

ГОСУДАРСТВЕННЫЙ СТАНДАРТ СОЮЗА ССР

ИЗМЕРЕНИЕ МИКРОТВЕРДОСТИ ВДАВЛИВАНИЕМ АЛМАЗНЫХ НАКОНЕЧНИКОВ

ΓΟCT 9450—76 (CT CЭВ 1195—78)

Издание официальное

ИЗДАТЕЛЬСТВО СТАНДАРТОВ Москва

Поправка к ГОСТ 9450—76 Измерение микротвердости вдавливанием алмазных наконечников

В каком месте	Напечатано	Должно быть						
Предисловие. Таблица согласования	_	Киргизия КG Кыргызстандарт						

(ИУС № 11 2024 г.)

ГОСУДАРСТВЕННЫЙ СТАНДАРТ СОЮЗА ССР

ИЗМЕРЕНИЕ МИКРОТВЕРДОСТИ ВДАВЛИВАНИЕМ АЛМАЗНЫХ НАКОНЕЧНИКОВ

гост

9450 - 76

Measurements microhardness by diamond instruments indentation

(CT C3B 1195-78)

Дата введения 01.01.77

Настоящий стандарт устанавливает метод измерения микротвердости изделий и образцов из металлов, сплавов, минералов, стекол, пластмасс, полупроводников, керамики, тонких листов, фольги, пленок, гальванических, диффузионных, химически осажденных и электроосажденных покрытий вдавливанием алмазных наконечников.

Испытуемые материалы по твердости ограничены изделиями (образцами) из алмаза и их производными.

Стандарт устанавливает два метода испытаний:

по восстановленному отпечатку (основной метод);

по невосстановленному отпечатку (дополнительный метод).

Настоящий стандарт соответствует СТ СЭВ 1195—78 в части измерения микротвердости металлов методом восстановленного отпечатка четырехгранной пирамидой с квадратным основанием (по Виккерсу).

Издание официальное

Перепечатка воспрещена

© Издательство стандартов, 1976 © Издательство стандартов, 1993 Переиздание с изменениями

1. ИСПЫТАНИЯ ПО МЕТОДУ ВОССТАНОВЛЕННОГО ОТПЕЧАТКА

- 1.1. Испытание на микротвердость вдавливанием по методу восстановленного отпечатка заключается в нанесении на испытуемую поверхность изделия (образца) отпечатка под действием статической нагрузки, приложенной к алмазному наконечнику в течение определенного времени. После удаления нагрузки и измерения параметров полученного отпечатка число микротвердости следует определить по формулам (см. пп. 1.4—1.7) или по табл. 1—28, приведенным в приложении 1.
- 1.2. При испытании следует применять алмазные наконечники, форма рабочей части которых должна соответствовать указанной в таблице. Указания по выбору наконечников приведены в приложении 2.
- 1.3. Число микротвердости определяют делением приложенной к алмазному наконечнику нормальной нагрузки на условную площадь боковой поверхности полученного отпечатка.
- 1.4. Для четырехгранной пирамиды с квадратным основанием число микротвердости (HV) вычисляют по формуле

$$HV = \frac{F}{S} = \frac{0,102 \cdot 2F \sin d/2}{d^2} = 0,189 \frac{F}{d^2},$$
 (1)

если F выражена в ньютонах

$$(HV = \frac{F}{S} = \frac{2F \cdot \sin d/2}{d^2} = 1,854 \frac{F}{d^2},$$

если F выражена в килограмм-силах).

1.5. Для трехгранной пирамиды с основанием в виде равностороннего треугольника число микротвердости $(^{\mathcal{H}}_{\nabla})$ вычисляют по формуле

$$H_{\nabla} = \frac{F}{S} = \frac{0,102 \cdot 3 F \sin \alpha}{\sqrt{3} \quad l_{\nabla}^2} = 0,160 \frac{F}{l_{\nabla}^2},$$
 (2)

если F выражена в ньютонах

$$\left(H_{\nabla} = \frac{F}{S} = \frac{3F \cdot \sin \alpha}{\sqrt{3}} = 1,570.\frac{F}{t_{\nabla}^2}\right)$$

если F выражена в килограмм-силах)

1.6. Для четырехгранной пирамиды с ромбическим основанием число микротвердости (H_{\Diamond}) вычисляют по формуле

$$H_{\Diamond} = \frac{F}{S} = \frac{0,102 \cdot 2F tg \alpha/2 \cdot \cos \beta/2}{t_{\Diamond}^2 \sqrt{1 + \frac{\sin^2 \beta/2}{tg^2 \alpha/2}}} = 1,313 \frac{F}{t_{\Diamond}^2}, \qquad (3)$$

если F выражена в ньютонах

$$\left(H_{\Diamond} = \frac{F}{S} = \frac{2F \ tg \ \alpha/2 \ cos \beta/2}{l_{\Diamond}^2 \sqrt{1 + \frac{sin^2 \ \beta/2}{tg^2 \ \alpha/2}}} = 12,873 = \frac{F}{l^2},\right)$$

если F выражена в килограмм-силах).
1.7. Для бицилиндрического наконечника число микротвердоcti (H_{\oplus}) следует вычислять по формуле

$$H_{0} = \frac{F}{S} = \frac{0.102 \, F}{\iota_{0}^{3}} = 0.425 \, \frac{F}{\iota_{0}^{3}} \,, \tag{4}$$

если F выражена в ньютонах

$$\left(H_{0} = \frac{F}{S} = \frac{F \cdot 3R \cdot \sin \alpha}{t_{0}^{3}} = 4,168 \frac{F}{t_{0}^{3}}\right),$$

если F выражена в килограмм-силах).

В формулах (1) — (4) приняты следующие обозначения:

F — нормальная нагрузка, приложенная к алмазному нечнику, Н (кгс);

S — условная площадь боковой поверхности полученного отпечатка, мм²;

l — размер отпечатка, мм;

d — среднее арифметическое длин обеих диагоналей квадратного отпечатка, мм;

R — радиус цилиндра, равный 2 мм;

αиβ — углы разных заострений алмазных наконечников, 1.8. Микротвердость, определенную по пп. 1.4-1.7, обозначают соответственно HV, $^{\mathcal{H}}_{\nabla}$, $^{\mathcal{H}}_{\nabla}$ и $^{\mathcal{H}}_{\mathbb{O}}$ с указанием нагрузки

в кгс и продолжительности ее приложения. Для микротвердости HV продолжительность приложения нагрузки не указывают, если она в пределах 10—15 с.

Примеры условных обозначений

Микротвердость, определенная четырехгранной пирамидой с квадратным основанием при нагрузке 0,098 H, приложенной в течение 15 c: HV 0,01.

Микротвердость, определенная четырехгранной пирамидой с квадратным основанием при нагрузке 0,98 H, приложенной в течение 30 с: HV 01/30.

Микротвердость, определенная трехгранной пирамидой с основанием в виде равностороннего треугольника при нагрузке 0,0491 H, приложенной в течение 5 с: \mathcal{H}_{∇} 0,005/5.

Микротвердость, определенная четырехгранной пирамидой с ромбическим основанием при нагрузке 0,098 Н, приложенной в

течение 10 с: H_{\Diamond} 0,01/10.

2. ИСПЫТАНИЕ ПО МЕТОДУ НЕВОССТАНОВЛЕННОГО ОТПЕЧАТКА

2.1. Определение микротвердости вдавливанием по методу невосстановленного отпечатка заключается в нанесении на испытуемую поверхность изделия (образца) отпечатка под действием статической нагрузки, приложенной к алмазному наконечнику в течение определенного времени, с одновременным измерением глубины отпечатка. Число микротвердости следует определять по формулам (5)—(8).

2.2. Испытания по методу невосстановленного отпечатка следует проводить, когда требуются дополнительные характеристики материала (упругое восстановление, релаксация, ползучесть при

нормальной температуре).

2.3. При испытании применяют алмазные наконечники с фор-

мой рабочей части, указанной в таблице.

2.4. Число микротвердости определяют делением приложенной к алмазному наконечнику нормальной нагрузки на условную площадь боковой поверхности отпечатка, соответствующую его измеренной глубине.

2.5. Для четырехгранной пирамиды с квадратным основанием число микротвердости (HVh) вычисляют по формуле

$$HV_{h} = \frac{F}{S} = 0,00386 \frac{F}{h_{\square}^{2}}, \qquad (5)$$

если F выражена в ньютонах

$$\left(HV_{h} = \frac{F}{S} = 0,03784 \frac{F}{h^{2}}\right)$$

если F выражена в килограмм-силах).

2.6. Для трехгранной пирамиды с основанием в виде равностороннего треугольника число микротвердости $(H_{\nabla h})$ вычисляют по формуле

$$H_{\nabla h} = \frac{F}{S} = 0,00387 \frac{F}{h_{\nabla}^2},$$
 (6)

если F выражена в ньютонах

$$\left(H_{\nabla h} = \frac{F}{S} = 0.03797 \quad \frac{F}{h_{\nabla}^2}\right),$$

если F выражена в килограмм-силах).

2.7. Для четырехгранной пирамиды с ромбическим основанием число микротвердости $(H \lozenge h)$ вычисляют по формуле

$$H_{\diamondsuit h} = \frac{F}{S} = 0.00141 \quad \frac{F}{h_{\diamondsuit}^2} \tag{7}$$

если F выражена в ньютонах;

$$\left(H_{\lozenge h} = \frac{F}{S} = 0,01385 \frac{F}{h_{\lozenge}^2}\right)$$

если F выражена в килограмм-силах).

С. 6 ГОСТ 9450-76

2.8. Для бицилиндрического наконечника число микротвердости $(H_{\mathbb{Q}h})$ вычисляют по формуле

$$H_{0h} = \frac{F}{S} = 0,00744 \frac{F}{h_0^{3/2}},$$

если F выражается в ньютонах;

$$(H_{0h} = \frac{F}{S} = 0,07292 \frac{F}{h_{0}^{3/2}},$$

если F выражена в килограмм-силах).

В формулах (5) — (8) приняты следующие обозначения:

F — нормальная нагрузка, приложенная к алмазному наконечнику, H (кгс);

S — условная площадь боковой поверхности полученного отпечатка, мм²;

h — глубина отпечатка, мм.

2.9. Формулы (5), (6), (7) и (8) получены из соотношений между размерами d или l и высотой h жестких геометрических тел форм рабочей части алмазных наконечников (см. таблицу):

$$d = 2\sqrt{2 \cdot t} g \frac{\alpha}{2} \cdot h_{\square} \approx 7,00 h_{\square}$$
; $l_{\nabla} = 3 t g \alpha \cdot h_{\nabla} \approx 6,43 h_{\nabla}$;

$$l_{\Diamond} = 2tg \frac{\alpha}{2} \cdot h_{\Diamond} \cong 30,51 h_{\Diamond}; \quad l_{\bigcirc} = \sqrt{8Rsin \frac{\alpha}{2} \cdot h_{\bigcirc}} \cong 3,85 h_{\bigcirc}^{\nu_2}.$$

Форма отпечатков

		Продолжени
Наименование алмази лх наконечников	Параметры заострения алмазных наконечников	Форма отпечатков
2. Трехгранная пира- мида с основанием в виде равностороннего греугольника	$\alpha=65^{\circ}; \beta=77^{\circ};$ $\alpha+\beta=142^{\circ}$	2.5
3. Четырехгранная пирамида ус ромбическим основанием	α=172°30'; β=130°	Lo Lo
4. Бицилиндрический наконечник	α=136°; R=2 мм — радиус цилиндра	Lo.

2.10. Микротвердость, определенная по пп. 2.5—2.8, обозначается соответственно ${}^{\downarrow}HV_h$, $H_{\nabla h}$, $H_{\nabla h}$, $H_{\Diamond h}$ с указанием нагрузки в кгс и продолжительности ее приложения.

Примеры условных обозначений

Микротвердость, определенная по высоте невосстановленного отпечатка четырехгранной пирамидой с квадратным основанием при нагрузке 0,098 H, приложенной в течение 15 c: HVh 0,01/15.

Микротвердость, определенная по высоте невосстановленного бицилиндрическим отпечатка наконечником при

0,0491 H, приложенной в течение 5 с: Н_{Ов} 0,005/5

3. АППАРАТУРА

- 3.1. Для измерения микротвердости алмазными наконечниками применяют приборы по ТУ 3-3.1377-83.
- 3.2. Приборы комплектуют алмазными наконечниками в соответствии с требованиями, установленными в ТУ 3—3.1377—83.
- 3.3. В процессе испытаний прибор для измерения микротвердости должен обеспечивать соблюдения следующих условий:

плавное внедрение алмазного наконечника в испытуемый материал под действием приложенной к нему нормальной нагрузки F; сохранение постоянства действия приложенной к алмазному

наконечнику нагрузки в течение установленного времени;

допускаемые погрешности нагружения не должны превышать: для нагрузок 0,1 H и менее — 2 % от номинального значения; для нагрузок более $0.1~\mathrm{H}-1~\%$ от номинального значения.

- 3.4. Прибор должен быть защищен от воздействия возможных вибраций, передаваемых через стены, пол зданий или через стол, на котором установлен прибор, амортизирующим устройством, предусмотренным в ТУ 3-3.1377-83.
- 3.5. Проверка приборов перед испытанием -3.1377-83.
- 3.6. Прибор должен быть снабжен микроскопом для отсчета отпечатков. Калибровочный коэффициент микроскопа должен быть установлен так, чтобы погрешность не превышала $\pm 0.5~\%$ измеряемого значения.

Минимальное увеличение микроскопа должно быть:

 $200 \times$ — для отпечатков свыше 25 мкм; $300 \times$ — для отпечатков от 76 до 125 мкм;

 400^{\times} — для отпечатков менее 76 мкм.

Примечание. Для измерения отпечатка при увеличении 200× применяют объектив с апертурой не менее 0,4.

4. ПОДГОТОВКА К ИСПЫТАНИЮ

- 4.1. Поверхность испытуемого изделия (образца) должна быть свободной от загрязнения на участке нанесения отпечатка. Шероховатость испытуемой поверхности изделия (образца) не должна быть грубее Ra=0.32 мкм, определяемой по ГОСТ 2789-73.
- 4.2. При подготовке поверхности испытуемого изделия (образца) необходимо принять меры предосторожности, учитывая возможное изменение твердости испытуемой поверхности вследствие нагрева или наклепа при механической обработке.

4.3. Испытуемое изделие (образец) должно быть установлено на предметном столике прибора так, чтобы в процессе испытания оно не смещалось, не прогибалось и не поворачивалось.

- 4.4. Поверхность изделия (образца), подлежащая испытанию, должна быть установлена перпендикулярно к оси алмазного наконечника.
- 4.5. Рабочая поверхность алмазного наконечника и поверхность испытуемого изделия должны быть сухими (без смазки).

5. ПРОВЕДЕНИЕ ИСПЫТАНИЯ

5.1. При испытании материала изделия (образца) на микротвердость вдавливанием применяют нагрузки 0,049 (0,005); 0,0981 (0,01); 0,1962 (0,02); 0,4905 (0,05); 0,981 (0,1); 1,962 (0,2) или 0,0491 (0,005); 0,0981 (0,01); 0,1962 (0,02); 0,4905 (0,05); 0,981 (0,1); 1,962 (0,2); 4,905 (0,5) Н (кгс).

При определении микротвердости металлов четырехгранной пирамидой с квадратным основанием допускается применять нагрузки 0,0098 (0,001); 0,0196 (0,002) и 2,943 (0,3) Н (кгс).

- 5.2. (Исключен, Изм. № 2).
- 5.3. Для получения наиболее точного результата измерения микротвердости нагрузка F должна быть возможно большей.
- 5.4. На стороне изделия (образца), противоположной испытуемой, после нанесения отпечатка не должно быть следов деформации материала, заметных невооруженным глазом.
- 5.5. При измерении микротвердости покрытий из однородного материала (гальванических, диффузионных, цементованных и др.) на металле или на других материалах нагрузка *F* должна быть тем меньше, чем тоньше слой покрытия. Если толщина испытуемого слоя неизвестна, то рекомендуется провести несколько измерений при различных нагрузках: 0,098; 0,196; 0,490; 0,981 Н и т. д.

Если материал основы [сердцевина изделия (образца)] не влияет на результат измерений, то значения микротвердости сов-

падут или будут близки друг к другу.

Если значения микротвердости при возрастании нагрузки будут уменьшаться или увеличиваться, то нагрузку следует уменьшать до тех пор, пока две смежные нагрузки не будут давать совпадающие или близкие друг к другу результаты.

- 5.6. Разность размеров d или l_{∇} одного отпечатка не должна превышать 3 % от меньшего значения.
- 5.7. Расстояние от центра отпечатка до края изделия (образца) должно быть не менее двойного размера отпечатка. Расстояние между центрами отпечатков, нанесенных на одну поверхность, должно превышать размер отпечатка более чем в три раза.
- 5.8. Нагружение должно осуществляться плавно, без толчков. Скорость опускания алмазного наконечника не должна сказываться на размерах отпечатка. Продолжительность выдержки должна составлять не менее 3 с.
- 5.9. Измерение размеров отпечатков выполняется на микроскопе в светлом поле с погрешностью отсчитывания $\pm 0,5$ от наименьшего деления шкалы при объективе увеличения 30-40 (численная апертура A=0,65).
- 5.10. Испытания проводят при температуре окружающей среды (20 ± 5) °C.
- 5.11. Число отпечатков и место их нанесения на изделия (образце) должно устанавливаться в нормативно-технической документации на конкретные изделия.
- 5.12. При измерении микротвердости изделия (образца) с криволинейной поверхностью, когда радиус кривизны на один-два порядка больше размера отпечатка, числа микротвердости имеют условное значение для сравнения микротвердости поверхностей

одинаковой кривизны.

5.13. При измерении микротвердости изделий (образцов) из неоднородных, пористых, анизотропных материалов, когда требования пп. 4.1 и 5.3—5.7 невыполнимы, шероховатость поверхности, величина нагрузки, время нагружения и выдержки под нагрузкой, допустимое искажение формы отпечатков, соотношение между минимальной толщиной слоя (образца) и глубиной отпечатка, введение поправочных коэффициентов на кривизну поверхности должны устанавливаться в нормативно-технической документации на конкретные изделия.

6. ОБРАБОТКА РЕЗУЛЬТАТОВ

6.1. Значения микротвердости вычисляют по формулам (1) — (8) или находят в таблицах приложения 1.

6.2. Размеры d или l отпечатка по его измеренной глубине h

находят в таблице приложения 3.

6.3. За число микротвердости принимают среднее арифметиче-

ское результатов отдельных измерений.

6.4. Числа микротвердости разрешается округлять до целых единиц при двухзначных и более значениях и до одного-двух десятичных знака — при однозначных. Относительная погрешность округления числа микротвердости не должна превышать 2 % от измеренной величины микротвердости.

6.5. В протоколе испытания следует указать: обозначение испытанного изделия (образца);

тип прибора с указанием характеристик примененной оптики (объектив, окуляр);

обозначение микротвердости; размеры отпечатков; значение микротвердости.

> ПРИЛОЖЕНИЕ 1 Обязательное

ЧИСЛА МИКРОТВЕРДОСТИ ПРИ ИСПЫТАНИИ ВДАВЛИВАНИЕМ АЛМАЗНЫХ НАКОНЕЧНИКОВ ПО МЕТОДУ ВОССТАНОВЛЕННОГО ОТПЕЧАТКА

Таблица 1 Числа микротвердости при испытании вдавливанием четырехгранной алмазной пирамиды при нагрузке 0,049 Н (5 гс)

	Числа микротвердости										
Диагональ отпечатка d , мкм	0	1	2	3	4	5	6	7	8	9	
0 10 20 30	92,7 23,2 10,3	76,6 21,0 9,6	64,4 19,2 9,0	54,9 17,5 8,5	579 47,3 16,1 8,0	371 41,2 14,8 7,6	258 36,2 13,7 7,1	189 32,1 12,7 6,8	145 28,6 11,8 6,4	114 25,7 11,0 6,1	

Числа микротвердости при испытании вдавливанием четырехгранной алмазной пирамиды при нагрузке 0,098 Н (10 гс)

Диагональ	Числа микротвердости										
отпечатка <i>d</i> , мкм	0	1	2	3	4	5	6	7	8	9	
0 10 20 30 40	185,4 46,4 20,6 11,6	153,2 42,0 19,3 11,0	128,8 38,3 18,1 10,5	109,7 35,0 17,0 10,0	1159 94,6 32,2 16,0 9,6	742 82,4 29,7 15,1 9,2	515 72,4 27,4 14,3 8,8	378 64,2 25,4 13,5 8,4	290 57,2 23,6 12,8 8,0	229 51,4 22,0 12,2 7,7	
	1	i	1	r	}			l	I Табл	ии: ии:	

Числа микротвердости при испытании вдавливанием четырехгранной алмазной пирамиды при нагрузке 0,196 Н (20 гс)

	Числа микротвердости										
Пиагональ отпечатка d, мкм 0 10 20	0	1	2	3	4	5	6	7	8	9	
10	371 92,7 41,2 23,2 14,8 10,3	306 84,1 38,6 22,1 14,3 10,0	258 76,6 36,2 21,0 13,7 9,6	219 70,1 34,0 20,1 13,2 9,3	2318 189 64,4 32,1 19,2 12,7 9,1	1483 165 59,3 30,3 18,3 12,3 8,8	1030 145 54,9 28,6 17,5 11,8 8,5	757 128 50,9 27,1 16,8 11,4 8,3	579 114 47,3 25,7 16,1 11,0 8,0	458 103 44,1 24,4 15,4 10,7 7,8	

Таблица 4 Числа микротвердости при испытании вдавливанием четырехгранной алмазной пирамиды при нагрузке 0,490 H (50 rc)

Днагональ отпечатка d, мкм О	Числа микротвердости										
	- 0	1	2	3	4	5	6	. 7	8	9	
0 10 20 30 40 50 60 70	927 232 1030 57,9 37,1 25,8 18,9 14,5	766 210 96,5 55,1 35,6 24,9 18,4 14,1	644 192 90,5 52,6 34,3 24,1 17,9 13,8	549 175 85,1 50,1 33,0 23,4 17,4 13,5	473 161 80,2 47,9 31,8 22,6 16,9 13,1	3708 412 148 75,7 45,8 30,6 21,9 16,5 12,8	2575 362 137 75,5 43,8 29,6 21,3 16,0 12,5	1892 321 127 67,7 42,0 28,5 20,7 15,6 12,2	1448 286 118 64,2 40,2 27,6 20,1 15,2 12,0	114 ⁴ 253 110 60,9 38,0 26,0 19,5 14,9	

Таблица 5 Числа микротвердости при испытании вдавливанием четырехгранной алмазной пирамиды при нагрузке 0,981 Н (100 гс)

W		Числа микротвердости											
Днагональ o тисчатка d , мкм	0	1	2	3	4	5	6	. 7	8	9			
0	_	_			_				2897	2289			
10	1854	1532	1288	1097	946	824	724	642	572	514			
20	464	420	383	351	322	297	274	254	236	221			
30	206	193	181	170	160	151	143	135	128	122			
40	116,0	110,0		100,3	95,8	91,6	87,6	83,9	80,5	77			
50	74,2	71,3	68,6	66,0	63,6	61,3		57,1	55,1	53			
60	51,5	49.8	48.2	46,7	45,3	43,9	42,6	41,3	40,1	39			
70	37,8	36,8	48,2 35,8	34,8	33 91	33,0	32,1	31,3	30,5	29			
80	29,0	28,3	27,6	26,9	26,3	25,7	25,1	24,5	24,0	23			
90	22,9	22,4	21,9	21,4	21.0	20.5	20,1	19,7	19,3				
100	18,5	18,2	17,8	17,5	17,1	16,8	16,5	16,2	15,9	15			
110	15,3	15,1	14,8	14,5	14,3	14,0	13,8			13			
120	12,9	12,7	12,5	12,3	12,1	11,9		11,5	11,3				
130	11,0	10,8	10,6	10,5	10,3	10,2		9,9	9,7				

Таблица 6 Числа микротвердости при испытании вдавливанием четырехгранной алмазной пирамиды при нагрузке 1,962 H (200 гс)

Tuenauer	1			Чис	сла микр	отвердо	ости			
Диагональ отпечатка d, мкм	0 -	1	2	3	4	5	6	7	8	9
10	3708	3065	2575	2194	1892	1648	1448	1283	1144	1027
20	927	841	766	701	644	593	549	509	473	441
30	412	386	362	341	321	303	286	271	257	244
40	232	221	210	201	192	183	175	168	161	154
50	148	143	137	132	127	123	118	114	110	107
60	103	99,7	96,5	93,4	90,5	87,8	85,1	82,6	80,2	77,9
70	75,7	73,6	71,5	69,6	67,7	65,9	61,2	62.5	60,9	59,4
80	57.9	56,5	55,1	53,8	52,6	51,3	50,1	49,0	47,9	46,8
90	45,8	44,8	43,8	42,9	42,0	41,1	40,2	39,4	38,6	37,8
100	37,1	36,3	35,6	35,0	34,3	33,6	33,0	32,4	31,8	31,2
110	30,6	30,1	29,6	29,0	28,5	28,0	27,6	27,1	26,6	26,2
120	25,7	25,3	24,9	24,5	24,1	23,7	23,4	23,0	22,6	22,3
130	21.9	21,6	21,3	21,0	20,7	20,3	20,0	19,8	19,5	19,2
140	18,9	18,7	18,4	18,1	17,9	17,6	17,4	17,2	16,9,	16,7
150	116,5	16,3	16,0	15,8	15,6	15,4	15,2	15,0	14.9	14,7
160	14,5	14,3	14,1	14,0	13,8	13,6	13,5	13,3	13,1	13,0
170	12,8	12,7	12,5	12,4	12,2	12,1	12,0	11,8	11,7	11,6
180	111,4	11,3	11,9	11,1	11,0	10,8	10,7	10,6	10,5	10,4
190	10,3	10,2	10,1	10,0	9,9	9,8	9,7	9,6	9,5	9,4

Таблица 7 Числа микротвердости при испытании вдавливанием четырехгранной алмазной пирамиды при нагрузке 4,905 Н (500 гс)

	5			Чи	сла микр	отверд	ости			
Диагональ отпечатка d, мкм	0	1	2	3	4	5	6	7	8	9
10 20 30 40 50 60 70 80 90 100 110 120 130 140 150 160 170 180 190 200 210 220 230 240	2318 1030 579 371 257 189 145 114 92,7 76,6 64,4 54,9 47,3 41,2 36,2 32,1 28,6 25,7 23,2 21,0 19,2 17,5 16,1	2102 965 551 356 249 184 141 112 90,9 75,2 63,3 54,0 46,6 41,0 35,8 31,7 28,3 25,4 22,9 20,8 19,0 17,4 16,0		1752 851 501 330 234 174 135 107 84,7 72,6 61,3 52,4 45,3 40,0 34,9 31,0 27,7 24,9 22,5 20,4 18,6 17,1 15,7	- 1609 802 479 318 226 169 131 105 85,7 71,3 60,3 51,6 44,7 39,1 34,5 30,6 27,4 24,6 22,3 20,2 18,5 16,9 15,6		3621 1371 715 438 296 213 160 125 101 82,5 68,9 58,4 50,1 43,5 38,1 33,6 30,0 26,8 24,1 21,8 19,9 18,1 16,6 15,3	3208 1272 677 420 285 207 156 122 98,5 81,0 67,7 57,5 49,4 42,9 37,6 33,2 29,6 26,5 23,9 21,6 19,7 18,0 16,5 15,2	2861 1182 642 402 276 200 152 120 96,5 79,5 66,6 48,7 42,3 37,1 32,8 29,3 26,2 23,6 21,4 19,5 17,8 16,3 15,1	2568 1102 609 386 266 195 117 94,6 78,0 65,5 55,7 48,0 41,8 36,7 32,5 28,9 26,0 23,4 21,2 19,3 17,7 16,2 15,0

Таблица 8 Числа микротвердости при испытании вдавливанием трехгранной алмазной пирамиды при нагрузке 0,049 H (5 гс)

Размер отпечатка ¹ ▽, мкм	Числа микротвєрдости										
	0	1	2	3	4	5	6	7	8	9	
0 10 20 30	78,5 19,6 8,7	64,9 17,8 8,2	54,5 16,2 7,7	46,4 14,8 7,2	490 40,0 13,6 6,8	314 34,9 12,6 6,4	218 30,7 11,6 6,1	160 27,2 10,8 5,7	122 24,2 10,0 5,4	97 21,7 9,3 5,2	

Таблица 9 Числа микротвердости при испытании вдавливанием трехгранной алмазной пирамиды при нагрузке 0,098 Н (10 гс)

Размер	Числа микротвердости										
размер отпечатка l_{∇} , мкм	0	1	2	3	4	5	6	7	8	9	
0 10 20 30 40	157 39,2 17,4 9,8	130 35,6 16,3 9,3	109 32,4 15,3 8,9	93 29,7 14,4 8,5	981 80 27,3 13,6 8,1	628 70 25,1 12,8 7,7	436 61 23,2 12,1 7,4	320 54 21,5 11,5 7,1	245 48 20,0 10,9 6,8	194 43 18,7 10,3 6,5	

Таблица 10

Числа, микротвердости при испытании вдавливанием трехгранной алмазной пирамиды при нагрузке 0,196 H (20 гс)

Размер	,			Чис	сла микр	отвердо	ости			
ornegarka LV. MKM	0	1	2	3	4	Б	6	7	8	9
0 10 20 30 40 50	314 78,5 34,9 19,6 12,5 8,7	259 71,2 32,7 18,7 12,1 8,4	218 64,8 30,6 17,8 11,6 8,2	 185 59,3 28,8 17,0 11,2 7,9	1962 160 54,5 27,2 16,2 10,8 7,7	1256 139 50,2 25,6 15,5 10,4 7,4	872 122 46,4 24,2 14,8 10,0 7,2	641 108 43,1 22,9 14,2 9,7 7,0	490 97 40,0 21,7 13,6 9,3 6,8	387 87 37,3 20,0 13, 9,0

Таблица 11

Числа микротвердости при испытании вдавливанием трехгранной алмазной пирамиды при нагрузке 0,490 Н (50 гс)

Размер				Чис	ла микр	отвердо	СТИ			
отпечатка l_{∇} , мкм	0	1	2	3	4	5	6	7	8	9
0 10 20 30 40 50 60 70 80	785 196 87,2 49,0 31,4 21,8 16,0 12,2 9,7	-648 178 81,7 46,6 30,1 21,1 15,6 11,9 9,5	545 162 76,6 44,5 29,0 20,4 15,2 11,6 9,3		4906 400 136 67,9 40,5 26,9 19,1 14,3 11,1 8,9	3140 349 125 64,0 38,7 25,9 18,6 13,9 10,8 8,7	2180 306 116 60,5 37,0 25,0 18,0 13,6 10,6 8,5	1602 271 107 57,3 35,5 24,1 17,5 13,2 10,4 8,3	1226 242 100 54,3 34,1 23,3 17,0 12,9 10,1 8,2	969 217 93 51,6 32,7 22,5 16,5 12,6 9,9 8,0

Таблица 12 Числа микротвердости при испытании вдавливанием трехгранной алмазной пирамиды при нагрузке 0,981 Н (100 гс)

Размер				Чи	сла мик	ротверд	ости		_	
othewarka I, MKM	0	1	2	-3	4	5	6	7	8	9
0 10 20 30 40 50 60 70 80 90 100 110 120 130 140	1570 392 174 98,1 62,8 43,6 32,0 24,5 19,4 15,7 13,0 10,9 9,3 8,0	1297 356 163 93,4 60,4 42,2 31,1 23,9 18,9 15,4 12,7 10,7 9,1 7,9		929 296 144 84,9 55,9 39,5 29,4 22,8 18,1 14,8 12,3 10,4 8,9 7,7	801 272 135 81,1 53,8 38,3 28,7 22,2 17,7 14,5 12,1 10,2 8,7 7,6	6280 697 251 128 77,5 51,9 37,1 27,9 21,7 17,4 14,2 11,9 10,0 8,6 7,5	4361 613 232 121 74,2 50,1 36,0 27,2 21,2 17,0 14,0 11,7 9,9 8,5 7,4	3204 543 215 114 71,1 48,3 35,0 26,5 20,7 16,7 13,7 11,5 9,7 8,4 7,3	2453 484 200 108 68,1 46,7 34,0 25,8 20,3 16,3 13,5 11,3 9,6 8,2 7,2	1938 435 186 103 65,4 45,1 33,0 25,1 19,8 16,0 13,2 11,1 9,4 8,1 7,1

Таблица 13

Числа микротвердости при испытании вдавливанием трехгранной алмазной пирамиды при нагрузке 1,962 Н (200 гс)

Размер				Чи	сла мик	ротверд	ости			
otnevatka	0	1	2	3	4	5	6	7	8	9
10	3140	2595	2180	1857	1602-	1395	1226	1086	969	869
20	785	712	648	593	545	502	464	430	400	373
30	348	326	306	288	271	256	242	229	217	206
40	196	186	178	169	162	155	148	142	136	130
50	125	120	116	111	107	103	100	96	93	90
60	87,2	84,3	81,7	79,1	76,7	74,3	72,1	69,9	67,9	65,9
70	64,1	62,3	60,6	58,9	57,3	55,8	54,3	52,9	51,6	50,3
80	49,1	47,8	46,7	45,6	44,5	43,5	42,5	41,5	40,5	39,6
90	38,8	37,9	37,1	36,3	35,5	34,8	34,1	33,4	32,7	32,0
100	31,4	30,8	30,2	29,6	29,0	28,5	27,9	27,4	26,9	26,4
110	35,9	25,5	25,0	24,6	24,2	23,7	23,3	23,0	22,6	22,2
120	21,8	21,4	21,1	20,8	20,4	20,1	19,8	19,5	19,2	18,9
130	18,6	18,3	18,0	17,7	17,5	17,2	17,0	16,7	16,5	16,2
140	16,0	15,8	15,6	15,4	15,1	15,0	14,7	14,5	14,3	14,1
150	11,0	13,7	13,6	13,4	13,2	13,0	12,9	12,7	12,6	12,4
160	12,3	12,1	12,0	12,0	11,7	11,5	11,4	11,3	11,1	11,0
170	10,9	10,7	10,6	10,5	10,4	10,3	10,1	10,0	9,9	9,8
180	9,7	9,6	9,5	9,4	9,3	9,2	9,1	9,0	8,9	8,8
190	8,7	8,6	8,5	8,4	8,3	8,3	8,2	8,1	8,0	7,9

Таблица 14 Числа микротвердости при испытании вдавливанием трехгранной алмазной пирамиды при нагрузке 4,905 Н (500 гс)

Размер				Чи	сла мик	ротверд	ости			
otnevatka l _▽ , mkm	a	1	2	3	4	5	6	7	8	9
10 20 30 40 50 60 70 80 90 100 110 120 130 140 150 160 170	7850 1962 872 490 314 218 160 122 96,9 78,5 64,8 54,5 46,4 40,0 35,0 30,7 27,1 24,2	6487 1780 816 466 301 210 156 120 94,8 77,0 63,7 53,6 45,7 39,5 34,4 30,3 26,8 24,0	5451 1621 766 445 290 204 151 117 92,8 75,4 62,6 52,7 45,0 39,0 34,0 29,9 26,5 23,7	4644 1483 720 424 279 197 147 114 90,8 74,0 61,5 52,0 44,3 38,4 33,5 29,5 26,2 23,4	4005 1362 679 405 269 191 143 111 88,8 72,6 60,4 51,1 43,7 37,8 33,1 29,2 25,9 23,2	3488 1256 640 387 259 185 139 108 87,0 71,2 59,3 50,2 43,0 37,3 32,7 28,8 25,6 23,0	3066 1161 605 371 250 180 136 106 85,1 70,1 58,3 49,4 42,4 36,8 32,2 28,5 25,3 22,7	2716 1076 573 355 242 175 132 104 83,4 68,6 57,3 48,7 41,8 36,3 32,0 28,1 25,1 22,4	2422 1001 543 341 233 169 129 101 81,7 67,3 56,4 47,9 41,2 35,8 31,4 27,8 24,8 22,2	217 93 51 32 22 16 12 9 80, 66, 55, 47, 40, 35, 31, 22,
190 200 210 220 230	21,7 19,6 17,8 16,2 14,8	21,5 19,4 17,6 16,1 14,7	21,3 19,2 17,4 15,9 14,6	21,1 19,0 17,3 15,7 14,5	20,8 18,8 17,1 15,6 14,3	20,6 18,7 17,0 15,5 14,2	20,4 18,5 16,8 15,4 14,1	20,2 18,3 16,7 15,2 14,0	20,0 18,1 16,5 15,1 13,8	19, 17, 16, 15,

Таблица 15 Числа микротвердости при испытании вдавливанием алмазной пирамиды с ромбическим основанием при нагрузке 0,049 Н (5 гс)

Размер				Чис	гла микр	отвердо	сти			
ofneyarka l	0	1	2	3	4	5	6	7	8	9
0 10 20 30 40 50 60 70 80 90	644 161 71,5 40,1 25,7 17,9 13,1 10,1 7,9	532 146 67,0 38,3 24,7 17,3 12,8 9,8 7,8	447 133 63,0 36,5 23,8 16,7 12,4 9,6 7,6	381 122 59,1 34,8 22,9 16,2 12,1 9,3 7,4	4023 328 112 55,7 33,2 22,1 15,7 11,8 9,1 7,3	2575 286 103 52,5 31,8 21,3 15,2 11,4 8,9 7,1	1788 251 95 49,7 30,4 20,5 14,8 11,1 8,7 7,0	1314 223 88 47,0 29,1 19,8 14,3 10,9 8,5 6,8	1006 199 82 44,6 27,9 19,1 13,9 10,6 8,3 6,7	795 178 77 42,3 26,8 18,5 10,3 8,1 6,6

Примечание. Число микротвердости H_{\diamondsuit} отличается от числа Кнупа I в кгс/мм², вычисляемого по формуле $I = 14,230~F/l_{\diamondsuit}^2$ так как в настоящем стандарте все значения микротвердости вычисляют по боковой поверхности отпечатка, а число Кнупа I вычисляют по проекции отпечатка.

Таблица 16 Числа микротвердости при испытании вдавливанием алмазной пирамиды с ромбическим основанием при нагрузке 0,098 Н (10 гс)

Размер				4	сла мин	рогвер	дости			
t_{\diamondsuit} , mkm	0	1	2	3	4	5	6	7	8	9
0				_		5149	3576	2627	2011	1589
10	1287	1054	894	762	657	572	503	445	397	357
20	322	292	266	243	223	206	191	177	164	153
30	143	134	126	118	111	105	99	94	89	85
40	80,5	76,6	73,0	69,6	66,5	63,6	60,8	58,3	55,9	53,6
50	51,5	49,5	47,6	45,8	44,1	42,6	41,0	39,6	38,2	37,0
60	35,8	34,6	33,5	32,4	31,4	30,5	29,6	28,7	27,8	27,0
7 0	26,3	25,5	24,8	24,2	23,5	22.9	22,3	21,7	21,2	20,8
80	30,1	19.6	19,1	18,7	18,2	17,8	17,4	17,0	16,6	16,3
90	15,9	15,5	15,2	14,9	14,6	14,3	14,0	13,7	13,4	13,1
100	12,8	12,6	12,4	12,1	11,9	11,7	11,5	11,2	11,0	10,8
110	10,6	10,4	10,3	10,1	9,9	9,7	9,6	9,4	9,2	9,1
120	8,9	8,8	8,7	8,5	8,4	8,2	8,1	8,0	7,9	7,7
130	7,6	7,5	7,4	7,3	7,2	7,1	7,0	6,9	6,8	6,7

Таблица 17 Числа микротвердости при испытании вдавливанием алмазной пирамиды с ромбическим основанием при нагрузке 0,196 Н (20 гс)

Размер				Ч:	ісла ми	кротвер,	итоод			
orneyarka l _♦ , MKM	0	I	2	3	. 4	5	6	7	8	9
0 10 20 30 40 50 60 70 80 90 100 110 120 130 140 150 160 170	2575 644 286 161 103 71,5 52,5 40,2 31,8 25,7 21,3 17,9 15,2 13,1 11,4 10,1 8,9	2128 584 268 151 99 69,2 51,1 39,2 31,1 25,2 20,9 17,6 15,0 13,0 11,3 9,9 8,8	1788 532 251 146 95 67,0 49,7 38,3 30,4 24,7 20,5 17,3 14,8 12,8 11,1 9,8 8,7	- 1523 487 236 139 92 64,9 48,3 37,4 29,8 24,3 20,2 17,0 14,6 12,6 11,0 9,7 8,6	1314 447 223 133 88 62,9 47,0 36,5 29,1 23,8 19,8 16,7 14,3 12,4 10,9 9,6 8,5		7151 1006 381 199 122 82 59,1 44,6 34,8 27,9 22,9 19,1 16,2 13,9 12,1 10,6 9,3 8,3	5254 891 353 188 117 79 57,4 43,4 34,0 27,4 22,5 18,8 16,0 13,7 11,9 10,4 9,2 8,2	1023 795 328 178 112 77 55,7 42,3 33,2 26,8 22,1 18,5 15,7 13,5 11,8 10,3 9,1 8,1	3179 713 306 169 107 74 54,1 41,3 32,5 26,3 21,7 18,2 11,6 10,2 9,0

Таблица 18. Числа микротвердости при испытании вдавливанием алмазной пирамиды с ромбическим основанием при нагрузке 0,490 Н (50 гс)

Размер				ч	исла ми	кротвер	цости			
ornewarka lo, MKM	0	1	2	3	4	5	6	7	8	9
10 20 30 40 50 60 70 80 90 100 110 120 130 140 150 160 170 180 190 200 210 220 230	6436 1629 715 420 258 179 131 101 79,5 64,4 53,2 44,7 38,1 32,8 28,6 25,1 22,3 19,9 17,8 16,1 14,6 13,3 12,2	5319 1460 670 383 248 173 128 98 77,7 63,1 52,2 44,0 37,5 32,4 28,2 24,8 22,0 19,6 17,6 15,9 14,5 13,2 12,1	4470 1330 629 365 238 167 124 96 76,0 61,9 51,3 43,2 36,9 31,9 27,9 24,5 21,8 19,4 17,5 15,8 14,3 13,1 12,0	3809 1217 591 348 229 162 121 93 74,4 60,7 50,4 42,5 36,4 31,5 27,5 24,2 21,5 19,2 17,3 15,6 14,2 12,9 11,9	3284 1117 557 333 221 157 118 91 72,8 59,6 49,5 41,9 35,8 31,0 27,1 24,0 21,3 19,0 17,1 15,5 14,1 12,8 11,8	2861 1030 525 318 213 152 114 89 71,3 58,4 48,7 41,2 35,3 30,6 26,8 23,6 21,0 18,8 16,9 15,3 13,9 12,7 11,7	2514 952 497 304 205 148 111 87 69,8 57,3 47,8 40,5 34,8 30,2 26,4 23,4 20,8 16,8 15,2 13,8 11,6	2227 883 470 291 198 143 109 85 68,4 56,2 47,0 39,9 34,3 29,8 26,1 23,1 20,5 18,4 16,6 15,0 13,7 12,5 11,5	1987 821 446 279 191 139 106 83 67,0 55,2 46,2 39,3 33,8 29,4 25,8 20,3 18,2 16,4 14,9 13,5 12,4 11,4	1783 765 423 268 185 103 81 65,7 54,2 45,5 38,7 33,3 29,0 25,5 22,5 20,1 18,0 16,3 14,7 13,4 12,3 11,3

Таблица 19 Числа микротвердости при испытании вдавливанием алмазной пирамиды с ромбическим основанием при нагрузке 0,981 Н (100 гс)

Размер				Ч	исла мин	кротвер,	ости			
OTNEHATKA	0	1	2	3	4	5	6	7	8	9
10		_	8940	7617	6567	5721	5029	4454	3973	3565
20	3218	2919	2660	2433	2235	2060	1904	1765	1642	1531
30	1430	1340	1257	1183	1114	1051	993	940	891	846
40	805	766	730	696	665	636	608	583	559	536
50	515	495	476	458	441	426	410	396	383	370
60	358	346	335	324	314	305	296	287	278	270
70	263	255	248	242	235	229	223	217	212	206
80	201	196	191	187	182	178	174	170	166	163
90	159	155	152	149	146	143	140	137	134	131
100	129	126	124	121	119	117	115	112	110	108
110	106	104	103	101	99	97	96	94	92	91

Размер				ч-	исла ми	кротверд	ости			
otnevatka log, MKM	0	1	2	3	4	5	6	7	8	9
120 130 140 150 160 170 180 190 200 210 220 230	89,4 76,2 65,7 57,2 50,3 44,5 39,7 35,7 32,2 29,2 26,6 24,3	87,9 75,0 64,8 56,5 49,7 44,0 39,3 35,3 31,9 28,9 26,4 24,1	86,5 73,9 63,8 55,7 49,1 43,5 38,9 31,5 28,6 26,1 23,9	85,1 72,8 63,0 55,0 48,5 43,0 38,4 34,6 31,2 28,4 25,9 23,7	83,7 71,7 62,1 54,3 47,9 42,5 38,0 34,2 30,9 28,1 25,7 23,5	82,4 70,6 61,2 53,6 47,3 42,0 37,6 33,9 30,6 27,8 25,4 23,3	81,1 69,6 60,4 52,9 46,7 41,6 37,2 33,5 30,3 27,6 25,2 23,1	79,8 68,6 59,6 52,2 46,2 41,1 36,8 33,2 30,0 27,3 25,0 22,9	78,6 67,6 58,8 51,6 45,6 40,6 36,4 32,8 29,8 27,1 24,8 22,7	77, 66, 58, 50, 45, 40, 36, 32, 29, 26, 24, 22,

Таблица 20 Числа микротвердости при испытании вдавливанием алмазной пирамиды с ромбическим основанием при нагрузке 1,962 Н (200 гс)

Размер				ч	исла ми	кротв эр,	дости			
отпечатка 1 ф. мкм	ò	1	2	3	4	5	6	7	8	9
20	6436	5838	5319	4867	4470	4119	3809	3532	3284	3061
30	2861	2679	2514	2364	2227	2102	1987	1881	1783	1693
40	1609	1532	1460	1392	1330	1271	1217	1166	1117	1072
50	1030	990	952	917	883	851	821	792	765	740
60	715	691	670	649	629	609	591	574	557	541
70	525	511	497	483	470	458	446	434	423	413
80	402	392	383	374	365	356	348	340	332	325
90	318	311	304	293	291	285	279	274	268	263
100	257	252	247	243	238	234	229	225	221	217
110	213	209	205	202	198	195	191	188	185	182
120	179	176	173	170	167	165	162	160	157	154
130	152	150	148	146	143	141	139	137	135	133
140	131	130	128	126	124	122	121	119	118	116
150	114	113	111	110	109	107	105	104	103	102
160	101	99	98	97	96	95	93	92	91	90
170	89,1	88,0	87,0	86,0	85,0	81,1	83,1	82,2	81,3	80,4
180	79,5	78,6	77,7	76,9	76,0	75,2	74,4	73,6	72,8	72,1
190	71,3	70,6	69,8	69,1	68,4	67,7	67,0	66,3	65,7	65,0
200	64,4	63,7	63,1	62,5	61,9	61,3	60,7	60,1	59,5	58.9
210	58,4	57,8	57,3	56,7	56,2	55,7	55,2	51,7	54,2	53,7
220	53,2	52,7	52,2	51,8	51,3	50,9	50,4	50,0	49,5	49,1
239	48,7	48,2	47,8	47,4	47,0	46,6	46,2	45,8	45,5	45,1

Числа микротвердости при испытании вдавливанием алмазной пирамиды с ромбическим основанием при нагрузке 4,905 Н (500 гс)

Размер				ų,	исла ми	кротвер	цости			
otnevatka	0	1	2	3	4	5	6	7	8	9
30	7151	6607	6286	5940	5568	5254	4966	4702	4457	4232
40	4023	3829	3649	3481	3325	3179	3042	2914	2794	2681
50	2575	2475	2380	2291	2207	2128	2052	1981	1913	1849
60	1788	1730	1674	1622	1571	1523	1478	1434	1392	1352
70	1314	1277	1242	1208	1176	1144	1114	1086	1058	1031
80	1006	981	957	934	912	891	870	850	831	813
90	795	777	760	744	728	713	698	684	670	657
100	644	631	619	607	596	584	573	562	552	542
110	532	522	513	504	495	487	478	470	462	455
120	447	440	432	425	419	412	405	399	393	387
130	381	375	369	364	358	353	348	343	338	333
140	328	324	319	315	310	306	302	298	294	290
150	286	282	279	275	271	268	264	261	258	255
160	251	248	245	242	240	236	234	231	228	225
170	223	220	218	215	213	210	208	205	203	201
180	199	196	194	192	190	188	186	184	182	180
190	178	176	175	173	171	169	168	166	164	163
200	161	159	158	156	155	153	152	150	149	147
210	146	145	143	142	141	139	138	137	135	134
220	133	132	131	129	128	127	126	125	124	123
230	122	121	120	119	118	117	116	115	114	113
								T	абли	ца 22

Числа микротвердости при испытании вдавливанием бицилиндрического наконечника при нагрузке 0,049 Н (5 гс)

Размер отпечатка		Числа микротвердости									
(· MKM	0	1	2	3	4	5	6	7	8	9	
10 20 30 40 50 60 70 80 90 100 110 120	2605 771 325 166 96,5 60,7 40,7 28,6 20,8 15,6 12,1	2250 699 302 157 91,8 58,2 39,2 27,6 20,2 15,2 11,8	1957 636 281 148 87,4 55,8 37,8 26,7 19,6 14,8 11,5	1712 579 262 139 83,3 53,5 36,4 25,9 19,0 14,4 11,2	7494 1507 530 244 132 79,5 51,4 35,1 25,0 18,5 14,0 10,9	6175 1333 486 228 125 75,9 49,4 33,9 24,3 18,0 13,7 10,7	5087 1185 446 214 118 72,5 47,5 32,7 23,5 17,5 13,3 10,4	4241 1058 411 200 112 69,3 45,6 31,6 22,8 17,0 13,0 10,2	3573 949 379 188 106 66,3 43,9 30,6 22,1 16,5 12,7 9,9	3038 854 351 177 101 63,4 42,3 29,5 21,5 16,0 12,4 9,7	
130 140	9,5	9,3	9,0	8,8	8,6 6,9	8,5	8,3 6,7	8,1 6,6	7,9 6,4	7,7 6,3	

Таблица 23 Числа микротвердости при испытании вдавливанием бицилиндрического наконечника при нагрузке 0,098 H (10 гс)

Размер отпечатка	Числа микротвердости									
0 , wkw	0	1	2	3	4	5	6	7	8	9
20	5210	4500	3914	3425	3015	2667	2371	2117	1898	1708
30	1543	1399	1271	1159	1060	972	893	822	759	702
40	651	604	562	524	489	457	428	401	376	354
50	333	314	296	279	264	250	237	225	213	202
60	192	183	174	166	158	151	144	138	132	126
70	121	116	111	107	102	98	94	91	88	85
80	81,4	78,4	75,6	72,9	70,3	67,9	65,5	63,3	61,2	59,1
90	57,2	55,3	53,5	51,8	50,2	48,6	47,1	45,7	44,3	42,9
100	41,6	40,4	39,3	38,1	37,0	36,0	34,9	34,0	33,1	32,2
110	31,3	30,5	29,7	28,9	28,1	27,4	26,7	26,0	25,4	24,7
120	24,1	23,5	22,79	22,4	21,9	21,3	20,8	20,3	19,9	19,4
130	18,9	18,5	18,1	17,7	17,3	16,9	16,6	16,2	15,8	15,5
140	15,2	14,9	14,5	14,2	13,9	13,7	13,4	13,1	12,8	12,6
150	12,3	12,1	11,9	11,6	11,4	11,2	10,9	[10,8	10,6	10,4

Таблица 24 Числа микротвердости при испытании вдавливанием бицилиндрического наконечника при нагрузке 0,196 Н (20 гс)

Размер отпечатка				Чис	ла микро	икрэтвер дости					
O , MKM	0	1	2	3	4	5	6	7	8	9	
20	_	9001	7828	6851	6030	5335	4742	4235	3797	3417	
30	3087	2798	25 \(\frac{1}{3} \)	2319	2120	1944	1786	1645	1519	1405	
40	1302	1209	1125	1048	978	914	856	802	753	708	
50	666	628	592	559	529	501	474	450	427	405	
60	385	367	349	333	317	303	289	277	265	253	
70	243	232	223	214	205	197	189	182	175	169	
80	162	156	151	145	140	135	131	126	122	118	
90	114	110	107	103	100	97	94	91	88	86	
100	83,4	80,9	78,5	75,3	74,1	72,0	69,9	68,0	66,2	64,4	
110	62,2	60,9	59,3	57,8	53,3	51,8	53,4	52,0	59,7	49,5	
120	48,2	47,0	45,9	44,8	43,7	42,7	41,7	40,7	39,7	38,8	
130	37,9	37,0	36,2	35,4	34,6	33,9	33,1	32,4	31,7	31,0	
140	30,4	29,7	29,1	28,5	27,9	27,3	26,8	26,2	25,7	25,2	
150	24,7	24,2	23,7	23,3	22,8	22,4	21,9	21,5	21,1	20,7	
160	20,3	19,9	19,6	19,2	18,9	18,5	18,2	17,9	17,6	17,3	
170	16,9	16,7	16,4	16,0	15,8	15,5	15,3	15,0	14,8	14,5	
180	14,3	14,0	13,8	13,6	13,4	13,2	12,9	12,7	12,5	12,3	
190	12,2	11,9	11,8	11,6	11,4	11,2	11,1	10,9	10,7	10,6	

Таблица 25 Числа микротвердости при испытании вдавливанием бицилиндрического наконечника при нагрузке 0,490 H (50 гс)

Размер отпечатка		Числа микротвердости									
(· MKM	0	1	2	3	4	5	6	7	8	9	
30 40 50 60 70 80 90 100 110 120 130 140 150 160 170 180 190 200 210 220 230	7718 3256 1667 964 607 407 285 208 156 120 94,8 75,9 61,7 50,8 42,4 35,7 30,3 26,0 22,5 19,5 17,1	6995 3023 1571 918 582 392 276 202 152 117 92,7 74,3 60,5 49,9 41,6 35,1 29,9 25,6 22,1 19,3 16,9	6359 2812 1482 874 558 377 267 196 148 114 90,6 72,7 59,3 49,0 40,9 34,5 29,4 25,2 21,8 19,0 16,6	5799 2621 1399 833 535 364 259 190 144 111 88,5 71,2 58,1 40,2 34,0 28,9 24,9 21,5 18,7 16,4	5302 2446 1323 794 514 351 250 185 140 109 86,6 69,7 57,0 47,2 39,5 33,4 28,5 21,2 18,5 16,2	4860 2286 1252 758 493 339 243 180 137 106 84,7 68,3 55,9 46,3 38,8 32,9 28,1 24,1 20,9 18,2 16,0	4466 2141 1186 724 474 327 235 174 133 104 82,8 66,9 54,8 45,5 38,2 32,3 27,6 23,8 20,6 18,0 15,8	4114 2007 1125 692 456 316 228 170 130 101 81,0 65,6 53,8 44,7 37,5 31,8 27,2 23,4 20,3 17,8 15,6	3797 1884 1068 662 439 305 221 165 126 99 79,2 64,2 52,8 43,9 36,9 31,3 26,8 23,1 20,1 17,5 15,4	3513 1771 1014 634 422 295 214 160 123 97 77,5 62,9 51,8 43,1 36,3 30,8 26,4 22,8 19,8 17,3 15,3	

Таблица 26 Числа микротвердости при испытании вдавливанием бицилиндрического наконечника при нагрузке 0,981 Н (100 гс)

Ра эмер о тпечатка	Числа микротвердости													
(D . WKW	0	1	2	3	4	5	6	7	8	9				
30					_	9721	8933	8228	7595	7026				
40	6512	6047	5625	5242	4892	4573	4280	4014	3768	3542				
50	3334	3142	2964	2799	2646	2505	2373	2250	2136	2029				
60	1929	1836	1748	1666	1589	1517	1449	1385	1325	1265				
70	1215	1164	1116	1071	1028	987	949	912	878	845				
80	814	784	755	728	703	678	655	632	611	591				
90	571	553	535	518	501	486	471	456	442.	429				
100	416	404	392	381	370	360	349	340	330	321				
110	313	304	296	288	281	274	267	260	253	247				
120	241	235	229	223	218	213	208	203	198	194				
130	189	185	181	177	173	169	165	162	158	155				

Продолжение табл. 26

Размер отпечатка	Числа микротвердости												
O , MKM	0	1	2	3	4	5	6	7	8	9			
140 150 160 170 180 190 200 210 220 230	151 123 101,8 84,8 71,5 60,8 52,1 45,0 39,1 34,3	148 121 99,9 83,4 70,3 59,8 51,3 44,4 38,6 33,8	145 118 98,0 81,9 69,1 58,9 50,6 43,7 38,1 33,4	142 116. 96,2 80,5 68,0 57,9 49,8 43,1 37,6 32,9	139 114 94,5 79,1 66,9 57,1 49,1 42,5 37,1 32,5	136 111 92,8 77,8 65,8 56,2 48,4 41,9 36,6 32,1	133 109 91,1 76,5 64,8 55,4 47,7 41,3 36,1 31,7	131 107 89,5 75,2 63,7 54,5 46,9 40,8 35,6 31,3	128 105 87,9 73,9 62,7 53,7 46,3 40,2 35,2 30,9	12 10 86, 72, 61, 52, 45, 39, 34,			

Таблица 27 Числа микротвердости при испытании вдавливанием бицилиндрического наконечника при нагрузке 1,962 Н (200 гс)

Размер отпечатка		Числа микротвердости												
() , MKM	0	ì	2	3	4	5	6	7	8	9				
40	_	_	_	_	9786	9147	8564	8029	7537	7085				
5 9	6668	6284	59 28	5599	5293	5010	4746	4501	4272	4058				
60	3859	3672	3497	3333	3179	3035	2899	2771	2651	2537				
70	2430	2329	2233	2142	2057	1975	1898	1825	1756	1690				
80	1628	1568	1511	1457	1406	1357	1310	1265	1223	1182				
90	1143	1106	1070	1036	1003	972	942	913	885	859				
100	833	809	785	762	741	720	699	680	661	643				
110	626	609	593	577	562	548	534	520	507	494				
120	482	470	459	447	437	426	416	406	397	388				
130	379	370	362	354	346	338	331	324	317	310				
140	303	297	291	285	279	273	267	262	257	251				
150	246	242	237	232	228	223	219	215	211	207				
160	203	199	196	192	188	185	182	178	175	172				
170	169	166	163	160	158	155	152	150	147	145				
180	142	140	138	136	133	131	129	127	125	123				
190	121	119	117	115	114	112	110	109	107	105				
200	104	102	101	100	98	97	95	94	93	91				
210	90,0	88,7	87,5	86,3	85,0	83,9	82,7	81,6	80,5	79,4				
220	78,3	77,2	76,2	75,2	74,2	73,2	72,2	71,3	70,3	69,4				
230	68,5	67,6	66,7	65,9	65,0	64,2	63,4	62,6	61,8	61,1				

Таблица 28 Числа микротвердости при испытании вдавливанием бицилиндрического наконечника при нагрузке 4,05 H (500 гс)

Размер отпечатка	Числа микротвердости												
0 , MKM	0	1	2	3	4	- 5	6	7	8	9			
60	9648	9181	8744	8334	7949	7588	7248	6929	6627	6343			
70	6075	5822	5583	5357	5142	4939	4747	4564	4391	422			
80	4070	3921	3779	3644	3516	3393	3276	3164	3058	295			
90	2958	2765	2676	2590	2509	2430	2355	2283	2214	214			
100	2083	2022	1963	1907	1852	1800	1749	1701	1654	160			
110	1565	1523	1483	1444	1406	1370	1335	1301	1268	123			
120	1206	1176	1147	1119	1093	1067	1041	1017	993	97			
130	.948	927	906	885	866	847	828	810	792	77			
140	759	743	727	712	697	683	669	656	642	62			
150	617	605	593	581	570	559	549	538	528	51			
160	508	499	490	481	472	463	. 455	447	439	43			
170	424	416	409	402	395	388	382	375	369	36			
180	357	351	345	340	334	329	323	318	313	30			
190	303	299	294	289	285	281	276	272	268	26			
2 00	260	256	252	249	245	241	238	234	231	22			
210	225	221	218	215	212	209	206	203	201	19			
220	195	193	190	187	185	182	180	178	175	17			
230	171	169	166	164	162	160	158	156	151	15			

УКАЗАНИЯ ПО ВЫБОРУ ФОРМЫ РАБОЧЕЙ ЧАСТИ АЛМАЗНОГО НАКОНЕЧНИКА ПРИ ПРОВЕДЕНИИ ИСПЫТАНИЙ НА МИКРОТВЕРДОСТЬ

1. Для испытаний на микротвердость рекомендуется применять алмазный наконечник с формой рабочей части в виде четырехгранной пирамиды с квадратным основанием (см. таблицу настоящего стандарта) в оправе типа НПМ по ГОСТ 9377—81, с условием получения достоверных и стабильных результатов измерений микротвердости при соблюдении всех требований настоящего

стандарта.

Примечание. Стабильность измерений может нарушаться из-за влияния перемычки (длины линии стыка противоположных граней), возникающей в вершине четырехгранной пирамиды при ее изготовлении. Величина перемычки ограничена, но неодинакова у разных наконечников, а в процессе испытания она оказывает дополнительное нестабильное сопротивление вдавливанию, которое выявляется в основном, при сравнительно малом значении глубины отпечатка h, одного порядка с размером перемычки.

2. Для испытаний на микротвердость материалов с твердостью НV более 1000 (особенно при малых нагрузках) рекомендуется применять алмазный наконечник с формой рабочей части в виде трехгранной пирамиды с основанием равностороннего треугольника (см. таблицу настоящего стандарта). Эта пирамида по боковой поверхности и высоте равновелика четырехгранной пирамиде с квадратным основанием, но имеет более совершенное заострение (без пере-

мычки).

3. Для испытаний на микротвердость материалов с малой толщиной испытуемого слоя (фольга, покрытия и др.) и небольшой твердостью (алюминий, медь и др.) рекомендуется применять алмазный наконечник с формой рабочей части в виде четырехгранной пирамиды с ромбическим основанием (см. таблицу настоящего стандарта), поскольку при применении наконечников, рекомендуемых в пп. 1 и 2, могут не выполняться требования п. 5.5 настоящего стандарта даже при наименьшей нагрузке, равной 0,049 Н (5 гс).

Примечание. В случае измерения микротвердости тонких слоев следует учитывать отношение глубины отпечатка h к измеряемому размеру отпечатка (d или l) у разных наконечников и применять ту форму рабочей части наконечника, которая имеет наименьшую величину этого отношения, а при проведении испытаний допускается выполнение всех требований настоящего стандарта.

4. Для испытаний на микротвердость субтонких слоев или пленок толщиной менее 3 мкм (защитные пленки в оптике, ферромагнитные пленки и др.) рекомендуется применять алмазный наконечник с формой рабочей части в виде бицилиндра — бицилиндрический наконечник (см. таблицу настоящего стандарта).

Примечание. Применяя бицилиндрический наконечник, можно проводить сравнительные и контрольные испытания на микротвердость субтонких

пленок с соблюдением всех требований настоящего стандарта.

5. Для испытаний на микротвердость тонких слоев (антифрикционные и износостойкие покрытия, рабочие слои магнитных лент и т. д.) толщиной от 4 мкм и более рекомендуется применять три вида наконечников.

(Введен дополнительно, Изм. № 2).

РАЗМЕРЫ ОТПЕЧАТКА В ЗАВИСИМОСТИ ОТ ЕГО ГЛУБИНЫ

Таблица 1

MKM

	Pa	змеры о	печатк	ов			Разм	еры отпеча	тков
Глубина отпечатка <i>h</i>	d	10	2	6	Глубина отпечатка h	d	l_{∇}		40
0,1 0,2 0,3 0,4 0,5 0,6 0,7 0,8 0,9 1,0 1,1 1,2 1,3 1,4 1,5 1,6 1,7 1,8 1,9 2,0	3,5 4,9 5,6 7,0 7,7 8,4 9,8 10,5 11,9 12,6 13,3 14,0	3,9 4,5 5,1 5,8 6,4 7,7 8,0 9,6 10,9 11,6 12,8	3,0 6,1 9,1 12,2 15,3 18,3 21,4 24,4 27,5 33,6 36,7 42,8 48,9 54,9 58,0 61,0	38,5 54,4 66,6 77,0 86,1 94,4 101,8 108,9 115,5 121,8 127,6 133,4 138,8 144,1 149,1 154,0 158,8 163,3 167,8 172,2	2,1 2,2 2,3 2,4 2,5 2,6 2,7 2,8 2,9 2,9 3,1 3,3 3,4 3,5 3,7 3,9 4,0	14,7 15,4 16,1 16,8 17,5 18,9 19,6 20,3 21,7 22,4 23,8 24,5 25,9 26,6 27,3 28,0	13,5 14,1 14,8 15,4 16,1 16,7 17,4 18,6 19,9 20,6 21,9 22,5 23,1 23,8 24,4 25,7	64,1 67,1 70,2 73,2 76,3 79,3 82,4 85,4 88,5 91,5 94,6 97,6 100,7 103,7 106,8 109,8 112,9 115,9 115,9 119,0 122,0	176,5 180,6 184,6 188,6 192,5 196,3 200,1 203,7 207,4 210,9 214,5 221,2 224,6 227,9 231,0 234,2 237,4 240,5

Таблица 2

MKM

	Pas	меры отпеч	атков		Раз	меры отпеча	ечатков		
Глубина отпечатка h	d	<i>l</i> ∇	l o	Глубина отпечатка к	đ	<i>l</i> ▽	- I		
4,1 4,2 4,3 4,4 4,5 4,6 4,7	28,7 29,4 30,1 30,8 31,5 32,2 32,9	26,4 27,0 27,6 28,3 28,9 29,6 30,2	125,1 128,1 131,2 134,2 137,3 140,3 143,4	4,8 4,9 5,0 5,1 5,2 5,3 5,4	33,6 34,3 35,0 35,7 36,4 37,1 37,8	30,9 31,5 32,1 32,8 33,4 34,1 34,7	146,4 149,5 152,5 155,6 158,7 161,7 164,8		

ГОСТ 9450—76 С. 29

Продолжение табл. 2

MKM

T	Раз	меры отпеч	атков		Раз	меры отпеча	тков
Глубина отпечатка h	d		<i>l</i> \$	Глубина отпечатка h	d	<i>t</i> _▽	10
5,5 5,6 5,7 5,8 5,9 6,1 6,2 6,4 6,5 6,6 6,7 6,9 7,1 7,2 7,3	38,5 39,2 39,9 40,6 41,3 42,0 42,7 43,4 44,1 44,8 45,5 46,2 46,9 47,6 48,3 49,0 49,7 50,4 51,1	35,4 36,0 36,7 37,3 37,9 38,6 39,2 39,9 40,5 41,2 41,8 42,4 43,1 43,7 44,4 45,0 45,7 46,3 46,9	167,8 170,9 173,9 177,0 180,0 183,0 186,1 189,1 192,2 195,3 198,3 201,4 204,4 207,5 210,5 210,5 213,6 216,6 219,7 222,7	7,4 7,5 7,6 7,7 7,8 7,9 8,0 8,1 8,2 8,3 8,4 8,5 8,6 8,7 8,8 8,9 9,0 9,1 9,2	51,8 52,5 53,2 53,9 54,6 55,3 56,0 56,7 57,4 58,1 58,8 59,5 60,2 60,9 61,6 62,3 63,7 64,4	47,6 48,2 48,9 49,5 50,2 50,8 51,4 52,1 52,7 53,4 54,0 54,7 55,3 55,9 56,6 57,2 57,9 58,5 59,2	225,8 228,8 231,9 234,9 238,0 241,0 ————————————————————————————————————

Таблица 3

MKM

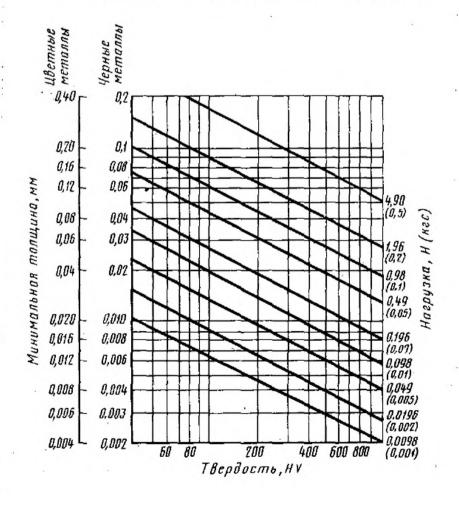
Глубина отпечатка h	Размеры отпечатков		D- 4	Размеры отпечатков	
	d	$^{I}_{ abla}$	Глубина отпечатка h	đ	ι_{\triangledown}
9,3 9,4 9,5 9,6 9,7 9,8 9,9 10,0 10,1 10,2 10,3 10,4 10,5 10,6 10,6	65,1 65,8 66,5 67,2 67,9 68,6 69,3 70,0 70,7 71,4 72,1 72,8 73,5 74,2 74,9	59,8 60,4 61,1 61,7 62,4 63,0 63,7 64,3 64,9 65,6 66,2 66,9 67,5 68,2	10,8 10,9 11,0 11,1 11,2 11,3 11,4 11,5 11,6 11,7 11,8 11,9 12,0 12,1	75,6 76,3 77,0 77,7 78,4 79,1 79,8 80,5 81,2 81,9 82,6 83,3 84,0 84,7	69,4 70,1 70,7 71,4 72,0 72,7 73,3 73,9 74,6 75,2 75,9 76,5 77,2 77,8

MKM

Глубина отпечатка h	Размеры отпечатков			Размеры отпечатков	
	d	l_{∇}	Глубина отпечатков h	d	$^{l}\nabla$
12,3 12,4 12,5 12,6 12,7 12,8 12,9 13,0 13,1 13,2 13,3 13,4 13,5 13,6 13,7 13,8 13,9 14,0 14,1 14,2 14,3 14,4 14,5 14,6 14,7 14,8 14,9 15,1 15,2 15,3 15,4 15,5 15,7 15,8 15,9 16,0 16,1 16,2 16,4 16,5 16,7 16,8	86,1 86,8 87,5 88,2 88,9 89,6 90,3 91,0 91,7 92,4 93,1 93,8 94,5 95,2 95,9 96,6 97,3 98,7 99,4 100,1 100,8 101,5 102,2 102,9 103,6 104,3 105,7 106,4 107,1 107,8 108,5 109,9 110,6 111,3 112,0 112,7 113,4 114,1 114,8 115,5 116,9 117,6	79,1 79,7 80,4 81,0 81,7 82,3 82,9 83,6 84,2 84,9 85,5 86,2 86,8 87,4 89,0 90,7 91,3 91,9 92,6 93,9 94,5 95,2 95,8 96,4 97,1 97,7 98,4 97,1 97,7 97,7 98,4 97,1 97,7 97,7 97,7 97,7 97,7 97,7 97,7	16,9 17,0 17,1 17,2 17,3 17,4 17,5 17,6 17,7 17,8 17,9 18,0 18,1 18,2 18,3 18,4 18,5 13,6 18,7 18,8 18,9 19,0 19,1 19,2 19,3 19,4 19,5 19,6 19,7 19,8 19,9 20,1 20,1 20,2 20,3 20,4 20,5 20,7 20,8 20,9 21,0 21,1 21,2 21,3 21,4	118,3 119,0 119,7 120,4 121,1 121,8 122,5 123,2 123,9 124,6 125,3 126,0 126,7 127,4 128,1 128,8 129,5 130,9 131,6 132,3 133,0 133,7 134,4 135,1 135,8 136,5 137,2 137,9 138,6 139,3 140,7 141,4 142,1 142,8 143,5 144,2 144,9 145,6 146,3 147,7 148,4 149,1 149,8	108,7 109,3 110,0 110,6 111,2 111,9 112,5 113,2 113,8 114,5 115,1 115,7 116,4 117,0 117,7 118,3 119,0 119,6 120,2 120,9 121,5 122,2 122,8 123,5 124,1 124,7 125,4 126,0 126,7 127,3 138,0 131,5 131,1 131,1 132,1 133,1 134,1 135,1 135,1 137,1 137,1

Продолжение табл. 3

MKM


Глубин а отпечатка <i>h</i>	Размеры отпечатков		P	Размеры отпечатков	
	d	<i>l</i> _▽ .	Глубина отпечатка <i>h</i>	d	<i>t</i> _▽
21,5	150,5	138,2	26,1	182,7	167,8
21,6	151,2	138,9	26,2	183,4	168,5
21,7	151,9	139,5	26,3	184,1	169,1
21,8	152,6	140,2	26,4	184,8	169,7
21,9	153,3	140,8	26,5	185,5	170,4
22,0	154,0	141.5	26,6	186,2	171,0
22,1	154,7	142,1	26,7	186,9	171,7
22,2	155,4	142,7	26,8	187,6	172,3
22,3	156,1	143,4	26,9	188,3	173,0
22,4	156,8	144,0	27,0	189,0	173,6
22,5	157,5	144,7	27,1	189,7	174,2
22,6	158,2	145,3	27,2	190,4	174,9
22,7	158,9	146,0	27,3	191,1	175,5
22,8	159,6	146,6	27,4	191,8	176,2
22,9	160,3	147,2	27,5	192,5	176,8
23,0	161,0	147,9	27,6	193,2	177,5
23,1	161,7	148,5	27,7	193,9	178,1
23,2 23,3	162,4 163,1	149,2	27,8	194,6	178,8
23,4	163,8	149,8	27,9	195,3	179,4
23,5	164,5	150,5 151,1	28,0	196,0	180,0
23,6	165,2	151,7	28,1	196,7	180,7
23,7	165,9	152,4	28,2 28,3	197,4	181,3
23,8	166,6	153,0	28,4	198,1 198,8	182,0 182,6
23,9	167,3	153,7	28,5	199,5	183,3
24,0	168,0	154,3	28,6	200,2	183,9
24,1	168,7	155,0	28,7	200,9	184,5
24,2	169,4	155,6	28,8	201,6	185,2
24,3	170,1	156,2	28,9	202,3	185,8
24,4	170,8	156,9	29,0	203,0	186,5
24,5	171,5	157,5	29,1	203,7	187,1
24,6	172,2	158,2	29,2	204,4	187,8
24,7 24,8	172,9	158,8	29,3	205,1	188,4
24,0	173,6 174,3	159,5	29,4	205,8	189,0
25,0	175,0	160,1	29,5	206,5	189,7
25,1	175,7	160,7	29,6	207,2	190,3
25,2	176,4	161,4 162,0	29,7	207,9	191,0
25,3	177,1	162,7	29,8 29,9	208,6	191,6
25,4	177,8	163,3	30,0	209,3 210,0	192,3 192,9
25,5	178,5	164,0	30,0	210,0	192,9
25,6	179,2	164,6	30,2	211,4	193,3
25,7	179,9	165,3	30,3	212,1	194,8
25,8	180,6	165,9	30,4	212,8	195,5
25,9	181,3	166.5	30,5	213,5	196,1
26, 0	182,0	167.2	30,6	214,2	196,8

MKM

Глубина отпечатка <i>ћ</i>	Размеры отпечатков			Размеры отпечатков	
	d	<i>t</i> _∇	Глубина отпечатка h	d	<i>t</i> _▽
30,7	214,9	197,4	31,9	223,3	205,1
30,8	215,6	198,0	32,0	224,0	205,8
30,9	216,3	198,7	32,1	224,7	206,4
31,0	217,0	199,3	32,2	225,4	207,0
31,1	217,7	200,0	32,3	226,1	207,7
31,2	218,4	200,6	32,4	226,8	208,3
31,3	219,1	201,3	32,5	227,5	209,0
31,4	219,8	201,9	32,6	228,2	209,6
31,5	220,5	202,5	32,7	228,9	210,3
31,6	221,2	203,2	32,8	229,6	210,9
31,7	221,9	203,8	32,9	230,3	211,5
31,8	222,6	204,5	33,0	231,0	212,2

ПРИЛОЖЕНИЕ 4 Справочное

Минимальная толщина образца или изделия

ИНФОРМАЦИОННЫЕ ДАННЫЕ

1. РАЗРАБОТАН И ВНЕСЕН Академией наук СССР РАЗРАБОТЧИКИ:

Матвеевский Р. М., д-р техн. наук (руководитель темы); Беркович Е. С., канд. техн. наук; Рыньков Р. Н., канд. техн. наук

- 2. УТВЕРЖДЕН И ВВЕДЕН В ДЕЙСТВИЕ Постановлением Государственного комитета стандартов Совета Министров СССР от 09.01.76 г. № 68
- 3. Срок проверки 1996 г.; периодичность проверки 5 лет
- 4. ССЫЛОЧНЫЕ НОРМАТИВНО-ТЕХНИЧЕСКИЕ ДОКУМЕН-ТЫ

Обозначение НТД, на который дана ссылка	Номер пункта, подпункта, перечисления, приложения	
ГОСТ 2789—73	4.1	
ГОСТ 9377—81	Приложение 2	
ТУ 3—3.1377—83	3.1; 3.2; 3.4; 3.5	

- Проверен в 1991 г. Постановлением Госстандарта № 1665 от 29.10.91 снято ограничение срока действия
- 6. ПЕРЕИЗДАНИЕ (март 1993 г.) с Изменениями № 1, 2, утвержденными в сентябре 1981 г., октябре 1991 г. (ИУС 11—81, 1—92)

Редактор А. В. Цыганкова Технический редактор В. Н. Малькова Корректор О. Я. Чернецова

Сдано в наб. 05.04.93. Подп. к печ. 05.07.93. Усл. п. л. 2,10. Усл. кр.-отт. 2,10. Уч.-изд. л. 2,07. Тираж 776 экз. С 331.

Ордена «Знак Почета» Издательство стандартов, 107076, Москва, Колодезный пер., 14. Калужская типография стандартов, ул. Московская, 256. Зак. 827

Поправка к ГОСТ 9450—76 Измерение микротвердости вдавливанием алмазных наконечников

В каком месте	Напечатано	Должно быть
Предисловие. Таблица согласования	_	Киргизия KG Кыргызстандарт

(ИУС № 11 2024 г.)