подразделяют на 0 (высшую) и 1-ю группы сложности.
- 1.2.2. Основные электрические параметры стационарных проигрывателей должны соответствовать нормам, приведенным в табл. 1, при нормальных климатических условиях по ГОСТ 15150.

Таблица 1

	Норма по груг	Норма по группам сложности			
Наименованяе параметра	0	1			
 Эффективный диапазон частот канала воспроизведения. Гц, не уже, при неравномерности амплитудно-частотной характеристи- ки в пределах ± 1,5 дБ 	5-20000	20-20000			
 Неравномерность амплитудно-частотной характеристики в диапазоне частот от 20 — до 20000 Гц, дБ 	± 0,5	± 1,5			
3. Отношение сигнал/шум, дБ, не менее	96	90			
4. Динамический диапазон, дБ, не менее	90	80			
 Коэффициент общих гармонических искажений на частоте 1000 Гц, %, не более 	0.008	0.08			

Издание официальное

Перепечатка воспрещена

© Издательство стандартов, 1990 © Стандартинформ, 2006

- Основные электрические параметры переносных и встраиваемых проигрывателей устанавливают в технических условиях (ТУ).
 - 1.2.4. Выходные параметры проигрывателя должны соответствовать ГОСТ 24838.
- 1.2.5. В ТУ на проигрыватели должны быть дополнительно включены нормы на параметры, перечень которых приведен в приложении 2.
- 1.2.6. Питание стационарных проигрывателей должно осуществляться от сети переменного тока частотой (50 ± 0.5) Гц напряжением (220 ± 22) В.
 - 1.2.7. Питание переносных и встраиваемых проигрывателей должно осуществляться:

от автономных источников постоянного тока напряжением (6 \pm 0,6) B, (9 \pm 0,9) B, (12 \pm 1,2) B и (или)

от блоков питания аппаратуры, подключаемой к сети переменного тока частотой (50 \pm 0,5) Γ ц напряжением (220 \pm 22) B.

Полное торговое наименование проигрывателя — по ГОСТ 26794.

1.3. Требования назначения

- 1.3.1. Проигрыватели следует изготавливать в соответствии с требованиями настоящего стандарта по рабочим чертежам и ТУ.
- 1.3.2. В проигрывателе должны быть предусмотрены органы управления, обеспечивающие включение следующих режимов работы:

воспроизведение;

ускоренный поиск «вперед»;

ускоренный поиск «назад».

- 1.3.3. В проигрывателе должна быть предусмотрена индикация номера воспроизводимого фрагмента записи.
- 1.3.4. Наличие потребительских (эксплуатационных) удобств в проигрывателях устанавливается в ТУ. Перечень рекомендуемых потребительских удобств приведен в приложении 3.
- 1.3.5. Проигрыватели должны быть рассчитаны на эксплуатацию в условиях ГОСТ 15150 для исполнений:

УХЛ4.2 — стационарные и встраиваемые,

У1.1 — переносные.

 Схемы распайки контактов соединителей проигрывателя с усилителем сигналов звуковой частоты должны соответствовать ГОСТ 24838.

1.4. Требования надежности

Средняя наработка на отказ T_0 проигрывателей — не менее 5000 ч.

1.5. Требования по стойкости к внешним воздействиям

- 1.5.1. Проигрыватели должны выдерживать климатические и механические воздействия по ГОСТ 11478, установленные для групп:
 - I для стационарных и встраиваемых;
 - III для переносных.
- 1.5.2. Перечень и нормы параметров, проверяемых после механических и климатических воздействий, устанавливают в ТУ.

1.6. Требования эргономики и технической эстетики

- По внешнему виду и качеству отделки проигрыватели должны соответствовать образцам, утвержденным в установленном порядке в соответствии с ГОСТ 15.009.
- 1.6.2. Условные функциональные обозначения органов управления проигрывателей по ГОСТ 25874.

1.7. Требования безопасности

Проигрыватели должны соответствовать требованиям безопасности, установленным ГОСТ 12.2.006* и Нормами 2392—81 («Санитарные нормы и правила устройства и эксплуатации лазеров»).

1.8. Конструктивные требования

- Соединители для внешних подключений проигрывателей по НТД.
- 1.8.2. Шнур, предназначенный для подключения проигрывателя к сети переменного тока, должен соответствовать требованиям ГОСТ 7399 и иметь длину не менее 1,6 м от стенки корпуса проигрывателя до основания вилки.

На территории Российской Федерации действует ГОСТ Р МЭК 60065—2002.

- 1.8.3. Масса стационарных проигрывателей должна быть не более 15 кг, массу переносных и встраиваемых проигрывателей устанавливают в ТУ.
- 1.8.4. Максимальная потребляемая мощность проигрывателей устанавливается в ТУ. Максимальная потребляемая мощность стационарных проигрывателей не должна превыпать 40 В · А.

1.9. Требования радиоэлектронной защиты

- 1.9.1. Внешняя помехозащищенность проигрывателей должна соответствовать требованиям Норм 21—86 («Временные общесоюзные нормы внешней помехозащищенности БРЭА. Допускаемые значения. Методы измерений»), утвержденным ГКРЧ СССР.
- 1.9.2. Радиопомехи, создаваемые проигрывателями, не должны превышать значения, установленные ГОСТ 23511*.
- 1.9.3. Требования к защите от статического электричества должны соответствовать ГОСТ 28002**.

2. МЕТОДЫ ИЗМЕРЕНИЯ

2.1. Общие положения

- 2.1.1. Параметры проигрывателей измеряют при нормальных климатических условиях по ГОСТ 15150 и номинальном напряжении питания с допускаемыми отклонениями ± 2 %.
- 2.1.2. Методы измерений, установленные в настоящем стандарте, обязательны при всех видах испытаний. Допускается приемосдаточные испытания проводить, используя методы измерений, установленные в ТУ на проигрыватели конкретного типа, отличающиеся от методов, установленных в настоящем стандарте, но обеспечивающие одинаковые результаты измерений.

2.2. Аппаратура

Диапазон частот измерительной аппаратуры должен быть не уже диапазона частот измеряемых проигрывателей.

2.2.2. Регистрирующее устройство

Непрерывный динамический диапазон — 25 или 50 дБ.

Напряжение, соответствующее нулевому уровню, - не более 10 мВ.

Погрешность регистрации уровня на синусоидальном сигнале — не более ± 1/3 измеряемой неравномерности амплитудно-частотной характеристики.

Наличие синхронизации начала записи — по окончании стартового сигнала частотой 1000 Гц.

Значения частот, обозначенные на бланке с записью частотной характеристики, должны соответствовать частоте сигнала с измерительного диска с погрешностью не более \pm (0.05f + 2) Гц.

Соотношение скорости прохождения частот диапазона и постоянной времени самопишущего регистратора уровня должно обеспечивать запись частотных характеристик с крутизной фронта не менее 100 дБ · окт^{— 1} и выбираться из условия, при котором уровень, полученный при непрерывной записи, должен отличаться от уровня, полученного в статическом режиме, не более чем на ± 0,5 дБ.

Регистрирующее устройство должно обеспечивать непрерывную запись напряжения в диапазоне частот от 4 Гц до 22.5 кГц.

 2.2.3. Вольтметр переменного тока со средней квадратической характеристикой детектирования (В1)

Диапазон частот — от 4 до 20 Гц.

Диапазон измеряемых напряжений — не уже (0,1—10) В.

Полное входное сопротивление - не менее I МОм.

Основная погрешность измерения напряжения — не более ±1 %.

 2.2.4. Вольтметр переменного тока со средней квадратической характеристикой детектирования (В2).

Диапазон частот - от 18 Ги до 25 кГи.

Полное входное сопротивление — не менее 1 МОм.

Основная погрешность измерения для диапазона напряжений:

от 10 мкВ до 100 мВ включ. - не более ± 2,5 %;

св. 100 мВ » 10 В » - не более ± 1 %.

^{*} На территории Российской Федерации действует ГОСТ Р 51318.14.1-99.

^{**} На территории Российской Федерации действует ГОСТ Р 51515-99.

2.2.5. Анализатор спектра последовательного действия:

Диапазон частот — от 20 Гц до 20 кГц.

Полоса пропускания на уровне минус 3 дБ -- 3 Гц.

Динамический диапазон в логарифмическом масштабе — не менее 95 (100) дБ.

Погрешность измерений уровней от 10 мкВ до 1 В — не более ± 30 %.

2.2.6. Измеритель нелинейных искажений

Минимальный диапазон измеряемых коэффициентов гармоник в диапазоне частот от 10 Γ ц до 22.5 к Γ ц — (0.003 – 10) %.

Абсолютная основная погрешность измерения в зависимости от диапазона частот при напряжении от 1 до 10 В — не более \pm (0,1 $k_{\rm r}$ + 0,006) % ($k_{\rm r}$ — предельное значение коэффициента гармоник, на котором проводят измерения).

2.2.7. Измерительный усилитель переменного тока

Коэффициент усиления - от 10 до 70 дБ.

Погрешность коэффициента усиления на частоте 1000 Гц — не более ± 0,15 дБ.

Коэффициент гармоник в диапазоне частот от 20 Гц до 20 кГц - не более 0,1 %.

Напряжение шумового сигнала, приведенное ко входу в диапазоне частот от 20 Γ ц до 20 к Γ ц,— не более 10 мкВ.

Измеритель разности фаз — по ГОСТ 8039.

Пределы измерения разности фаз $-0^{\circ} - 360^{\circ}$.

Диапазон входного напряжения — (0,1-2) В.

Разрешающая способность — 0,1°.

Погрешность измерения разности фаз, не более $\pm (0,1^{\circ} + 10^{-7} f_{\rm H})$, ($f_{\rm H}$ — измеряемая частота, Γ и).

2.2.9. Частотомер электронно-счетный

Минимальное значение входного напряжения - не более 0,1 В.

Относительная погрешность измерения частоты синусоидального и импульсного сигналов δ в процентах, не более, вычисляется по формуле

$$\delta = \pm \left(5.10^{-7} + \frac{1}{f_u \cdot t_c}\right) \cdot 100, \quad (1)$$

где f_{μ} — измеряемая частота, Гц;

 t_{c} — время счета — не менее 10 с.

2.2.10. Осциллограф универсальный

Основная погрешность измерения напряжения — не более ± 5 %.

2.2.11. Фильтр нижних частот

Неравномерность амплитудно-частотной характеристики в диапазоне частот:

от 4 Гц до 18 кГц включ. - не более ± 0,25 дБ;

св. 18 кГц » 20 кГц » — не более +0,25 дБ и минус 1 дБ.

Затухание на частоте, большей или равной 24,1 кГц, - не менее 60 дБ.

Полное входное сопротивление в диапазоне частот от 4 Γ ц до 20 к Γ ц ($10 \pm 1,5$) кOм.

Суммарный уровень искажений и шума на частоте 1000 Гц относительно выходного напряжения, 1 В, — не более минус 90 дБ.

Принципиальная электрическая схема фильтра нижних частот приведена в приложении 4.

2.2.12. Взвешивающий фильтр

Компенсационная кривая «А» с нулевым классом точности — по ГОСТ 17187.

Коэффициент передачи на частоте 1000 $\Gamma \mu = (1 \pm 0.03)$.

Полное входное сопротивление в диапазоне частот от 10 Гц до 20 кГц — не менее 1 кОм.

Уровень собственных шумов на выходе фильтра — не более I мВ.

Принципиальная электрическая схема взвешивающего фильтра, кривая «А» приведена в приложении 5.

2.2.13. Фильтр верхних частот

Неравномерность амплитудно-частотной характеристики в диапазоне частот от 6 до $8 \ \kappa \Gamma \mu$ — не более $\pm 0,25 \ \mathrm{д}\mathrm{b}$.

Коэффициент передачи фильтра на частоте 7,1 к Γ ц — (0,5 \pm 0,025).

Затухание на частоте 60 Гц - не менее 60 дБ.

Полное входное сопротивление в диапазоне частот от 20 Гц до 20 кГц -- не менее 10 кОм.

Суммарный уровень интермодуляционных искажений и шума в диапазоне частот от 6 до 8 к Γ ц относительно выходного напряжения 1 В — не более минус 84 дБ.

Принципиальная электрическая схема фильтра верхних частот приведена в приложении 6.

2.2.14. Измерительные компакт-диски

Основные технические характеристики измерительных компакт-дисков приведены в приложениях 7 и 8.

2.2.15. Эквивалент резистивно-емкостной нагрузки — 10 кОм ± 5 %, 200 пФ ± 5 %.

Принципиальная электрическая схема приведена в приложении 9.

2.2.16. Эквивалент емкостной нагрузки — 200 п $\Phi \pm 5$ %.

Принципиальная электрическая схема приведена в приложении 9.

2.2.17. Автотрансформатор — по ГОСТ 7518.

2.2.18. Амперметр переменного и постоянного тока - по ГОСТ 8711.

Пределы измерения тока — от 0,1 до 1,0 А.

Класс точности - не более 0,5.

2.2.19. Вольтметр переменного и постоянного тока — по ГОСТ 8711 (В3).

Пределы измерения напряжения - от 190 до 250 В.

Класс точности - не более 0.5.

Источник питания постоянного тока – по ГОСТ 18953.

2.2.21. Секундомер - по НТД.

Пределы измерения - от 0,2 до 30 с.

Погрешность измерения - не более ± 0,2 с.

2.2.22. Весы с погрешностью измерения - не более 0.01 кг.

- 2.2.23. Допускается замена указанной измерительной аппаратуры на другую и использование измерительных комплексов, в том числе автоматизированных и с применением ЭВМ, при условии их соответствия требованиям настоящего стандарта и обеспечения требуемой точности измерений.
 - 2.2.24. Оценка погрешности методов измерений в соответствии с приложением 10.
 - 2.2.25. Перечень рекомендуемой измерительной аппаратуры приведены в приложении 11.

2.3. Подготовка к измерениям

- Измерения параметров проигрывателей проводят после выдержки их включенными в режиме воспроизведения в течение времени, указанного в ТУ.
- 2.3.2. Уровень внешних электромагнитных помех в схеме измерения должен быть не менее чем на 10 дБ ниже уровня минимального измеряемого сигнала, если иное не установлено в ТУ.
- Индукция электромагнитного поля частоты сети питания в месте установки измеряемого проигрывателя не должна превышать 0,38 · 10⁻⁻⁶ Тл.
- 2.3.4. Подготовка к измерениям и условия измерений электрических параметров проигрывателей — по ГОСТ 23849.

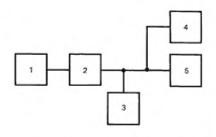
2.4. Проведение измерений

 Измерение эффективного диапазона частот (п. 1 табл. 1) и неравномерности амплитудно-частотной характеристики (АЧХ) (п. 2 табл. 2).

Метод 1. Неравномерность АЧХ на дискретных частотах измеряют по схеме черт. 1.

Воспроизводят сигнал с измерительного компакт-диска, предназначенный для измерения АЧХ (см. приложение 7).

Измеряют на дискретных частотах напряжения на выходе левого и правого каналов.


Неравномерность АЧХ N в децибелах вычисляют по формуле

$$N = 20 \lg \frac{U_f}{U_{1000}},$$
 (2)

где U_r — напряжение на дискретных частотах, В;

 U_{1000} — напряжение на частоте 1000 Гц, В.

Метод 2. Неравномерность АЧХ с помощью скользящего тона измеряют по схеме черт. 2. Воспроизводят сигнал с измерительного компакт-диска для измерения неравномерности АЧХ с помощью скользящего тона (см. приложение 7).

I — измерительный компакт-диск (п. 2.2.14); 2 — измериемый проигрыватель; $J \mapsto$ эквивалент резистивно емкостной нагрузки (п. 2.2.15); d = вольтметр B1 (п. 2.2.3); $S \mapsto$ вольтметр B2 (п. 2.2.4)

1 — измерительный компакт-диск (п. 2.2.14); 2 — измеряемый проигрыватель; 3 — эквивалент резистивно-емкостной нагрузки (п. 2.2.15); d — регистрирующее устройство (п. 2.2.2)

Черт. 1 Черт. 2

На бланке регистрирующего устройства записывают частотную характеристику. Неравномерность АЧХ на граничных частотах эффективного диапазона частот $N_{\rm HY}$, $N_{\rm BY}$ и на частотах, соответствующих максимальному и минимальному значению уровней сигналов $N_{\rm max}$ и $N_{\rm min}$ в децибелах вычисляют по формулам

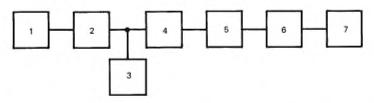
$$N_{HY} = A_{HY} - A_{1000}, \qquad (3)$$

$$N_{\text{BU}} = A_{\text{BU}} - A_{1000}$$
, (4)

$$N_{\text{max}} = A_{\text{max}} - A_{1000}$$
, (5)

$$N_{\min} = A_{1000} - A_{\min}$$
, (6)

где A_{1000} — уровень сигнала на частоте 1000 Гц, дБ;


 $A_{\rm HЧ},\ A_{\rm BЧ}$ — уровень сигнала на нижней и верхней граничных частотах эффективного диапазона частот соответственно, дБ;

 A_{\max} , A_{\min} — максимальное и минимальное значения уровня сигнала, дБ.

Приоритетным следует считать метод 1.

Эффективный диапазон частот определяют по заданному значению неравномерности АЧХ, приведенному в п. 1 табл. 1, проводя измерения по методу 1.

Измерение отношения сигнал/шум (п. 3 табл. 1) проводят по схеме черт. 3.

1 — измерительный компакт-диск (п. 2.2.14); 2 — измеряемый проигрыватель, 3 — эквивалент резистивно емкостной нагрузки (п. 2.2.15), 4 — измерительный усилитель (п. 2.2.7); 5 — фильтр ивжних частот (п. 2.2.11); 6 — измешивающий фильтр (п. 2.2.12); 7 — вольтметр B2 (п. 2.2.4)

Черт. 3

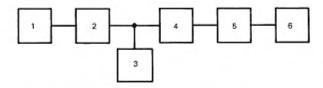
На измерительном усилителе устанавливают коэффициент усиления k_1 , равный 10 дБ. Воспроизводят опорный сигнал с уровнем записи 0 дБ, частотой 1000 Γ ц (см. приложение 7) и измеряют вольтметром напряжение U_0 .

С измерительного компакт-диска воспроизводят сигнал для измерения отношения сигнал/шум с уровнем записи по этому каналу, равным минус ∞ дБ (см. приложение 7). На измерительном усилителе устанавливают коэффициент усиления k_2 , равный 70 дБ, и измеряют вольтметром напряжение U_{int} .

Отношение сигнал/шум В, в децибелах, вычисляют по формуле

$$B = 20 \lg \frac{U_0}{U_{vv}} + (k_2 - k_1), \tag{7}$$

где U_0 — напряжение при воспроизведении опорного сигнала частотой 1000 Гц, мВ;


 $U_{\rm m}$ — напряжение при воспроизведении сигнала с уровнем записи по этому каналу, равным минус \propto дБ, мВ;

 k_1 — коэффициент усиления измерительного усилителя на частоте 1000 Γ ц при измерении U_0 , пБ:

 k_2 — коэффициент усиления измерительного усилителя на частоте 1000 Γ ц при измерении U_{ut} , πB .

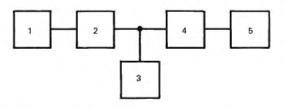
Измерения и вычисления повторяют для другого канала.

Измерение динамического диапазона (п. 4 табл. 1) проводят по схеме черт. 4.

I — измерительный компакт-диск (п. 2.2.14); 2 — измерительный проигрыватель; 3 —эквивалент резистивно-емкостиой нагрузки (п. 2.2.15); 4 — измерительный усилитель (п. 2.2.7); 5 — фильтр нижних частот (п. 2.2.11); 6 — измеритель нелинейных вскажений (п. 2.2.6)

С измерительного компакт-диска воспроизводят сигнал для измерения динамического диапазона (см. приложение 7).

На измерительном усилителе устанавливают усиление минус 60 дБ и измеряют коэффициент общих гармонических искажений.


Динамический диапазон D в денибелах вычисляют по формуле

$$D = 20 \lg \frac{100}{k_x} + 60,$$
 (8)

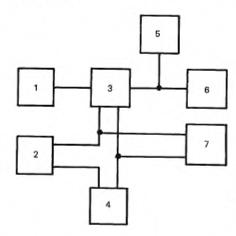
где $k_{\rm r}$ — коэффициент общих гармонических искажений, измеренный на уровне записи минус 60 дБ, %.

Измерительные частоты 1000 Гц (обязательная), 20 Гц, 16 кГц, 20 кГц (рекомендованные). Измерения и вычисления повторяют для другого канала.

 Измерение коэффициента общих гармонических искажений (п. 5 табл. 1) проводят по схеме черт. 5.

1 — измерительный компакт-диск (п. 2.2.14), 2 — измеряемый проигрыватель; 3 — эквивалент емкостной нагрузки (п. 2.2.16); 4 — фильтр нижних частот (п. 2.2.11); 5 — измеритель нелинейных искажений (п. 2.2.6)

C. 8 FOCT 28375-89


С измерительного компакт-диска воспроизводят сигнал для измерения коэффициента общих гармонических искажений (см. приложение 7).

Измеряют коэффициент общих гармонических искажений на частотах из ряда, записанного на измерительном компакт-диске. Частота 1000 Гц является обязательной. Конкретные значения частот указываются в ТУ.

Измерения повторяют для другого канала.

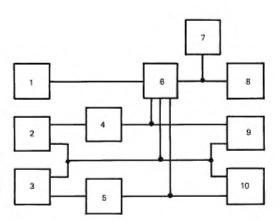
- Измерение выходных параметров (п. 1.2.4) по ГОСТ 23849.
- 2.4.6. Измерение максимальной потребляемой мощности (п. 1.8.4).

Метод 1. Максимальную потребляемую мощность от сети переменного тока определяют по схеме черт. 6.

I — измерительный компакт-диск (п. 2.2.14); 2 — амперметр переменного и постоянного дока (п. 2.2.18); 3 — измеряемый проигрыватель; 4 — автотрансформатор (п. 2.2.17); 5 — зкивалент резистивно-емкос тной вагрузки (п. 2.2.15); δ — вольтметр B2 (п. 2.2.4); 7 — вольтметр переменного и постоянного тока (п. 2.2.19)

Черт. 6

Регулятором напряжения автотрансформатора устанавливают максимальное напряжение питания, указанное в ТУ. В режиме воспроизведения опорного сигнала частотой 1000 Гц измеряют ток, потребляемый проигрывателем.

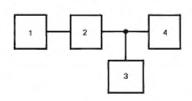

Максимальную потребляемую мощность P_{max} в вольт-амперах вычисляют по формуле

$$P_{\text{max}} = U \cdot I$$
, (9)

где U — напряжение питания. В:

I – ток, потребляемый проигрывателем, А.

Метод 2. Максимальную потребляемую мощность от источников постоянного тока определяют по черт. 7.



I— измерительный компакт-диск (п. 2.2.14); 2, 3— исгочник постоянного тока (п. 2.2.20); 4, 5— амперметр переменного и постоянного тока (п. 2.2.18); 6— измеряемый проитрыватель; 7— эквивалент резистивно-емкостной нагрузки (п. 2.2.15); 8— польтметр В2 (п. 2.2.4); 9, 10— вольтметр В3 (п. 2.2.19)

По вольтметрам 9 и 10 устанавливают максимальное значение напряжения питания, указанное в ТУ. В режиме воспроизведения опорного сигнала частотой 1000 Гц измеряют ток, потребляемый проигрывателем.

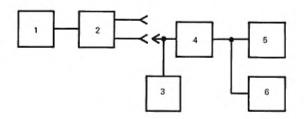
Максимальную потребляемую мощность P_{max} в ваттах вычисляют по формуле (9).

2.4.7. Измерение опорного выходного напряжения и разбаланса уровней каналов на частоте 1000 Гц (см. приложение 2 пп. 1, 2) проводят по схеме черт. 8.

С измерительного компакт-диска воспроизводят сигнал частотой 1000 Гц (приложение 7) и измеряют выходное напряжение для левого и правого каналов.

Если предусмотрен регулятор громкости, то его следует установить на номинальное выходное напряжение.

Разбаланс уровней каналов P в децибелах на частоте 1000 Γ ц вычисляют по формуле


$$P = 20 \lg \frac{U_n}{U_s}, \quad (10)$$

I — измерительный компакт-диск (п. 2.2.34); 2 — измеряемый проигрыватель; 3 — эквивалент резистивно-емкостной нагрузки (п. 2.2.15), 4 — вольтметр B2 (п. 2.2.4)

Черт.8

где U_n — напряжение на выходе правого канала, В; U_s — напряжение на выходе левого канала, В.

 Измерение разделения каналов воспроизведения (см. приложение 2 п. 3) проводят по схеме черт. 9.

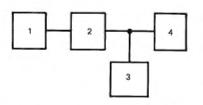
I — измерительный компакт-диск (п. 2.2.14); Z — измеряемый проитрыватель; S — эквивалент емкостной натрузки (п. 2.2.16); d — фильтр нижних частот (п. 2.2.11); S — водытметр B2 (п. 2.2.4); δ — анализатор спектра (п. 2.2.5)

Черт. 9

С измерительного компакт-диска воспроизводят сигнал, предназначенный для измерения разделения каналов (см. приложение 7). Измеряют напряжение на выходе одного из каналов при воспроизведении сигнала на выходе другого канала на обязательной частоте 1000 Гц и рекомендуемых частотах 125 Гц, 4 кГц, 10 кГц и 16 кГц.

Разделение каналов D_0 в децибелах вычисляют по формуле

$$D_{\rm p} = 20 \lg \frac{U_1}{U_2},$$
 (11)


где U_1 — напряжение на выходе измеряемого канала при воспроизведении сигнала этого же канала, В:

 U_2- напряжение на выходе измеряемого канала при воспроизведении сигнала другого канала, В.

При измерении разделения каналов значением более 60 дБ можно использовать анализатор спектра. Измерения и вычисления проводят как для левого, так и для правого каналов.

2.4.9. Измерение неравномерности АЧХ с коррекцией предыскажений (см. приложение 2 п. 4) проводят по схеме черт. 10.

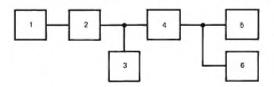
С измерительного компакт-диска воспроизводят сигнал левого канала с коррекцией предыскажений (см. приложение 7). Измеряют напряжение с фиксированными частотами 1000, 125 Гц, 4, 10, 16 кГц.

I — измерительный компакт диск (п. 2.2.14); 2 — измеряемый проигрыватель; 3 — эквивалент резистивно-емкостной нагрузки (п. 2.2.15);

4 -- нольтметр В2 (п. 2,2,4)

Черт, 10

Неравномерность AЧX с коррекцией предыскажений у в децибелах вычисляют по формуле


$$\gamma = 20 \lg \frac{U_f}{U_{1000}},$$
 (12)

где U_f — напряжение на измеряемой частоте, В; U_{1000} — напряжение на частоте 1000 Гц. В.

Аналогичные измерения и вычисления проводят для правого канала.

 Измерение коэффициента интермодуляционных искажений (см. приложение 2 п. 5)

Метод 1. Коэффициент интермодуляционных искажений определяют по схеме черт. 11.

I — измерительный компакт-диск (п. 2.2.14); 2 — измервемый проигрыватель, 3 — эквивалент емкостной нагрузки (п. 2.2,16); δ — фильтр верхвих частот (п. 2.2,13); 5 — анализатор спектра (п. 2.2.5); δ — вольтметр B2 (п. 2.2.4)

Черт, 11

С измерительного компакт-диска воспроизводят сигнал для измерения коэффициента интермодуляционных искажений, представляющий собой сумму напряжений двух частот 60 Γ ц (f_H) и 7 к Γ ц (f_B) при соотношении амплитуд 4:1 (см. приложение 7).

Измеряют напряжение $U_{\rm s}$ на основной частоте $f_{\rm s}$.

Затем анализатором спектра измеряют напряжения на частотах: $f_{\rm H}-f_{\rm H}$ (6940 Гц); $f_{\rm g}-2f_{\rm H}$ (6880 Гц); $f_{\rm g}-3f_{\rm H}$ (6820 Гц); $f_{\rm g}+f_{\rm H}$ (7060 кГц); $f_{\rm g}+2f_{\rm H}$ (7120 Гц); $f_{\rm g}+3f_{\rm H}$ (7180 Гц).

Коэффициент интермодуляционных искажений $K_{\text{им}}$ в процентах вычисляют по формуле

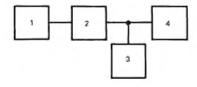
$$K_{\text{HM}} = \frac{\sqrt{U_{1}^{2} + U_{+1}^{2} + U_{+2}^{2} + U_{+2}^{2} + U_{+3}^{2} + U_{+3}^{2}}}{U_{-}} \cdot 100,$$
 (13)

где U_n — напряжение на основной частоте f_n , мВ;

 U_{1} — напряжение на частоте f_{B} — f_{H} , мВ;

 U_{+1} — напряжение на частоте $f_B + f_H$, мВ;

 U_{-2} — напряжение на частоте f_{n} – $2f_{H}$, мВ;


 U_{+2} — напряжение на частоте $f_n + 2f_n$, мВ;

 U_{3}^{2} – напряжение на частоте f_{n} – $3f_{n}^{n}$, мВ;

 U_{+3} — напряжение на частоте $f_n + 3f_H$, мВ.

Измерения и вычисления повторяют для другого канала.

Метод 2. Коэффициент интермодуляционных искажений определяют по схеме черт. 12.

I= измерительный компакт-диск (п. 2.2.14); Z= измеряемый проигрыватель ($\beta=$ эквивалент резистивно-емкостной нагрузки (п. 2.2.15); d= анализатор спектра (п. 2.2.5)

С измерительного компакт-диска воспроизводят сигнал, представляющий сумму напряжений двух частот: 11 и 12 кГц, при соотношении уровней 1:1 (см. приложение 7).

Анализатором спектра измеряют напряжение на частотах 1000 Гц, 11 кГц, 12 кГц. Коэффициент интермодуляционных искажений Ким в процентах вычисляют по формуле

$$K_{\text{HM}} = \frac{U_{\text{HM}}}{U_f} \cdot 100, \qquad (14)$$

где U_f — напряжение на частоте 11 или 12 кГц, мВ; $U_{\rm ИМ}$ — напряжение на частоте 1000 Гц, мВ.

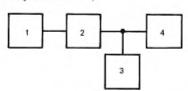
Измерения и вычисления повторяют для другого канала.

Приоритетным следует считать метод измерения 1.

2.4.11. Измерение погрешности частоты выходного напряжения (см. приложение 2, п. 6) проводят по схеме черт. 13.

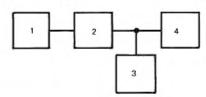
С измерительного компакт-диска воспроизводят сигнал частотой 20 кГц, предназначенный для измерения погрешности частоты выходного напряжения (см. приложение 7).

С помощью частотомера измеряют период повторения частоты выходного напряжения.


Погрешность частоты выходного напряжения δ , в процентах вычисляют по формуле

$$\delta_f = \frac{f_n - f_0}{f_0} \cdot 100,$$
 (15)

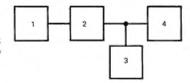
где f_{μ} — измеряемая частота выходного напряжения, Γ ц; f₀ — частота выходного напряжения, указанная на измерительном компакт-диске, Гц.


При измерениях могут использоваться и другие

2.4.12. Измерение разности фаз между каналами (см. приложение 2, п. 7) проводят по черт. 14.

I — измерительный компакт-диск (п. 2.2.14); 2 - измеряемый проигрыватель; 3 - эквиварезистивно-емкостной (п. 2.2.15); 4 — частотомер электронно-счетный (п. 2.2.9)

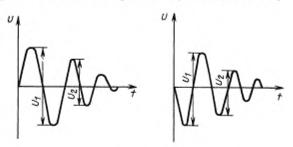
Черт. 13


 I – измерительный компакт-диск (п. 2.2.14);
 2 – измеряемый проигрыватель, 3 – эквивалент резистивно емкостной нагрузки (п. 2,2,15); 4 – измеритель

разности фаз (п. 2.2.8)

Черт. 14

С измерительного компакт-диска воспроизводят сигнал для измерения разности фаз частотой 20 кГц поминального уровня (см. приложение 7) и измеряют разность фаз между каналами.

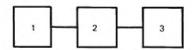

2.4.13. Измерение импульсной характеристики (приложение 2, п. 8) проводят по схеме черт. 15.

 I – измерительный компакт-диск (п. 2.2.14); 2 – измеряемый проигрыватель; 3 – эквивалент резистивно-емкостной нагрузки (п. 2.2.15);
 4 – осциллограф (n. 2.2.10)

Воспроизводят участок измерительного компакт-диска с записью цифрового импульсного сигнала (см. приложение 8) длительностью в одну выборку.

Сравнивают осциллограмму (амплитудно-временной отклик), полученную на экране осциллографа, с осциллограммами, представленными на черт. 16. Проигрыватель считается неинвертирующим, если первый импульс отклика имеет положительную полярность (черт. 16а), и инвертирующим, если первый импульс отклика имеет отрицательную полярность (черт. 16б).

Черт. 16


Коэффициент затухания фильтра нижних частот & вычисляют по формуле

$$\xi = \frac{\ln \frac{U_1}{U_2}}{\pi},$$
(16)

где U₁, U₂ — максимальные значения напряжений (размах) соответственно первого и второго периодов затухающего процесса на экране осциллографа, В.

Измерения и вычисления повторяют для другого канала.

2.4.14. Измерение времени доступа к выбранной программе (см. приложение 2 п. 9) проводят по схеме черт. 17.

I — измерительный компакт-диск (п. 2.2.14); 2 - измериемый проигрыватель;
 3 - осциллограф универсальный (п. 2.2.10)

Черт. 17

Метод 1. Измерение короткого времени доступа.

Сразу после начала воспроизведения первого фрагмента измерятельного компакт-диска (см. приложение 7) секундомером измеряют время между отжатием кнопки управления для воспроизведения второго фрагмента и действительным началом его воспроизведения (начало зоны записи).

Таким же образом измеряют время между отжатием кнопки управления для воспроизведения последнего фрагмента и действительным началом воспроизведения этого фрагмента (конец зоны записи).

Метод 2. Измерение длинного времени доступа

Сразу после начала воспроизведения первого фрагмента измерительного компакт-диска (см. приложение 7) измеряют секундомером время между отжатием кнопки управления для воспроизведения последнего фрагмента и действительным началом воспроизведения этого фрагмента.

По каждому методу проводят не менее 10 измерений и рассчитывают среднее значение короткого и длинного времени доступа.

 Оценку соответствия требований по надежности (п. 1.4) проводят методами, установленными в ТУ.

ТЕРМИНЫ, ПРИМЕНЯЕМЫЕ В НАСТОЯЩЕМ СТАНДАРТЕ, И ИХ ПОЯСНЕНИЯ

Термин	Пояснение
1. Стационарный проиг	рыватель Проигрыватель, предназначенный для работы в стационарных условиях
2. Переносной пронгры	ватель Проигрыватель, приспособленный к переноскам и перевозкам пассажирским гранспортом без принятия специальных мер
3. Встранваемый проиг	рыватель Проигрыватель модульной конструкции, предназначенный для работы в составе комплекса аппаратуры, имеющего общие функ- циональные блоки
4. Опорная частота	Частота, которая при измерениях выбирается за основную. Примечание. В настоящем стандарте равна 1000 Гц
5. Опорный сигнал	Сигнал, соответствующий полному уровню цифровой записи с числом уровней, равным 216, частотой 1000 Гц
6. Номинальная величи	вна Величина, заданная изготовителем, являющаяся условием для измерения других величин
7. Амплитудно-частоти: ристика (АЧХ)	ая характе- Графическая или числовая зависимость уровня выходного на- пряжения от частоты при воспройзведении с компакт-диска циф- рового сигнала, записанного с постоянным уровнем
8. Эффективный диапа	зон частот Диапазон частот, внутри которого амплитудно-частотная ха- рактеристика имеет заданную неравномерность
9. Неравномерность частотной характеристики	амплитудно- Измерение уровня выходного напряжения, выраженного в де- цибелах, относительно уровня сигнала на опорной частоте в зави- симости от частоты в заданном диапазоне частот
10. Отношение сигнал/	шум Отношение опорного сигнала к напряжению взвешенного шума при воспроизведении цифрового нулевого сигнала
11. Коэффициент общи ческих искажений	их гармови- ощих сигнала и шума без основной гармоники к эталонному но- минальному уровню выходного напряжения
12. Динамический диац	Отношение опорного выходного напряжения к среднему квад- ратическому значению напряжения гармонических составляющих сигнала и шума, измеренных для уровня сигнала, на 60 дБ ниже опорного
13. Опорное выходное з	напряжение Выходное напряжение проигрывателя, которое устанавливает- ся на клеммах эквивалента нагрузки при воспроизведении с ком- пакт-диска опорного сигнала уровня записи
14. Разбаланс уровней	каналов Отношение уровней выходных напряжений правого и девого каналов при воспроизведении эталонного уровня записи на опор- ной частоте
15. Разделение каналов	 Отношение напряжения на выходе измеряемого канала при воспроизведении сигнала номинального уровня к напряжению, создаваемому этим же сигналом на выходе другого канала
16. Коэффициент инт онных искажений	 Отношение суммы средних квадратических значений состав- ляющих выходного сигнала на заданных частотах, полученных в результате интермодуляции, к составляющей на основной частоте
17. Погрешность часто	
18. Импульсная характ	еристика Амплитудно-временной отклик при воспроизведении участка компакт-диска с записью цифрового сигнала в одну выборку

ПЕРЕЧЕНЬ

дополнительных параметров проигрывателей, нормы которых должны устанавливаться в ТУ

- 1. Опорное выходное напряжение.
- 2. Разбаланс уровней каналов.
- 3. Разделение каналов воспроизведения на частоте 1000 Гц.
- Неравномерность АЧХ с коррекцией предыскажений.
- 5. Коэффициент интермодуляционных искажений.
- 6. Погрешность частоты выходного напряжения.
- 7. Разность фаз между каналами.
- 8. Импульсная характеристика,
- 9. Время доступа к выбранной программе.

ПРИЛОЖЕНИЕ З Рекомендуемое

ПЕРЕЧЕНЬ потребительских удобств проигрывателей, которые устанавливают в ТУ

- 1. Автоматическая загрузка компакт-диска.
- 2. Загрузка компакт-диска в кассете.
- 3. Магазин из нескольких компакт-дасков.
- 4. Дистанционное управление.
- 5. Регулируемый линейный выход.
- 6. Выход на наушники.
- 7. Выход на наушники регулируемый.
- Дополнительные выходы: служебной информации;

цифровой электрический;

цифровой волоконно-оптический.

9. Индикация:

надичия компакт-диска в проигрывателе:

режима работы проигрывателя:

воспроизведение;

пауза;

повтор;

стоп;

текущего времени от начала компакт-диска,

текущего времени от начала фрагмента;

оставшегося времени до конца компакт-диска,

оставшегося времени до конца фрагмента.

10. Функция повтора:

всего компакт-диска;

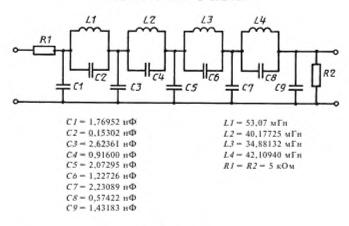
одного фрагмента;

отрывка или фразы;

всей заданной программы.

11. Программирование воспроизводимых фрагментов:

до 10 включ.

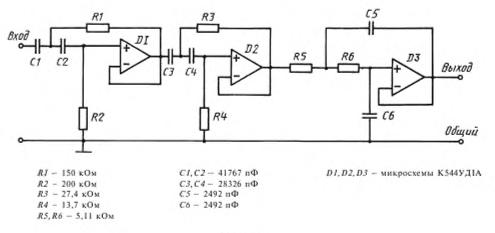

or 10 * 20 *

св. 20

12. Возможность воспроизведения видеодиска.

ПРИЛОЖЕНИЕ 4 Справочное

ФИЛЬТР НИЖНИХ ЧАСТОТ

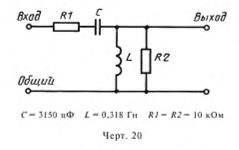

Черт. 18

Примечания:

- 1. Номинальные значения сопротивлений, индуктивностей и емкостей должны быть подобраны с погрешностью не более ± 0,5 %.

 - Добротность индуктивностей L1—L4 должна быть не менее 10.
 Тангенс угла потерь емкостей C1—C9 должен быть не более 0,0001.
 Фильтр нижних частот помещается в стальной экранирующий корпус.

ВЗВЕШИВАЮЩИЙ ФИЛЬТР, КРИВАЯ «А»


Черт. 19

Примечания:

- Номинальные значения сопротивлений емкостей должны быть подобраны с погрешностью не более ± 0,5 %.
 - 2. Фильтр помещается в стальной экранирующий корпус.

ПРИЛОЖЕНИЕ 6 Справочное

ФИЛЬТР ВЕРХНИХ ЧАСТОТ

Примечания:

- 1. Номинальные значения сопротивлений, индуктивности и емкости должны быть подобраны с погрешностью не более \pm 1 %.
 - 2. Добротность индуктивности L должна быть не менее 10.
 - 3. Фильтр верхних частот помещается в стальной экранирующий корпус.

ПРИЛОЖЕНИЕ 7 Справочное

ИЗМЕРИТЕЛЬНЫЙ КОМПАКТ-ДИСК

- 1. Технические требования, предъявляемые к компакт-диску, должны соответствовать ГОСТ 28376-89.
- Сигналы записи
 Формат сигналов записи должен соответствовать ГОСТ 28376.
- 2.2. Состав сигналов записи представлен в табл. 2,

Таблица 2 Состав сигналов записи измерительного компакт-диска

Участо	к диска							-	0.0
Номер фрамент	Индекс отрывка	Канат	Частога, кГц	Уровень записи, дБ	Предыска- жения	Время пос- произведе- ния отрыв- ка В _и , мин, с	Длитель- ность отрывка, мин, с	Текущее время воспроиз- ведения Во, мин, с	Назначение
ı	00 01	л.п	1	0	Выключ.	-0.02 0.00	0,02 3,08	0,00 0,02	Опорный сигнал Для измерения разбаланса уровней каналов и уровня выходного напряже- ния
2	00 01 02 03 04 05	л л л л	1 0,125 4 10 16	0 0 0 0	Выключ, Выключ, Выключ, Выключ, Выключ,	-0,02 0,00 1,00 2,00 3,00 4,00	0,02 1,00 1,00 1,00 1,00 1,00	3,10 3,12 4,12 5,12 6,12 7,12	Для измерения разделения каналов воспроизведения Уровень записи канала П принят равным — ж
3	00 01 02 03 04 05	n n n n	1 0,125 4 10 16	0 0 0 0	Выключ, Выключ, Выключ, Выключ, Выключ,	-0,02 0,00 1,00 2,00 3,00 4,00	0,02 1,00 1,00 1,00 1,00 1,00	8,12 8,14 9,14 10,14 11,14 12,14	Для измерения разделения каналов воспроизведения Уровень записи канала Л принят равным — х
4	00 01	-	-	(- ⋆)	Выключ.	-0,02 0,00	0,02 3,00	13,14 13,16	Для измерения отношения сигнал/ шум
-5	00 01	л,п	i	-60	Выключ.	-0.02 0.00	0,02 3,00	16,16 16,18	Для измерения динамического диа- пазона
6	00 01 02 03 04	л,п л,п л,п л,п	0,004 0,008 0,016 0,032	0 0 0	Выключ. Выключ. Выключ. Выключ.	-0.02 0.00 1.00 2.00 3.00	0,02 1,00 1,00 1,00 1,00	19.18 19.20 20.20 21.20 22.20	Для измерения частотной характе- ристики, коэффици- енга общих гармо- нических искаже- ний, разности фаз между каналами
7	00 01 02 03 04	л,п л,п л,п л,п	0,063 0,125 0,250 0,500	0 0 0	Выключ, Выключ, Выключ, Выключ,	-0,02 0,00 1,00 2,00 3,00	0,02 1,00 1,00 1,00 1,00	23,20 23,22 24,22 25,22 26,22	
8	00 01 02 03 04	п.п п.п п.п п.к	1 2 4 8	0 0 0	Выключ, Выключ, Выключ, Выключ,	-0,02 0,00 1,00 2,00 3,00	0,02 1,00 1,00 1,00 1,00	27,22 27,24 28,24 29,24 30,24	

Участо	к диска								
Номер Фрагмента	Инлекс отрывка	Канал	Частога, кГц	Уровень записи, дБ	Предыска жения	Время вос- произведе ния отрыв- ка В _в , мин, с	Длитель ность отрывка, мин, с	Текущее время виспроиз- ведения Во, мин, с	Назначение
9	00 01 02 03 04	л,п л,п л,п л,п	10 12,5 16 18	0 0 0 0	Выключ. выклыч. выклыч. выклыч.	-0,02 0,00 1,00 2,00 3,00	0,02 1,00 1,00 1,00 1,00	31,24 31,26 32,26 33,26 34,26	Для измерения частотной характе- ристики, коэффици- ента общих гармо- нических искаже- ний, разности фаз между каналами
10	00 01	л,п	20	0	Выключ,	-0,02 0,00	0,02 2,00	35,26 35,28	Для измерения погрешности часто- ты выходного на- пряжения
11	00 01	а,п	0,005— 22,05	Q	Выключ.	-0,02 0,00	0,02 1,08	37,28 37,30	Для измерения амплитудно-частот- ной характеристики
12	00 01 02 03 04 05	Я,П Я,П Я,П Я,П Я,П	1 0,125 4 10 16	-20 -20 -20 -20 -20 -20	Выключ Выключ, Выключ, Выключ, Выключ,	-0,02 0,00 1,00 2,00 3,00 4,00	0,02 1,00 1,00 1,00 1,00 1,00	38,38 38,40 39,40 40,00 41,40 42,40	Для измерения ошибки предыска- жений
13	00 01 02	л,п л,п	0,06 и 7 11 и 12	0 8 0	Выключ, Выключ.	-0.02 0.00 3.00	0,02 3,00 3,00	43,40 43,42 46,42	Для измерения интермодуляцион- ных искажений
14	00 01 02 03 04 03 06 07 08 09	3,0 3,0 3,0 3,0 3,0 3,0 3,0 3,0 3,0 3,0		0 -I -3 -6 -10 -20 -60 -70 -80 -90	Выключ. Выключ. Выключ. Выключ. Выключ. Выключ. Выключ. Выключ. Выключ.	-0.02 0,00 1,00 2,00 3,00 4,00 5,00 6,00 7,00 8,00 9,00	0.02 1,00 1,00 1,00 1,00 1,00 1,00 1,00 1,	46,42 49,44 50,44 51,44 52,44 53,44 54,44 55,44 56,44 57,44 58,44	Для измерения нелинейности уров- ня
15	00 01	л,п	3,15	0	Выключ.	-0.02 0.00	0,02 3,08	59,44 59,46	Для измерения коэффициента дето- нации
16	00 01	л,п	0,317	0	Выключ.	-0,02 0,00	0,02 1.00	62,54 62,56	Для измерения времени доступа

- 2.3. Каждый сигнал должен иметь синусоидальную форму и быть сформирован из цифровых величин с положительным пиком, представленным как «7FFFH» или отрицательным пиком «8001Н» на уровне 0 дБ.
 - 2.4. Погрешность частоты записи не более ± 1 Гц для каждого сигнала, если не задано иначе.
- 2.5. Погрешность квантования сигнала записи не более ± 0,5 младшего разряда каждого сигнала, если не задано иначе (за исключением фрагмента 11).
 - 2.6. Разность фаз сигналов левого (Л) и правого (П) каналов должна быть равна нулю.
 - Погрешность времени записи не более ± 2 с для фрагментов 1—16.
- 2.8. Погрешность данных табл. 2 относительно действительного времени воспроизведения не более 1,25 с.
 - 3. Сигналы служебной информации должны быть записаны следующим образом:
 - 1-я часть код паузы между фрагментами измерительного компакт-диска,
 - 2-я часть код предыскажений в соответствии с табл. 2 (может отсутствовать);

3-я часть - код номера фрагмента и индекса отрывка записи.

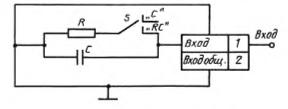
 На измерительном компакт-диске должны быть указаны: наименование модели;

соблюдаемый стандарт:

номер фрагмента, индекс отрывка и содержание сигналов записи;

время воспроизведения каждого отрывка (B_0) и общее время воспроизведения (B_0), наименование изготовителя.

ПРИЛОЖЕНИЕ 8 Справочное


ИЗМЕРИТЕЛЬНЫЙ КОМПАКТ-ДИСК ДЛЯ ИЗМЕРЕНИЯ ИМПУЛЬСНОЙ ХАРАКТЕРИСТИКИ

Компакт-диек должен содержать фрагмент записи для снятия импульсной характеристики звукового тракта проигрывателя компакт-дисков.

Фрагмент содержит цифровой импульсный сигнал длительностью в одну выборку и частотой следования 100 Гц. Размах импульсного сигнала максимален и использует всю цифровую шкалу квантования.

> ПРИЛОЖЕНИЕ 9 Справочное

ЭКВИВАЛЕНТЫ РЕЗИСТИВНО-ЕМКОСТНОЙ И ЕМКОСТНОЙ НАГРУЗОК

R - резистор C2-23-0,5-10 кОм = 5 %; С - конденсатор КМ-5а- M75

Черт. 21

Примечания:

- Эквивалент резистивно-емкостной нагрузки тумблер S в положении RC. Эквивалент емкостной нагрузки тумблер S в положении C.
 - 2. Эквивалент нагрузок помещается в стальной экранирующий корпус.
 - 3. Величина емкости подбирается с учетом емкости соединительных кабелей.

метод оценки погрешности методики выполнения измерения

- По оцениваемой методике выполнения измёрений проводят многократные измерения, получая результаты однократных наблюдений.
 - 2. Проводят следующие операции с результатами наблюдений:

исключают из результатов наблюдений известные систематические погрешности, получая исправленные результаты наблюдений X;

вычисляют среднее арифметическое исправленных результатов наблюдений А;

вычисляют оценку среднего квадратического отклонения результата однократного наблюдения $S(\vec{A})$; вычисляют доверительные границы случайной составляющей погрешности результата наблюдения ε вычисляют доверительные границы неисключенной систематической погрешности результата наблюдения θ :

вычисляют доверительные границы погрешности результата наблюдения.

Среднее арифметическое исправленных результатов наблюдений A вычисляют по формуле

$$A = \frac{1}{n} \sum_{i=1}^{n} X_{i}, \qquad (17)$$

где X₃ — исправленный результат наблюдения,

п — число наблюдений,

Рекомендуемое значение $n \ge 25$.

4. Оценку среднего квадратического отклонения результата наблюдения $S(\overline{A})$ вычисляют по формуле

$$S(\bar{A}) = \sqrt{\frac{\sum_{i=1}^{n} (X_i - \bar{A})^2}{n-1}}$$
 (18)

где \tilde{A} — среднее арифметическое исправленных результатов наблюдений.

 Доверительные границы случайной составляющей погрешности результата наблюдения к вычисляют по формуле

$$\varepsilon = t \cdot S(\bar{A}),$$
 (19)

где t — коэффициент Стьюдента, зависящий от доверительной вероятности P_0 , с которой определяют доверительные границы:

при $P_0 = 0.95$; t = 1.96; при $P_0 = 0.68$; t = 1.00.

 Доверительные границы неисключенной систематической погрешности результата наблюдения ⊕ вычисляют по формулам:

$$\Theta = k \sqrt{\sum_{j=1}^{m} \Theta_{j}^{2}} \operatorname{при} m \ge 3; \qquad (20)$$

$$Θ = \sum_{i=1}^{m} Θ_i$$
 πρи $m \le 3$, (21)

где k — коэффициент, определяемый принятой доверигельной вероятностью P:

при P = 0.68, k = 1.0;

при P = 0.95; k = 1.1;

Θ₁ — систематическая погрешность (погрешность метода, средства измерения и 1, п.);

т – число систематических погрешностей.

Если под систематической погрешностью рассматривают погрешность средства измерения, установленную в НТД на тип средства измерения, то Θ_1 рассчитывают по формуле

$$\Theta_i = \frac{\Theta_i'}{\sqrt{3}}$$
, (22)

где Θ'_i — погрешность гипа средства измерения, установленная в НТД на средства измерения.

7. Доверительные границы погрешности результата наблюдения д определяют:

в случае, если $\frac{\Theta}{S(\bar{A})} > 8$, то случайной погрешностью по сравнению с систематической пренебрегают и

принимают, что границы погрешности результата $\Delta = \Theta$;

в случае, если $\frac{\Theta}{S(\bar{A})} < 0.8$, то неисключенными систематическими погрещностями по сравнению со слу-

чайными пренебрегают и принимают, что граница погрешности результата А = є;

в случае, если неравенства п. 7 не выполняются, границу погрешности результата измерения определяют по формулам:

$$\Delta = KS_{Lx}$$
 (23)

где K — коэффициент, зависящий от соотношения между случайной и неисключенной систематической погрешностью

$$K = \frac{\varepsilon + \Theta}{S(\tilde{A}) + \sqrt{\sum_{i=1}^{m} \Theta_{i}^{2}}}$$

 S_i — оценка суммарного среднего квадратического отклонения результата наблюдения

$$\left(S_{\varepsilon} = \sqrt{\sum_{i=1}^{m} \Theta_{i}^{2} + S(\widetilde{A})^{2}}\right).$$

8. Результат измерения записывают в форме

$$\bar{A} \pm \Delta$$
 при заданном P .

где \bar{A} — результат измерения;

доверительные границы погрещности результата измерения;

Р — доверительная вероятность, с которой определены границы погрешности.

ПРИЛОЖЕНИЕ 11 Рекомендуемое

ПЕРЕЧЕНЬ РЕКОМЕНДУЕМОЙ ИЗМЕРИТЕЛЬНОЙ АППАРАТУРЫ

- 1. Самописец уровня RFT 02013 (для измерения проигрывателей 1-й группы сложности).
- Вольтметр универсальный быстродействующий В7—43.
- 3. Микровольтметр ВК3-64.
- 4. Анализатор спектра СК4-83.
- 5. Измеритель нелинейных искажений СК6-13.
- 6. Усилитель дифференциальный У7-6.
- 7. Измеритель разности фаз Ф2-34.
- 8. Частотомер электронно-счетный ЧЗ-64.
- 9. Осциллограф-мультиметр С1-112.
- 10. Лабораторный автотрансформатор РН0-250-2.
- 11. Амперметр 7-525.
- 12. Вольтметры Э-532 (от 7.5 до 60 В) и Э-533 (от 75 до 300 В).
- 13. Источник постоянного тока Б5-67.
- 14. Секундомер СОПпр-2а-3.
- 15. Измерительный компакт-диск EIAJCD-1 фирмы SONY.
- Измерительный компакт-диск YESD7 type-3 фирмы SONY.

ИНФОРМАЦИОННЫЕ ДАННЫЕ

1. РАЗРАБОТЧИКИ

- Л.М. Штутман; канд. техн. наук, Е.В. Шишкина; А.С. Осташев; И.И. Галкина
- 2. УТВЕРЖДЕН И ВВЕДЕН В ДЕЙСТВИЕ Постановлением Государственного комитета СССР по управлению качеством продукции и стандартам от 19.12.89 № 3819
- 3. Стандарт полностью соответствует СТ МЭК 908-86
- 4. ВВЕДЕН ВПЕРВЫЕ
- 5. ССЫЛОЧНЫЕ НОРМАТИВНО-ТЕХНИЧЕСКИЕ ДОКУМЕНТЫ

Обозначение НТД, на который дана ссылка	Номер пункта	Обозначение НТД, на который дана ссылка	Номер пункта	
FOCT 12.2.006-87	1.7	ΓΟCT 23511-79	1.9.2	
FOCT 15.009-91	1.6.1	ΓΟCT 23849-87	2.3.4, 2.4.5	
ГОСТ 7399-97	1.8.2	ΓΟCT 24838-87	1.2.4, 1.3.6	
FOCT 7518-83	2.2.17	ΓΟCT 25874-83	1.6.2	
FOCT 8039-93	2.2.8	FOCT 26794-85	1.2.8	
ΓΟCT 8711-93	2.2.18, 2.2.19	FOCT 27667-88	Вводная часть	
ΓΟCT 11478-88	1.5.1	ГОСТ 28002-88	1.9.3	
FOCT 13699-91	Вводная часть	FOCT 28376-89	Вводная часть,	
ГОСТ 15150-69	1.2.2, 1.3.5, 2.1.1		приложение 7	
ΓΟCT 17187-81	2.2.12	Нормы 21-86	1.9.1	
ΓΟCT 18953-73	2.2.20	Нормы 2392-81	1.7	

- 6. Ограничение срока действия свято по протоколу №5-94 Межгосударственного совета по стандартизации, метрологии и сертификации (ИУС 11-12-94)
- 7. ПЕРЕИЗДАНИЕ. Январь 2006 г.

Редактор М.И. Максимова Технический редактор Л.А. Гусева Корректор М.С. Кабашова Компьютерная верстка В.И. Грищенко

Сдано в набор 15.12.2005. Подписано в печать 22.02.2006. Формат 60×84¹/в. Бумата офестная. Гарнитура Тавме. Печать офсетная. Усл печ. л. 2,79, Уч.-изд. л. 2,40. Тираж 46 экз. Зак. 128. С 2493.