РЕАКТИВЫ

НАТРИЙ ЛИМОННОКИСЛЫЙ 5,5-ВОДНЫЙ

ТЕХНИЧЕСКИЕ УСЛОВИЯ

Издание официальное

ИПК ИЗДАТЕЛЬСТВО СТАНДАРТОВ Москва

межгосударственный стандарт

Реактивы

НАТРИЙ ЛИМОННОКИСЛЫЙ 5.5-ВОДНЫЙ

Технические условия

ΓΟCT 22280-76

Reagents. tri-Sodium citrate 5,5-aqueous. Specifications

MKC 71.040.30 OKΠ 26 3452 0890 01

Дата введения 01.07.77

Настоящий стандарт распространяется на 5,5-водный лимоннокислый натрий, представляющий собой белый кристаллический порошок, легко растворимый в воде, слабо растворимый в спирте.

Формулы:

эмпирическая Na₃C₆H₅O₇ 5,5 H₂O

Молекулярная масса (по международным атомным массам 1971 г.) — 357,16. (Измененияя редакция, Изм. № 1).

1. ТЕХНИЧЕСКИЕ ТРЕБОВАНИЯ

1.1а. 5,5-водный лимоннокислый натрий должен быть изготовлен в соответствии с требованиями настоящего стандарта по технологическому регламенту, утвержденному в установленном порядке.

(Введен дополнительно, Изм. № 1).

1.1. По физико-химическим показателям 5,5-водный лимоннокислый натрий должен соответствовать требованиям и нормам, указанным в табл. 1.

Таблица 1

	Но	рма
Наименование показателя	чистый для анализа (ч.д.а.) ОКП 26 3452 0892 10	чистыв (ч.) ОКП 26 3452 0891 00
1. Массовая доля 5,5-водного лимоннокислого натрия $(Na_3C_6H_3O_7\cdot 5,5\ H_2O)$, %, не менее 2. Массовая доля нерастворимых в воде веществ, %, не более	99,5 0,003	99,0 0,005

Издание официальное

Перепечатка воспрещена

© Издательство стандартов, 1977 © ИПК Издательство стандартов, 2003

	Норма	
Наименование показателя	чистый для анализа (ч.д.а.) ОКП 26 3452 0892 10	чистый (ч.) ОКП 26 3452 0891 00
3. Массовая доля хлоридов (СІ), %, не более	0,0005	0,002
 Массовая доля сульфатов (SO₄), %, не более 	0,002	0,004
5. Массовая доля железа (Fe), %, не более	0,0004	0,001
6. Массовая доля тяжелых металлов (Рь), %, не более	0,0005	0,0005
7. Массовая доля мышьяка (Аs), %, не более	0,00002	0,00003
8. Массовая доля аммония (NH ₄), %, не более	0,001	0,002
9. Массовая доля фосфатов (РО ₄), %, не более	0,001	0,002
10. Восстанавливающие вещества	Должен выдерживать	испытание по п. 3.11
11. рН раствора препарата с массовой долей 10 %	7,5-8,5	7,5-9,0
12. Массовая доля кальция (Са), %, не более	0,005	0,01

(Измененная редакция, Изм. № 1).

2. ПРАВИЛА ПРИЕМКИ

- Правила приемки по ГОСТ 3885.
- 2.2. Массовые доли хлоридов, мышьяка, тяжелых металлов, фосфатов и восстанавливающие вещества изготовитель определяет периодически в каждой 10-й партии.

(Введен дополнительно, Изм. № 1).

3. МЕТОДЫ АНАЛИЗА

З.1а. Общие указания по проведению анализа — по ГОСТ 27025.

При взвещивании применяют весы лабораторные общего назначения типа ВЛР-200 и ВЛКТ-500 г-М или ВЛЭ-200 г.

Допускается применение других средств измерения с метрологическими характеристиками и оборудования с техническими характеристиками не хуже, а также реактивов по качеству не ниже указанных в настоящем стандарте.

(Введен дополнительно, Изм. № 1).

- Пробы отбирают по ГОСТ 3885. Масса средней пробы должна быть не менее 360 г.
- 3.2. Определение массовой доли 5,5-водного лимоннокислого натрия
- 3.1, 3.2. (Измененная редакция, Изм. № 1).
- 3.2.1. Аппаратура, реактивы и растворы

Колонка стеклянная с притертыми кранами, с внутренним диаметром 18—20 мм и рабочей высотой 100—150 мм, в верхней части которой имеется расширение, в нижнюю часть впаяна стеклянная пластинка с мелкими отверстиями или пористая пластинка типа ПОР 160 (ГОСТ 25336), можно применять стеклянную вату.

Бюретка вместимостью 50 см 3 с ценой деления 0,1 см 3 или вместимостью 25 см 3 с ценой деления 0,05 см 3 .

Колба 2-250-2 по ГОСТ 1770.

Колба Кн-2-500 -34 XC по ГОСТ 25336.

Пипетка вместимостью 25 см3 и пипетка градуированная вместимостью 10 см3.

Цилиндр 1 (3)-250 по ГОСТ 1770.

Катионит марки КУ-1 или КУ-2-8 по ГОСТ 20298.

Аммоний роданистый по ГОСТ 27067, раствор с массовой долей 25 %.

Вода дистиллированная, не содержащая СО2; готовят по ГОСТ 4517.

Кислота соляная по ГОСТ 3118, раствор с массовой долей 25 %; готовят по ГОСТ 4517.

Метиловый оранжевый (индикатор), раствор с массовой долей 0,1 %; готовят по ГОСТ 4919.1.

Натрия гидроокись (гидроксид) по ГОСТ 4328, раствор концентрации c (NaOH) = 0.1 моль/дм³ (0.1 н.); готовят по ГОСТ 25794.1.

Спирт этиловый ректификованный технический по ГОСТ 18300, высшего сорта;

Фенолфталеин (индикатор), спиртовой раствор с массовой долей 1 %; готовят по ГОСТ 4919.1.

(Измененная редакция, Изм. № 1).

3.2.2. Подготовка к анализу

Катионит отсеивают от пыли и крупных частиц. Для анализа применяют фракции размером от 0.3 по 1.5 мм.

Для удаления загрязнений и минеральных примесей и перевода катионита в H-форму катионит помещают в стакан и несколько раз обрабатывают раствором соляной кислоты, нагретым до 50—60 °C. После этого катионит загружают в колонку до высоты столба 100—150 мм и продолжают отмывать нагретым раствором соляной кислоты до отрицательной реакции на ион железа (проба с раствором роданистого аммония), затем дистиллированной водой до нейтральной реакции по метиловому оранжевому.

При работе в слое катионита не должно быть воздуха.

Катионит хранят в колонке под слоем воды и отсасывают на воронке Бюхнера и хранят в банке с притертой пробкой.

3.2.3. Проведение анализа

Около 2,0000 г препарата помещают в мерную колбу, растворяют в воде, доволят объем водой до метки и перемешивают, 25 см³ полученного раствора, отмеренного пипеткой, пропускают со скоростью 5—6 см³/мин через колонку, наполненную катионитом. Катионит в колонке промывают 250 см³ воды с той же скоростью. Раствор и промывные воды собирают в коническую колбу, затем прибавляют 1—2 капли раствора фенолфталенна и титруют из бюретки раствором гидроксида натрия до появления розовой окраски, не исчезающей в течение 5 мин.

(Измененная редакция, Изм. № 1).

3.2.4. Обработка результатов

Массовую долю 5,5-водного лимоннокислого натрия (X) в процентах вычисляют по формуле

$$X = \frac{V \cdot 0.011905 \cdot 100 \cdot 250}{m \cdot 25},$$

где V — объем раствора гидроксида натрия концентрации точно 0,1 моль/дм³, израсходованный на титрование, см³;

0,011905 — масса 5,5-водного лимоннокислого натрия, соответствующая 1 см³ раствора гидроксида натрия концентрации точно 0,1 моль/дм³, г;

т — масса навески препарата, г.

За результат анализа принимают среднеарифметическое результатов двух параллельных определений, абсолютное расхождение между которыми не превышает допускаемое расхождение, равное 0,3 %.

Допускаемая абсолютная суммарная погрешность результата анализа $\pm 0.7\%$ при доверительной вероятности P = 0.95.

(Измененная редакция, Изм. № 1).

3.3. Определение массовой доли нерастворимых в воде веществ

3.3.1. Реактивы и посуда

Вода дистиллированная по ГОСТ 6709.

Стакан B-1-400 TXC по ГОСТ 25336.

Тигель фильтрующий типа ТФ ПОР 10 или ТФ ПОР 16 по ГОСТ 25336.

Цилиндр 1 (3)-250 или мензурка 250 по ГОСТ 1770.

(Измененная редакция, Изм. № 1).

3.3.2. Проведение анализа

50,00 г препарата помещают в стакан и растворяют при нагревании в 250 см³ воды. Стакан с раствором накрывают часовым стеклом и выдерживают на водяной бане в течение 1 ч.

Затем раствор фильтруют через фильтр, предварительно высушенный до постоянной массы и взвешенный (результат взвешивания в граммах записывают с точностью до четвертого десятичного знака). Остаток на фильтре промывают 150 см³ горячей воды и сушат в сушильном шкафу при 105—110 °C до постоянной массы.

C. 4 FOCT 22280-76

Препарат считают соответствующим требованиям настоящего стандарта, если масса остатка после высушивания не будет превышать:

```
для препарата чистый для анализа — 1,5 мг;
для препарата чистый — 2,5 мг.
```

Допускаемая относительная суммарная погрешность результата анализа \pm 35 % для препарата «чистый для анализа» и \pm 20 % для препарата «чистый» при доверительной вероятности P=0.95.

(Измененная редакция, Изм. № 1).

3.4. Определение массовой доли хлоридов

Определение массовой доли хлоридов проводят по ГОСТ 10671.7.

При этом 2,00 г препарата помещают в коническую колбу вместимостью 100 см³ (с меткой на 40 см³) и растворяют в 20 см³ воды.

Если раствор мутный, его фильтруют через обеззоленный фильтр «синяя лента», тщательно промытый горячим раствором азотной кислоты с массовой долей 1 %.

Затем прибавляют 5 см³ раствора азотной кислоты с массовой долей 25 %, кипятят 1—2 мин, охлаждают и далее определение проводят визуально-нефелометрическим методом (способ 2).

Препарат считают соответствующим требованиям настоящего стандарта, если наблюдаемая через 10 мин опалесценция анализируемого раствора не будет интенсивнее опалесценции раствора сравнения, приготовленного одновременно с анализируемым и содержащего в таком же объеме:

```
для препарата чистый для анализа -0.010 мг Cl; для препарата чистый -0.040 мг Cl,
```

5 см³ раствора азотной кислоты с массовой долей 25 % и 1 см³ раствора азотнокислого серебра. (Измененная редакция, Изм. № 1).

3.5. Определение массовой доли сульфатов

Определение массовой доли сульфатов проводят по ГОСТ 10671.5. При этом 1,00 г препарата помещают в стакан или коническую колбу, растворяют в 20 см³ воды. Если раствор мутный, его фильтруют через обеззоленный фильтр «синяя лента», промытый горячей водой, прибавляют 4 см³ раствора соляной кислоты, перемешивают, прибавляют 5 см³ этилового спирта (ГОСТ 18300) и далее определение проводят (без добавления раствора соляной кислоты и крахмала) визуально-нефелометрическим методом (способ 1).

Препарат считают соответствующим требованиям настоящего стандарта, если наблюдаемая на темном фоне через 1 л опалесценция анализируемого раствора будет не интенсивнее опалесценции раствора сравнения, приготовленного одновременно с анализируемым и содержащего в таком же объеме:

```
для препарата чистый для анализа -0.02 \text{ мг SO}_4; для препарата чистый -0.04 \text{ мг SO}_4,
```

1 см3 раствора соляной кислоты, 5 см3 этилового спирта и 3 см3 раствора хлористого бария.

(Измененная редакция, Изм. № 1).

3.6. Определение массовой доли железа

Определение массовой доли железа проводят по ГОСТ 10555. При этом 1,00 г препарата помещают в стакан вместимостью 100 см³, растворяют в 20 см³ воды и далее определение проводят 1,10-фенантролиновым методом.

Препарат считают соответствующим требованиям настоящего стандарта, если массовая доля железа не будет превышать:

```
для препарата чистый для анализа -0,004 \text{ мг Fe}; для препарата чистый -0,010 \text{ мг Fe}.
```

Допускается заканчивать определение визуально.

При разногласиях в оценке массовой доли железа анализ заканчивают фотометрически.

(Измененная редакция, Изм. № 1).

3.7. Определение массовой доли тяжелых металлов

Определение массовой доли тяжелых металлов проводят по ГОСТ 17319. При этом 5,00 г препарата помещают в коническую колбу вместимостью 50 см³, растворяют в 20 см³ воды, прибавляют 1,5 см³ концентрированной азотной кислоты (ГОСТ 4461) и кипятят в течение 10 мин.

Раствор охлаждают, прибавляют 0,5 см³ раствора 4-водного виннокислого калия-натрия, нейтрализуют раствором гидроксида натрия по индикаторной бумаге (проба на вынос) и далее определение проводят тиоацетамидным методом визуально-колориметрически.

Препарат считают соответствующим требованиям настоящего стандарта, если наблюдаемая

через 10 мин окраска анализируемого раствора будет не интенсивнее окраски раствора сравнения, приготовленного одновременно с анализируемым и содержащего в таком же объеме:

для препарата чистый для анализа и чистый — 0,025 мг Рb и 0,5 см³ раствора 4-водного виннокислого калия-натрия, 2 см³ раствора гидроксида натрия и 1 см³ раствора тиоацетамида.

(Измененная редакция, Изм. № 1).

3.8. Определение массовой доли мышьяка

Определение массовой доли мышьяка проводят по ГОСТ 10485 из навески 2,00 г препарата визуальным методом с применением бромнортутной бумаги в сернокислой среде.

Препарат считают соответствующим требованиям настоящего стандарта, если окраска бромнортутной бумаги от анализируемого раствора будет не интенсивнее окраски бромнортутной бумаги от раствора сравнения, приготовленного одновременно с анализируемым и содержащего в таком же объеме:

для препарата чистый для анализа — 0,0004 мг As; для препарата чистый — 0,0006 мг As,

20 см³ раствора серной кислоты, 0,5 см³ раствора двухлористого олова и 5 г цинка.

(Измененная редакция, Изм. № 1).

3.9. Определение массовой доли аммония

Определение массовой доли аммония проводят по ГОСТ 24245. При этом 1,00 г препарата помещают в коническую колбу вместимостью 100 см³ (с меткой на 50 см³), растворяют в 40 см³ воды, прибавляют 2 см³ реактива Несслера (вместо 1 см³), доводят объем раствора водой до метки, перемешивают и далее определение проводят по ГОСТ 24245 визуально, не добавляя раствора гидроксида натрия.

Препарат считают соответствующим требованиям настоящего стандарта, если наблюдаемая через 5 мин окраска анализируемого раствора не будет интенсивнее окраски раствора сравнения, приготовленного одновременно с анализируемым и содержащего в таком же объеме:

для препарата «чистый для анализа» — 0,01 мг; для препарата «чистый» — 0,02 мг

и 2 см³ реактива Несслера.

(Измененная редакция, Изм. № 1). 3.9.1, 3.9.2. (Исключены, Изм. № 1).

3.10. Определение массовой доли фосфатов

Определение массовой доли фосфатов проводят по ГОСТ 10671.6. При этом 1,00 г препарата помещают в платиновую чашку (ГОСТ 6563) и осторожно нагревают на песчаной бане, постепенно увеличивая температуру нагревания, затем прокаливают в муфельной печи при 500—600 °С до полного сгорания угля.

При неполном сгорании его смачивают несколькими каплями воды, выпаривают на водяной бане досуха и снова прокаливают. Операцию повторяют до получения остатка белого цвета. К остатку в чашке прибавляют раствор азотной кислоты до прекращения выделения пузырьков CO₂ (около 1 см³) и выпаривают досуха на водяной бане.

Содержимое чашки растворяют при нагревании в 10 см³ воды, раствор переносят в мерную колбу вместимостью 25 см³, доводят объем раствора водой до 15 см³, если раствор мутный, его фильтруют через обеззоленный фильтр «синяя лента» и далее определение проводят фотометрическим методом по желтой окраске фосфорнованадиевомолибденового комплекса.

Препарат считают соответствующим требованиям настоящего стандарта, если массовая доля фосфатов не будет превышать:

для препарата «чистый для анализа» $-0,01 \ \mathrm{Mr};$ для препарата «чистый» $-0,02 \ \mathrm{Mr}.$

Допускается заканчивать определение визуально.

При разногласиях в оценке массовой доли фосфатов анализ заканчивают фотометрически.

(Измененная редакция, Изм. № 1).

3.11 Испытание на отсутствие восстанавливающих веществ

3.11.1. Реактивы, растворы и посуда

Вода дистиллированная по ГОСТ 6709.

Медь (II) сернокислая 5-водная по ГОСТ 4165, раствор с массовой долей 12,5 %.

Натрий углекислый по ГОСТ 83.

Колба Кн-2-250-34 ТХС по ГОСТ 25336.

Пипетка градуированная вместимостью 10 см³.

Цилиндр 1 (3) — 50 по ГОСТ 1770.

(Измененная редакция, Изм. № 1).

C. 6 FOCT 22280-76

3.11.2. Проведение анализа

12,00 г препарата помещают в коническую колбу, растворяют в 50 см³ воды, добавляют 4 г углекислого натрия и 10 см³ раствора 5-водной сернокислой меди (II). Раствор нагревают и кипятят 5 мин.

Препарат считают соответствующим требованиям настоящего стандарта, если при этом не появляется осадка или мути.

(Измененная редакция, Изм. № 1).

3.12. Определение рН раствора препарата с массовой долей 10 %

10,00 г препарата помещают в коническую колбу вместимостью 250 см³ (ГОСТ 25336), растворяют в 90 см³ дистиллированной воды, не содержащей углекислоты (готовят по ГОСТ 4517), перемешивают и измеряют pH раствора на универсальном иономере ЭВ-74.

За результат анализа принимают среднеарифметическое результатов двух параллельных определений, абсолютное расхождение между которыми не превышает допускаемое расхождение, равное 0.1 pH.

Допускаемая абсолютная суммарная погрешность результата анализа \pm 0,1 pH при доверительной вероятности P=0.95.

(Измененная редакция, Изм. № 1).

З.13. Определение массовой доли кальция пламенно-фотометрическим способом ограничиваюших растворов

3.13.1. Приборы, оборудование, реактивы и растворы

Ацетилен растворенный технический по ГОСТ 5457.

Воздух сжатый для питания контрольно-измерительных приборов.

Фотометр пламенный или спектрофотометр на основе спектрографа ИСП-51 с приставкой ФЭП-1 с соответствующим фотоумножителем или спектрофотометр «Сатурн».

Горелка для воздушно-ацетиленового пламени.

Распылитель углового типа.

Колбы 2-100-2 по ГОСТ 1770.

Пипетки градуированные вместимостью 1,2 и 10 см3.

Вода дистиллированная по ГОСТ 6709, вторично перегнанная в кварцевом дистилляторе.

Натрий лимоннокислый 5,5-водный, не содержащий кальций, или с установленной остаточной концентрацией кальция (остаточную концентрацию определяют на спектрофотометре для пламени по методу добавок), раствор с массовой долей 10 % — раствор А.

Раствор массовой концентрации Ca 1 мг/см³; готовят по ГОСТ 4212, соответствующим разбавлением готовят раствор массовой концентрации Ca 0,1 мг/см³ — раствор Б.

(Измененная редакция, Изм. № 1).

3.13.2. Подготовка к анализу

3.13.2.1. 1,00 г препарата помещают в мерную колбу, растворяют в воде, доводят объем водой до метки и тщательно перемешивают.

(Измененная редакция, Изм. № 1).

3.13.2.2. Приготовление растворов сравнения

В пять мерных колб помещают по 10 см³ раствора A (соответствует 1,00 г 5,5-водного лимоннокислого натрия) и указанные в табл. 2 объемы раствора Б.

Таблица 2

Номер раствора сравнения	Объем раствора Б, см ³	Масеа кальция в 100 см ³ раствора сравнения, мг	Массовая доля кальция в пересчете на препарат, %
1	_	-	
2	0,25	0,025	0,0025
3	0,5	0,05	0,005
4	1,0	0,10	0,010
5	1,5	0,15	0,015

Объем каждого раствора доводят водой до метки и тщательно перемешивают.

Все рабочие растворы, растворы сравнения и воду следует хранить в полиэтиленовой посуде. (Измененная редакция, Изм. № 1).

3.13.2.3. Условия анализа

Анализ проводят в воздушно-ацетиленовом пламени при следующих рабочих условиях:

Диаметр сопла для жидкости, мм	0,4
Давление воздуха, Па	$14,185 \cdot 10^4$
Давление газа, Па	392-588
Положение регулятора чувствительности микроамперметра, мА,	0,1
Ширина щели, мм	0.15-0.2

Условия анализа могут меняться при замене сопла для жидкости в распылителе или других деталей.

(Измененная редакция, Изм. № 1).

3.13.2.4. (Исключен, Изм. № 1).

3.13.3. Проведение анализа

Для анализа берут не менее двух навесок препарата. Анализ кальция проводят в пламени ацетилен-воздух, используя аналитическую линию 422,7 нм.

После подготовки прибора к работе проводят фотометрирование анализируемого раствора и растворов сравнения в следующем порядке:

распыляют серию растворов сравнения и анализируемого раствора, затем выбирают два раствора сравнения, между которыми находится проба, фотометрируют три раза все растворы в прямой и обратной последовательности и находят среднеарифметическое.

3.13.4. Обработка результатов

Массовую долю кальция (X_t) в процентах вычисляют по формуле

$$X_1 = \left[\frac{(C_2 - C_1) (A - A_2)}{A_2 - A_1} + C_1 \right],$$

где A — результат измерения величины сигнала анализируемого раствора;

 А₁ — результат измерения величины сигнала раствора сравнения с меньшей концентрацией кальция;

 A_2 — результат измерения величины сигнала раствора сравнения с большей концентрацией кальция;

 C_1 и C_2 — массовая доля кальция в растворах сравнения, %, $(C_2 > C_1)$.

За результат анализа принимают среднеарифметическое результатов двух параллельных определений, относительное расхождение между которыми не превышает допускаемое расхождение, равное 20 %.

Допускаемая относительная суммарная погрешность результата анализа \pm 10 % при доверительной вероятности P = 0.95.

(Измененная редакция, Изм. № 1).

4. УПАКОВКА, МАРКИРОВКА, ТРАНСПОРТИРОВАНИЕ И ХРАНЕНИЕ

Препарат упаковывают и маркируют в соответствии с ГОСТ 3885.

Вид и тип тары: 2-1, 2-4, 2-9, 11-1.

Группа фасовки: III, IV, V, VI, VII.

Тару маркируют по ГОСТ 14192 с нанесением знаков опасности по ГОСТ 19433 (класс 9, подкласс 9.1, классификационный шифр 9153).

(Измененная редакция, Изм. № 1).

- Препарат перевозят всеми видами транспорта в соответствии с правилами перевозок грузов, действующими на данном виде транспорта.
 - 4.3. Препарат хранят в упаковке изготовителя в крытых складских помещениях.

5. ГАРАНТИИ ИЗГОТОВИТЕЛЯ

- 5.1. Изготовитель гарантирует соответствие 5,5-водного лимоннокислого натрия требованиям настоящего стандарта при соблюдении условий транспортирования и хранения.
 - Гарантийный срок хранения препарата один год со дня изготовления.
 - 5.1, 5.2. (Измененная редакция, Изм. № 1).

6. ТРЕБОВАНИЯ БЕЗОПАСНОСТИ

- 6.1. 5,5-водный лимоннокислый натрий оказывает раздражающее действие на кожу, а при вдыхании в виде пыли раздражает дыхательные пути.
- 6.2. При работе с препаратом необходимо пользоваться противопылевыми респираторами, а также соблюдать правила личной гигиены и не допускать попадания продукта внутрь организма.
- 6.3. Все рабочие помещения, где возможно выделение пыли 5,5-водного лимоннокислого натрия, должны быть оборудованы общей, приточно-вытяжной вентиляцией, а места наибольшего пыления укрытиями с местной вытяжной вентиляцией; анализ препарата следует проводить в вытяжном шкафу лаборатории.
- 6.4. При проведении анализа 5,5-водного лимоннокислого натрия с использованием горючего газа следует соблюдать меры противопожарной безопасности.
 - 6.1-6.4. (Измененная редакция, Изм. № 1).

ИНФОРМАЦИОННЫЕ ДАННЫЕ

- 1. РАЗРАБОТАН И ВНЕСЕН Министерством химической промышленности
- УТВЕРЖДЕН И ВВЕДЕН В ДЕЙСТВИЕ Постановлением Государственного комитета стандартов Совета Министров СССР от 28.12.76 № 2888
- 3. B3AMEH FOCT 5.1314-72
- 4. ССЫЛОЧНЫЕ НОРМАТИВНО-ТЕХНИЧЕСКИЕ ДОКУМЕНТЫ

Обозначение НТД, на который даня есылка	Номер пункта, подпункта
OCT 83-79	3.11.1
OCT 1770-74	3.2.1, 3.3.1, 3.11.1, 3.13.1
OCT 3118-77	3.2.1
OCT 3885—73	2.1, 3.1, 4.1
OCT 4165—78	3.11.1
OCT 4212-76	3.13.1
OCT 4328-77	3.2.1
CT 4461—77	3.7
OCT 4517—87	3.2.1, 3.12
OCT 4919.1—77	3.2.1
OCT 5457—75	3.13.1
OCT 6563—75	3.10
OCT 6709—72	3.3.1, 3.11.1, 3.13.1
OCT 10485—75	3.8
OCT 10555-75	3.6
OCT 10671.5—74	3.5
OCT 10671.6—74	3.10
OCT 10671.7—74	3.4
OCT 14192—96	4.1
OCT 17319—76	3.7
OCT 18300—87	3.2.1, 3.5
OCT 19433—88	4.1
OCT 20298—74	3.2.1
OCT 24245—80	3.9
OCT 25336—82	3.2.1, 3.3.1, 3.11.1, 3.12
OCT 25794.1—83	3.2.1
OCT 27025—86	3.1a
OCT 27067—86	3.2.1

- Ограничение срока действия снято по протоколу № 4—93 Межгосударственного совета по стандартизации, метрологии и сертификации (ИУС 4-94)
- 6. ИЗДАНИЕ (апрель 2003 г.) с Изменением № 1, утвержденным в декабре 1989 г. (ИУС 3-90)

Редактор В.Н. Колысов Техняческий редактор Н.С. Гришанова Корректор М.В. Бучная Компьютерная верстка С.В. Рябовой

Изд. лиц. № 023\$4 от 14.07.2000. Сдано в набор 21.04.2003. Подписано в печать 05.05.2003. Усл.печ.л., 1,40. Уч.-изд.л. 1,10. Тираж 90 экз. С 10537. Зак. 119.