

ГОСУДАРСТВЕННЫЙ СТАНДАРТ СОЮЗА ССР

РЕАКТИВЫ. НАТРИЙ ФОСФОРНО-КИСЛЫЙ ДВУЗАМЕЩЕННЫЙ 12-ВОДНЫЙ

ТЕХНИЧЕСКИЕ УСЛОВИЯ

ГОСТ 4172-76

Издание официальное

63 5-92

ИЗДАТЕЛЬСТВО СТАНДАРТОВ Москва

РЕАКТИВЫ, НАТРИЙ ФОСФОРНО-КИСЛЫЙ ДВУЗАМЕЩЕННЫЙ 12-ВОДНЫЙ

Технические условия

LOCL 4172 - 76

Reagents. Disodium hydrogen phosphate dodecahydrate. Specifications

OKIT 26 2112 1140 04

Дата введения

c 01.07.77

Настоящий стандарт распространяется на 12-водный двузамещенный фосфорно-кислый натрий, представляющий собой бесцветные, прозрачные кристаллы, выветривающиеся в сухом воздухе, растворимые в воде.

Формула Na2HPO4 · 12H2O.

Относительная молекулярная масса (по международным атомным массам 1985 г.) — 358,14.

Требования настоящего стандарта являются обязательными. Допускается изготовление 12-водного двузамещенного фосфор-

но-кислого натрия по международному стандарту ИСО 6353/2-83 (Р.33) (см. приложение 1) и проведение анализов по международному стандарту ИСО 6353/1—82 (см. приложение 2). (Измененная редакция, Изм. № 2, 3).

1. ТЕХНИЧЕСКИЕ ТРЕБОВАНИЯ

 1.1а. 12-водный двузамещенный фосфорно-кислый натрий дол-жен быть изготовлен в соответствии с требованиями настоящего стандарта по технологическому регламенту, утвержденному в установленном порядке.

(Введен дополнительно, Изм. № 1).

1.1. По физико-химическим показателям 12-водный двузамещенный фосфорно-кислый натрий должен соответствовать пормам. указанным в таблице.

Издание официальное

Перепечатка воспрещена

С Издательство стандартов, 1976

С Издательство стандартов, 1993 Перепадание с изменениями

	Нормя			
Наименование показателя	Химически чистый (х. ч.) ОКП 26 2112 (143 01	Чистый для янелиза (ч. д. е.) ОКП 26 2112 1142 02	Чистый (ч.) ОКП 26 2112 1141 03	
1. Массовая доля 12-водного				
двузамещенного фосфорно-кислого натрия (Na ₂ HPO ₄ · 12H ₂ O), % 2. Массовая доля нераствори-	99101	99-102	98-102	
ных в воде веществ, %, не более	0,002	0,002	0,010	
3. Массовая доля общего азо- ra (N), %, не более	0,0002	0,0005	Не нормируется	
 Массовая доля сульфатов (SO₄), %, не более 	0,0005	0,0005	0,0010	
 Массовая доля хлоридов (С1), %, не более 	0,0005	0,0010	0,0050	
6. Массовия доля желези (Fe), %, не более	0,0002	0,0005	0,0010	
7. Массован доля калия (К), %, пе более	0,005	Не норми- руется	Не вормируется	
8. (Исключен, Изм. № 3) 9. Массовая доля мышьяка (Аs), %, не более 10. Массовая доля тяжелых ме-	0,00004	0,0001	0,0005	
таллов (Рь), %, не более	0,0005	0,0005	0,0005	
 рН раствора препарата с массовой долей 5% 	9,0-9,3	9,0-9,3	Не нормируется	

(Измененная редакция, Изм. № 1, 2, 3).

2а. ТРЕБОВАНИЯ БЕЗОПАСНОСТИ

2а.1. 12-водный двузамещенный фосфорно-кислый натрий в больших количествах может вызвать раздражение слизистых оболочек и кожных покровов.

 При работе с препаратом следует применять средства индивидуальной защиты, а также соблюдать правила личной гигиены.

2а.1; 2а.2. (Введены дополнительно, Изм. № 2).

2а.3. Помещення, в которых проводят работы с препаратом, должны быть оборудованы непрерывно действующей приточновытяжной вентиляцией. Анализ препарата следует проводить в вытяжном шкафу лаборатории.

(Измененная редакция, Изм. № 3).

2. ПРАВИЛА ПРИЕМКИ

2.1. Приемку производят по ГОСТ 3885-73.

3. МЕТОДЫ АНАЛИЗА

 3.1а. Общие указания по проведению анализа — по ГОСТ 27025—86.

При взвешивании применяют лабораторные весы общего назначения типов ВЛР-200 г и НЛКТ-500 г-М или типа ВЛЭ-200 г.

Допускается применение других средств измерения с метрологическими характеристиками и оборудования с техническими характеристиками не хуже, а реактивов по качеству не ниже указанных в настоящем стандарте.

(Измененная редакция, Изм. № 3).

 Пробы отбирают по ГОСТ 3885—73. Масса средней пробы должна быть не менее 300 г.

(Измененная редакция, Изм. № 1, 2, 3).

3.2. Определение массовой доли 12-водного двузамещенного фосфорно-кислого натрия

3.2.1. Реактивы, растворы и аппаратура

Кислота соляная по ГОСТ 3118—77, раствор концентрации с (HCl) = 0,5 моль/дм³ (0,5 н.); готовят по ГОСТ 25794.1—83.

Метиловый оранжевый (пара-диметиламиноазобензолсульфокислый натрий) (индикатор), раствор с массовой долей 0,1%; готовят по ГОСТ 4919.1—77.

Натрий фосфорно-кислый однозамещенный 2-водный по ГОСТ 245—76.

Вода дистиллированная по ГОСТ 6709-72.

Иономер универсальный ЭВ-74.

Электроды стеклянный и хлорсеребряный (или насыщенный каломельный).

Мешалка магнитная.

Бюретка 1 (2)-2-50-0,1 по НТД.

Колба Кн-2-250-50 ТХС по ГОСТ 25336-82.

Стакан Н-2—250 ТХС по ГОСТ 25336—82.

Стаканчик СВ-24/10 по ГОСТ 25336-82.

Цилиндр I-100 по ГОСТ 1770-74.

3.2.2. Проведение анализа

Около 4,0000 г препарата взвешивают в стаканчике для взвешивания, затем помещают в стакан, растворяют в 100 см³ воды и титруют из бюретки, при перемешивании раствора магнитной мешалкой, раствором соляной кислоты до значения рН 4,4, используя в качестве измерительного электрода—стеклянный, в качестве электрода сравнения—хлорсеребряный (или насыщенный каломельный).

Допускается проводить определение с индикацией эквивалентной точки по метиловому оранжевому с применением раствора сравнения, содержащего в 100 см³ воды 2 г 2-водного однозамещенного фосфорно-кислого натрия и 2—3 капли раствора метилового оранжевого. 3.2.3. Обработка результатов

Массовую долю 12-водного двузамещенного фосфорно-кислого натрия (X) в процентах вычисляют по формуле

$$X = \frac{V \cdot 0.1791 \cdot 100}{m}$$

где V — объем раствора соляной кислоты концентрации точно 0,5 моль/дм³, израсходованный на титрование, см³;

т- масса навески препарата, г;

0,1791 — масса 12-водного двузамещенного фосфорно-кислого натрия, соответствующая 1 см³ раствора соляной кислоты концентрации точно 0,5 моль/дм³.

За результат анализа принимают среднее арифметическое результатов двух параллельных определений, абсолютное допускаемое расхождение между которыми не превышает 0,5%.

Допускаемая абсолютная суммарная погрешность результата

анализа ±0,6% при доверительной вероятности P=0,95.

3.2.1, 3.2.2, 3.2.3. (Измененная редакция, Изм. № 2, 3).

3.3. Определение массовой доли нерастворимых

в воде веществ

3.3.1. Реактивы и аппаратура

Вода дистиллированная по ГОСТ 6709—72. Стакан В-1—1000 ТХС по ГОСТ 25336—82.

Тигель типа ТФ с фильтром класса ПОР10 или ПОР16 по ГОСТ 25336—82.

Цилиндр 1-500 по ГОСТ 1770-74.

3.3.2. Проведение анализа

50,00 г препарата помещают в стакан и растворяют при нагре-

вании в 500 см3 воды.

Затем раствор фильтруют через фильтрующий тигель, предварительно высушенный до постоянной массы и взвешенный (результат взвешивания в граммах записывают с точностью до четвертого десятичного знака). Остаток на фильтре промывают 100 см³ воды и сушат в сушильном шкафу при 105—110 °C до постоянной массы.

Препарат считают соответствующим требованиям настоящего стандарта, если масса остатка после высушивания не будет пре-

вышать:

для препарата химически чистый — 1 мг, для препарата чистый для анализа — 1 мг, для препарата чистый — 5 мг.

Допускаемая относительная суммарная погрешность результата анализа $\pm 30\%$ при доверительной вероятности $P{=}0.95$.

3.3.1, 3.3.2. (Измененная редакция, Изм. № 2, 3).

3.4. Определение массовой доли общего азота Массовую долю общего азота определяют по ГОСТ 10671.4—74 фотометрическим методом, при этом подготовку к анализу проводят следующим образом: 5,00 г препарата помещают в круглодонную колбу прибора для отделения аммиака дистилляцией и растворяют в 45 см³ воды.

Препарат считают соответствующим требованиям настоящего стандарта, если масса общего азота в нем не будет превы-

шать:

для препарата химически чистый — 0,01 мг; для препарата чистый для анализа — 0,025 мг. (Измененная редакция, Изм. № 3).

3.5. Определение массовой доли сульфатов

Массовую долю сульфатов определяют по ГОСТ 10671.5—74 визуально-нефелометрическим методом (способ 1). При этом подготовку к анализу проводят следующим образом: 5,00 г препарата помещают в коническую колбу вместимостью 100 см³ (с меткой па 50 см³), растворяют в 30—40 см³ воды и нейтрализуют раствором соляной кислоты по раствору п-нитрофенола с массовой долей 0,2% (готовят по ГОСТ 4919.1—77). Если раствор мутный, его фильтруют через трижды промытый горячей водой обеззоленный фильтр «синяя лента», доводят объем раствора водой до метки и перемешивают (раствор I).

24 см³ раствора 1 (соответствуют 2,4 г препарата) отмеряют бюреткой в колориметрический стаканчик и далее определение проводят по ГОСТ 10671.5—74, прибавляя 2,5 см³ раствора соляной кислоты (вместо 1 см³) и 3 см³ спиртового раствора хлористого бария (вместо водного раствора), который готовят следующим образом: 5,00 г хлористого бария растворяют в смеси, состоящей из 66,5 см³ дистиллированной воды (ГОСТ 6709—72)

и 28,5 см³ этилового спирта (ГОСТ 18300—87).

Препарат считают соответствующим требованиям настоящего стандарта, если наблюдаемая опалесценция анализируемого раствора не будет интенсивнее опалесценции раствора, приготовленного одновременно с анализируемым и содержащего в таком же объеме:

для препарата химически чистый — 0.01 мг SO_4 , для препарата чистый для анализа — 0.01 мг SO_4 ,

для препарата чистый — 0,02 мг SO₄,

4 см³ раствора I (соответствуют 0,4 г препарата), 1 см³ раствора соляной кислоты, 3 см³ раствора крахмала и 3 см³ спиртового раствора хлористого бария.

3.6. Определение массовой доли хлоридов

Массовую долю хлоридов определяют по ГОСТ 10671.7—74 фототурбидиметрическим (способ 2) или визуально-нефелометри-

ческим (способ 2) методом. При этом подготовку к анализу проводят следующим образом: 2,40 г препарата помещают в коническую колбу вместимостью 100 см³ и растворяют в 30 см³ воды. Далее определение проводят по ГОСТ 10671.7—74, прибавляя 4 см³ раствора азотной кислоты вместо 2 см³.

В растворы сравнения добавляют по 0,40 г анализируемого

препарата.

Препарат считают соответствующим требованиям настоящего стандарта, если масса хлоридов в нем не будет превышать:

для препарата химически чистый — 0,010 мг;

для препарата чистый для анализа - 0,020 мг;

для препарата чистый — 0,100 мг.

При разногласиях в оценке массовой доли хлоридов анализ проводят фототурбидиметрическим методом.

3.7. Определение массовой доли железа

Массовую долю железа определяют по ГОСТ 10555—75 сульфосалициловым методом. При этом подготовку к анализу проводят следующим образом: 2,50 г препарата помещают в коническую колбу вместимостью 100 см³, растворяют в 20 см³ воды, прибавляют 2,5 см³ раствора соляной кислоты, нагревают до кипения, кипятят в течение 5 мин и охлаждают, далее определение проволят по ГОСТ 10555—75.

Препарат считают соответствующим требованиям настоящего

стандарта, если масса железа в нем не будет превышать:

для препарата химически чистый — 0,0050 мг,

для препарата чистый для анализа — 0,0125 мг, для препарата чистый — 0,025 мг.

При необходимости в результат анализа вносят поправку на массу железа в применяемом объеме соляной кислоты.

Допускается определение проводить 2,2' дипиридиловым ме-

тодом.

При разногласиях в оценке массовой доли железа анализ проводят сульфосалициловым методом фотометрически.

3.5-3.7. (Измененная редакция, Изм. № 2, 3).

3.8. Массовую долю калия определяют по ГОСТ 26726-85.

(Измененная редакция, Изм. № 2). 3.9—3.9.2. (Исключены, Изм. № 3).

3.10. Определение массовой доли мышьяка

Массовую долю мышьяка определяют по ГОСТ 10485—75 визуальным методом с применением бромнортутной бумаги. Определение проводят в серно-кислой среде. Масса навески препарата должна быть 1,00 г.

Препарат считают соответствующим требованиям настоящего стандарта, если окраска бромнортутной бумаги при взаимодействии с анализируемым раствором не будет интенсивнее окраски бромнортутной бумаги при взаимодействии с раствором, приготовленным одновременно с анализируемым и содержащим в таком же объеме:

для препарата химически чистый— 0,0004 мг As, для препарата чистый для анализа — 0,0010 мг As,

для препарата чистый — 0,0050 мг As,

20 см³ раствора серной кислоты, 0,5 см³ раствора двухлористого олова и 5 г цинка.

 Определение массовой доли тяжелых металлов

Массовую долю тяжелых металлов определяют по ГОСТ 17319—76 сероводородным методом. При этом подготовку к анализу проводят следующим образом: 5,00 г препарата помещают в колбу вместимостью 100 см³ (с меткой на 30 см³) с пришлифованной или резиновой пробкой, растворяют в 20 см³ воды, нейтрализуют уксусной кислотой по универсальной индикаторной бумате до рН 7 и доводят объем раствора водой до 30 см³, далее определение проводят по ГОСТ 17319—76.

Препарат считают соответствующим требованиям настоящегостандарта, если окраска анализируемого раствора не будет интенсивнее окраски раствора, приготовленного одновременно с ана-

лизируемым и содержащего в таком же объеме:

для препарата химически чистый — 0,025 мг Pb, для препарата чистый для анализа — 0,025 мг Pb,

для препарата чистый — 0,025 мг Pb,

 см³ уксусной кислоты, 1 см³ раствора уксусно-кислого аммония и 10 см³ сероводородной воды.

3.12. Определение рН раствора препарата с мас-

совой долей 5%

5,00 г препарата помещают в коническую колбу вместимостью 250 см³, растворяют в 95 см³ дистиллированной воды, не содержащей углекислоты (ГОСТ 4517—87), и измеряют рН раствора на нономере ЭВ-74.

Допускаемая абсолютная суммарная погрешность результата

анализа ± 0.1 pH при доверительной вероятности P = 0.95.

3.10-3.12. (Измененная редакция, Изм. № 2, 3).

4. УПАКОВКА, МАРКИРОВКА, ТРАНСПОРТИРОВАНИЕ И ХРАНЕНИЕ

 4.1. Препарат упаковывают и маркируют в соответствии с ГОСТ 3885—73.

Вид и тип тары: 2-1, 2-2, 2-4, 2-9, 6-1, 11-6.

Группа фасовки: III, IV, V, VI, VII. (Измененная редакция, Изм. № 1, 3).

4.2. Препарат перевозят всеми видами транспорта в соответствии с правилами перевозки грузов, действующими на данном виде транспорта.

4.3. Препарат хранят в упаковке изготовителя в закрытых складских отапливаемых помещениях.

5. ГАРАНТИИ ИЗГОТОВИТЕЛЯ

 Изготовитель гарантирует соответствие 12-водного двузафосфорно-кислого натрия требованиям настоящего стандарта при соблюдении условий хранения и транспортирования.

Гарантийный срок хранения препарата — один год со дня.

изготовления.

5.1, 5.2. (Измененная редакция, Изм. № 1). Разд. 6. (Исключен, Изм. № 2).

Реактивы для химического анализа. Часть 2: Технические условия— Первая серия ИСО 6353/2—83

Р.33. Натрий фосфорно-кислый двузамещенный 12-водный Относительная молекулярная масса: 358,14 Р.33.1. Технические требования

Массовая доля 12-водного двузамещенного фосфо	орно-	
кислого натрия		99-102
рН раствора препарата с массовой долей 5%		9.0 - 9.4
Массовая доля хлоридов (CI), %, не более		0.001
Массовая доля сульфатов (SO ₄), %, не более		0.005
Массовая доля общего азота (N), %, не более .		0.002
Массовая доля тяжелых металлов (Pb), %, не более		0.0005
Массовая доля железа (Fe), %, не более		0,0005
Массовая доля калия (К), %, не более		0,01

Р.33.2. Приготовление испытуемого раствора

г препарата растворяют в воде и разбавляют до 200 см² (раствор должен быть прозрачным и бесцветным).

Р.33.3. Методы анализа

Р.33.3.1. Определение массовой доли 12-водного двузамещенного фосфорно-

кислого натрия.

Около 10,0000 г препарата взвещивают и растворяют в 200 см³ воды, не содержащей углекислого газа. Проводят потенциометрическое титрование раствором серной кислоты $c(t_2, H_2SO_4) = 1$ моль/дм³ до pH = 4.4, используя стеклянный индикаторный электрод.

1,00 см³ раствора серной кислоты $c(1/2 \text{ H}_2\text{SO}_4) = 1 \text{ моль/дм}^2$ соответствует

0.35814 r NazHPO4 12H2O.

Р.33.3.2. Определение рН раствора препарата с массовой долей 5%.

Величину рН раствора препарата с массовой долей 5% определяют в соответствии с ОМ 31.1 °, используя стеклянный индикаторный электрод.

Р.33.3.3 Определение массовой доли хлоридов

10 см³ испытуемого раствора (Р.33.2) анализируют в соответствии с ОМ 2. Готовят контрольный раствор, используя 1 см³ клоридного раствора срав-

нения II (1 см³=0,001% С!).

Хлоридный раствор сравнения II готовят непосредствению перед употреблением разбавлением водой в мерной колбе основного раствора в соотношении 1:100. Основной раствор сравнения готовят следующим образом: 1,65 г NaCl растворяют в воде, разбавляют до метки водой в мерной колбе вместимостью 1000 см³ и переменивают

Р.33.3.4. Определение массовой доли сульфатов

20 см³ испытуемого раствора (Р.33.2) нейтрализуют раствором соляной кислоты с массовой долей 25% и анализируют в соответствии с ОМ 3.

Готовят контрольный раствор, используя 10 см3 сульфатного раствора срав-

нения II (10 см² = 0,005% SO₄).

Сульфатиый раствор сравнення II готовят непосредственно перед употреблением разбавлением водой в мерной колбе основного раствора сравнения в соотношении 1:100. Основной раствор сравнения готовят следующим образом: $1.81 \text{ г. } \text{K}_2\text{SO}_4$ растворяют в воде, разбавляют водой до метки в мерной колбе вместимостью 1000 см^2 и перемешивают.

ОМ — здесь и далее общие методы акализа по ИСО 6353/1—82 (см. приложение 2).

Р.33.3.5. Определение массовой доли общего взота

10 см³ испытуемого раствора (Р.33.2) анализируют в соответствии с ОМ 6. Готовят контрольный раствор, используя 2 см³ взотсодержащего раствора

-сравнения II (2 см³ = 0.002% N).

Азотсодержащий раствор сравнения II готовят непосредственно перед употреблением разбавлением водой в мерной колбе основного раствора сравнения в соотношении 1: 100. Основной раствор сравнения готовят следующим образом: 6,07 г № № № растворяют в воде, разбавляют водой до метки в мерной колбе вместимостью 1000 см³ и перемещивают.

Р.33.3.6. Определение массовой доли тяжелых металлов

6 г препарата растворяют в 15 см³ раствора соляной кислоты с массовой долей 10% и разбавляют до 30 см³.

Берут 20 см^а этого раствора, доводят pH до 4 и анализируют в соответст-

вии с ОМ 7.

Готовят контрольный раствор, используя 2 см3 свинецсодержащего раство-

ра сравнения 11 (2 см⁸=0,0005% Pb)

Свиненсодержащий раствор сравнения II готовят непосредственно перед употреблением разбавлением водой в мерной колбе основного раствора сравнения в соотношении 1: 100. Основной раствор сравнения готовят следующим образом: к 1,60 г Pb(NO₃)₂ добявляют 1 см³ HNO₃, разбавляют водой до метки в мерной колбе вместимостью 1000 см³ и перемешивают.

Р.33.3.7. Определение массовой доли железа

40 см³ испытуемого раствора (РЗЗ.2) разбавляют 20 см³ воды, прибавляют 3 см³ раствора соляной кислоты с массовой долей 25%, кинятат в течение 5 мин, затем смешивают с 2 см³ раствора сульфосалициловой кислоты и 5 см³ раствора зммивка.

Интенсивность желтой окраски анализируемого раствора не должна превыпать интенсивности окраски контрольного раствора, приготовленного с непользонанием 2 см⁵ железосоцержащего раствора сравнения II (2 см⁵→

=0.0005% Fe).

Железосодержащий раствор сравнения 11 готовят непосредственно перед употреблением разбавлением водой в мерной колбе основного раствора сравнения в соотношения 1:100. Основной раствор сравнения готовят следующим образом: к 8,63 г NH₄Fe(SO₄)2·12H₂O добавляют 10 см³ раствора H₂SO₄ с массовой долей 25%, разбавляют водой до метки в мерной колбе вместимостью 1000 см³ и переменивают.

Р.33.3 8. Определение массовой доли калия

Определение проводят методом пламенной фотометрии в соответствии с ОМ 30 при следующих условиях:

Обозначение	Концентрация	Состан	Длина
элемента	раствора, %	горковей смеси	волны, ны
К	1	Кислород-аце- этилен	766,5

ПРИЛОЖЕНИЕ 2 Обязательное

Реактивы для химического анализа Часть 1. Общие методы испытаний (ОМ) ИСО 6353/1—82

Определение массовой доли хлоридов (ОМ 2)

Указанный объем (Р.33.3.3) анализируемого раствора подкисляют 1 см³ раствора азотной кислоты с массовой долей 25% и добавляют 1 см³ раствора интрата серебра с массовой долей приблизительно 1,7%.

Смесь отстанвают 2 мин, после чего сравнивают ее опалесценцию с опалесценцией смеси, полученной при аналогичной обработке соответствующего контрольного раствора.

5.3. Определение массовой доли сульфатов (ОМ 3)

0,25 см3 раствора сульфата калня с массовой долей 0,02% в 30%-ном (по объему) этаноле смешивают с 1 см3 раствора 2-водного хлорида бария с массовой долей 25% (затравочный раствор). Ровно через 1 мин к этой смеси добавляют указанный объем (Р.33.3.4) испытуемого раствора, предварительноподкисленного 0,5 см² раствора соляной кислоты. Смесь отстаивают в течение 5 мин и сравнивают ее помутнение с помут-

нением смеси, полученной при аналогичной обработке соответствующего конт-

рольного раствора.

5.6 Определение массовой доли общего азота (ОМ 6)

К указанному объему (Р.33.3.5) испытуемого раствора, разбавленному при необходимости до объема 140 см³ в приборе Кьельдаля, состоящего из колбы Кьельдаля и персгонного устройства, добавляют 5 см³ раствора гидроксида ватрия с массовой долей 32% и 1,0 г сплава Деварда или алюминиевой проволоки. Смесь отстанвают в течение 1 ч. Отгоняют 75 см3 реакционной смеси в мерный цилиндр, содержащий 5,0 см³ раствора серной кислоты с массовой долей 0,5%. Добавляют 3 см³ раствора гидроксида натрия с массовой долей. 32%, 2 см³ реактива Несслера и разбавляют водой до объема 100 см³.

Сравинвают интенсивность желтой окраски полученного раствора с интенсивностью окраски раствора, полученного при аналогичной обработке соответ-

ствующего контрольного раствора.

 Определение массовой доли тяжелых металлов (в виде Рb) (ОМ 7) К указанному объему (Р.33.3.6) испытуемого раствора добавляют 0,2 смэ раствора уксусной кислоты с массовой долей 30% и насыщают раствор сероводородом или добавляют соответствующее количество водного раствора сероводорода.

Сравнивают интенсивность коричневой окраски полученного раствора с интенсивностью окраски раствора, полученного при аналогичной обработке соот-

ветствующего контрольного раствора

5.30. Пламенная фотометрия (ОМ 30).

5.30.1. Общие указания

Этот метод основан на измерении интенсивности светового излучения, испускаемого некоторыми атомами при переходе из возбужденного состояния в состояние с более низкой энергией. Атомы переходят в возбужденное состояние в пламени, создаваемом подходящей смесью горючего газа и газа, поддерживающего горение. Интенсивность испускаемого атомами издучения измеряют помощью подходящей фотометрической системы либо с монохроматором, либо с фильтрами.

Примечание. Могут быть использованы отличные от указанных в описаниях смеси газов для пламени, при этом может возникнуть необходимость соответственно изменить рекомендованные в этих же описаниях концентрации растворов

5.30.2 Методика анализа

Методика анализа сходна с методикой атомно-абсорбционной спектроскопии и здесь также возможно дать лишь общие указания. Условия для каждого конкретного анализа можно найти в описаниях, касающихся анализируемогореактива.

5.31. Потенциометрия (ОМ 31).

5.31.0. Общие указания

В основе потенциометрических методов обычно лежит измерение электродвижущей силы гальванического элемента, состоящего из следующих элементов и полуэлементов:

 а) индикаторный электрод, погруженный в анализируемый раствор. Его потенциал зависит от природы анализируемого вещества и от концентрации анализируемого раствора;

б) электрод сравнения, характеризующийся постоянной величиной потен-

циала.

Электродвижущая сила такого гальванического влемента зависит от концентрации внализируемого раствора Если потенциал электрода сравнения относительно стандартного водородного электрода известен, концентрация анализируемого раствора может быть рассчитана по измеренному значению электродвижущей силы. При изменении концентрации анализируемого раствора, например при титровании, значение электродвижущей силы будет также изменяться такжи образом, что момент окончания титрования можно определить по графику зависимости потенциала от объема или массы добавленного титранта, или от времени проведения электролиза.

5.31.1. Определение рН (ОМ 31.1)

5 31 1.1 Общие положения

Гальванический элемент: электрод сравнения (насыщенный раствор KCI) раствор R/Pt-H₂. Для буферных растворов R₁ и R₂ с известными значениями рH, соответственно рH_R, и рH_R, измеренные значения разности потенциалов составляют соответственно E₁ и E₂.

Если раствор R в рассматриваемом гальваническом элементе заменить исследуемым раствором с неизвестным pH, то по различию в измеревиных вели-

чинах потенциалов можно рассчитать pH исследуемого раствора.

Если все измерения проведены при одной и той же температуре и при неизменной ноицентрации раствора хлорида калия, pH исследуемого раствора может быть рассчитаи по следующим формулам:

$$rac{F_1-E_{\rm HC-MC}}{S}+{
m pH}_{
m R1};$$
 $rac{E_2-E_{
m HC-MCR}}{S}+{
m pH}_{
m R2},$ где $S-$ угловой коэффициент $\left(rac{MB}{
m pH}
ight)-rac{E-E_2}{
m pH}_{
m R1}-{
m pH}_{
m R2}.$

5.31.1.2. Аппаратура

рН-метр со стеклянным (менее применим водородный) электродом, соединенным с милливольтметром с большим сопротивлением и со шкалой, откалиброванной в единицах рН. Такой прибор, регистрируя разность потенциалов между рН-чувствительным электродом (стеклянным, сурьмяным) и электродом сравнения, соединенным электролитическим мостиком (например, насыщенный раствор КСІ), дает возможность непосредственно считывать со шкалы значения рН.

5.31.1.3. Калибровка

рН-метр калибруют, используя подходящие растворы с известной величиной активности нонов водорода; некоторые из них перечислены инже:

- а) оксалатный буферный раствор;
 б) тартратный буферный раствор;
- в) фталатный буферный раствор;
- г) фосфатный буферный раствор;
- д) боратный буферный раствор;
- е) буферный раствор гидроксида хальция.

В табл. 3 приведены значения pH вышеперечисленных буферных растворов в интервале температур 15—35 °C.

			31	качение рН		
Температура,	Буферный раствор					
*c		6	*	r	А	e
15	1,67 1,68	-	4,00 4,00	6,90 6,88	9,27	12,81 12,63
20 25 30 35	1,68 1,69	3,56 3,55	4,01 4,01	6.86 6.85	9,22 9,18 9,14	12,45 12,45 12,30
35	1,69	3,55	4,02	6,84	9.10	12,14

5.31.1.4. Методика анализа

Готовят авализируемый раствор (кроме тех случаев, когда анализируют непосредственно сам разктив) заданной концентрации, применяя воду, свобод-

ную от двускиси углерода.

Одновременно готовят два буферных раствора таких, чтобы предполагаемое значение pH анализируемого раствора находилось между значениями pH втих растворов. Температуру всех трех растворов, а также ячейки прибора устанавливают равной (25±1) °C.

Прибор калибруют с помощью двух буферных растворов, промывая измерительный электрод перед измерением буферным раствором. Затем, после промывания электрода водой и анализируемым раствором, измеряют рН знализи-

руемого раствора.

Для получения точных результатов необходимо повторять измерения с различными порциями анализируемого раствора без промывания электрода между последовательными измерениями до тех пор, пока значение рН не будет сохраняться постояными по крайней мере в течение 1 мин.

Приложения 1, 2. (Введены дополнительно, Изм. № 3).

ИНФОРМАЦИОННЫЕ ДАННЫЕ

 РАЗРАБОТАН И ВНЕСЕН Министерством химической промышленности

РАЗРАБОТЧИКИ

- Г. В. Грязнов, В. Г. Брудзь, И. Л. Ротенберг, В. Н. Смородинская, К. П. Лесина, Л. В. Кидиярова, И. В. Жарова
- УТВЕРЖДЕН И ВВЕДЕН В ДЕЙСТВИЕ Постановлением Государственного комитета стандартов Совета Министров СССР от 2.07.76 № 1644

Стандарт предусматривает прямое применение раздела 33 (Р.33) международного стандарта ИСО 6353/2—83 «Реактивы для химического анализа. Часть 2. Технические условия. Первая серия», международного стандарта ИСО 6353/1—82 «Реактивы для химического анализа. Часть 1. Общие методы испытаний»

- 3. Срок проверки 1996 г., периодичность проверки 5 лет
- 4. B3AMEH ΓΟCT 4172-66
- ССЫЛОЧНЫЕ НОРМАТИВНО-ТЕХНИЧЕСКИЕ ДОКУМЕН-ТЫ

Обозначение НТД, на который дана ссылка	Номер пункта		
FOCT 245—76 FOCT 1770—74 FOCT 3118—77 FOCT 3885—73 FOCT 4517—87 FOCT 4919.1—77 FOCT 6709—72 FOCT 10485—75 FOCT 105755—75 FOCT 10671.4—74 FOCT 10671.7—74 FOCT 10671.7—74 FOCT 17319—76 FOCT 18300—87 FOCT 25336—82 FOCT 25794.1—83 FOCT 26726—85 FOCT 277025—86	3.2.1 3.2.1, 3.3.1 3.2.1 2.1, 3.1, 4.1 3.12 3.2.1, 3.5 3.2.1, 3.3.1, 3.5 3.10 3.7 3.4 3.5 3.6 3.11 3.5 3.6 3.11 3.5 3.11 3.5 3.11 3.5 3.11 3.5 3.11 3.5 3.11 3.5 3.11 3.5 3.11	4 e e e e e e e e e e e e e e e e e e e	

€. 15 FOCT 4172-76

- Ограничение срока действия снято Постановлением Госстандарта СССР от 27.09.91 № 1507
- ПЕРЕИЗДАНИЕ (апрель 1993 г.) с Изменениями 1, 2, 3, утвержденными в апреле 1982 г., октябре 1986 г., сентябре 1991 г. (ИУС 7-82, 1-87, 12-91)

Редактор Т. И. Василенко
Технический редактор В. Н. Малькова
Корректор Е. И. Морозова

Сдано в няб 26.02.93. Подп. к неч. 26.04.93. Усл. н. л. 1.0. Усл. мр.-отт. 1,0. Усл. мр.-отт. 1,0.