МЕЖГОСУДАРСТВЕННЫЙ СТАНДАРТ

СТАЛИ ЛЕГИРОВАННЫЕ И ВЫСОКОЛЕГИРОВАННЫЕ

МЕТОДЫ ОПРЕДЕЛЕНИЯ КРЕМНИЯ

Издание официальное

МЕЖГОСУДАРСТВЕННЫЙ СТАНДАРТ

СТАЛИ ЛЕГИРОВАННЫЕ И ВЫСОКОЛЕГИРОВАННЫЕ

Методы определения кремния

Alloyed and high-alloyed steels.

Methods of silicon determination

ГОСТ 12346—78 (ИСО 439—82, ИСО 4829-1—86)

МКС 77.080.20 ОКСТУ 0809

Дата введения 01.01.80

Настоящий стандарт устанавливает фотометрический метод определения кремния (при массовой доле кремния от 0,05 % до 0,80 %), гравиметрический метод определения кремния (при массовой доле кремния от 0,1 % до 7,0 %).

Стандарт полностью соответствует СТ СЭВ 489—77, а также стандартам ИСО 439—82 и ИСО 4829-1—86.

(Измененная редакция, Изм. № 1, 2, 3).

1. ОБЩИЕ ТРЕБОВАНИЯ

Общие требования к методам анализа — по ГОСТ 28473.
 (Измененная редакция, Изм. № 4).

2. ФОТОМЕТРИЧЕСКИЙ МЕТОД ОПРЕДЕЛЕНИЯ КРЕМНИЯ (0.05~%-0.80~%)

2.1. Сущность метода

Метод основан на образовании желтого кремнемолибденового комплекса в солянокислом растворе (оптимальное значение рН 1,3—1,5), восстановлении этого соединения аскорбиновой кислотой до кремнемолибденовой сини и измерении оптической плотности окрашенного раствора.

Мешающее влияние фосфорномолибденового комплекса устраняется добавлением щавелевой кислоты. Мышьяково-молибденовый комплекс образуется только при температуре кипения раствора.

Метод применим при определении кремния в сталях, содержащих менее 3 % вольфрама и 2 % ниобия.

(Измененная редакция, Изм. № 3).

2.2. Аппаратура и реактивы

Спектрофотометр типа СФ-16 или фотоэлектроколориметр.

Кислота соляная по ГОСТ 3118 или по ГОСТ 14261 и разбавленная 1:1, 1:3, 1:50.

Кислота азотная по ГОСТ 4461 или по ГОСТ 11125.

Кислота серная по ГОСТ 4204 или по ГОСТ 14262 разбавленная 4:5 или 1:1.

Кислота фтористоводородная (плавиковая) по ГОСТ 10484.

Издание официальное

Перепечатка воспрещена

*

Кислота щавелевая по ГОСТ 22180, 8 %-ный раствор.

Кислота аскорбиновая, 2 %-ный раствор; готовят непосредственно перед употреблением.

Железо карбонильное особой чистоты.

Аммоний молибденовокислый по ГОСТ 3765, 5 %-ный раствор, приготовленный из перекристаллизованного реактива.

Перекристаллизация молибденовокислого аммония. 250 г реактива растворяют в 400 см³ воды при нагревании до 70 °C—80 °C. Осторожно добавляют аммиак до явного запаха. Раствор фильтруют через фильтр «синяя лента», охлаждают до 20 °C—25 °С и приливают при перемешивании 300 см³ этилового спирта. Осадку дают отстояться 1 ч и отфильтровывают его на фильтр «белая лента», помещенный в воронку Бюхнера, пользуясь водоструйным насосом. Осадок промывают 2—3 раза этиловым спиртом и высушивают на воздухе.

Спирт этиловый по ГОСТ 18300.

Натрий углекислый безводный по ГОСТ 83, х.ч.

Допускается применение реактива при содержании кремния не более 0,003 %.

Калий углекислый—натрий углекислый по ГОСТ 4332.

Двуокись кремния по ГОСТ 9428.

Натрий кремнекислый, стандартные растворы А и Б.

Приготовление раствора А. 0,2139 г двуокиси кремния, прокаленной до постоянной массы при 1000 °C—1100 °C, помещают в платиновый тигель, прибавляют 2 г углекислого натрия или углекислого калия-натрия, перемешивают, закрывают крышкой и сплавляют при 1000 °C—1100 °C. Тигель охлаждают, ополаскивают снаружи водой, помещают в стакан вместимостью 250—300 см³, приливают 50—60 см³ воды и нагревают до полного растворения плава.

Раствор кремнекислого натрия фильтруют в мерную колбу вместимостью 1 дм³, фильтр промывают 3—5 раз горячей водой и отбрасывают. Раствор в колбе охлаждают, доливают до метки водой и перемешивают. Раствор кремнекислого натрия хранят в полиэтиленовой или кварцевой посуде; 1 см³ раствора А содержит 0,0001 г кремния.

Определение массовой концентрации стандартного раствора А.

Солянокислотный метод, 50 см³ раствора А помещают в стакан вместимостью 250—300 см³ и приливают 20—25 см³ соляной кислоты 1:1. Раствор в стакане выпаривают досуха. Сухой остаток смачивают 5—7 см³ соляной кислоты и снова выпаривают досуха.

Сухой остаток нагревают 1 ч при 130 °C—140 °C. Приливают 8—10 см³ соляной кислоты и нагревают 3—5 мин; приливают 80—100 см³ горячей воды, стакан накрывают часовым стеклом и раствор нагревают до кипения. Кремниевую кислоту отфильтровывают на фильтр «белая лента» с добавлением небольшого количества беззольной фильтробумажной массы. Осадок промывают 3—5 раз горячей соляной кислотой 1:20 и еще 2—3 раза горячей водой. Фильтр с осадком сохраняют.

Фильтрат и промывную жидкость переносят в стакан, в котором проводили первое осаждение кремниевой кислоты, и выпаривают досуха. Сухой остаток смачивают 5—7 см³ соляной кислоты и снова выпаривают досуха. Сухой остаток нагревают 1 ч при 130 °C—140 °C. К сухому остатку приливают 8—10 см³ соляной кислоты, нагревают 3—5 мин, приливают 80—100 см³ горячей воды, нагревают до растворения солей и затем почти до кипения. Кремниевую кислоту отфильтровывают на фильтр «белая лента», с добавлением небольшого количества беззольной фильтробумажной массы. Осадок промывают 3—5 раз горячей соляной кислотой 1:20 и 2—3 раза горячей водой. Фильтры с основным и дополнительно выделенным осадками помещают в платиновый тигель, высушивают и озоляют. Осадок прокаливают при 1000 °C—1100 °C.

Тигель с осадком охлаждают в эксикаторе и взвешивают. Осадок смачивают 2—3 каплями воды, добавляют 3—4 капли серной кислоты 1:1, 3—5 см³ фтористоводородной кислоты и, не давая раствору кипеть, осторожно вынаривают содержимое тигля досуха. Остаток в тигле прокаливают при 1000 °C—1100 °C, охлаждают в эксикаторе и взвешивают.

В обоих случаях осадок в тигле прокаливают до постоянной массы.

Сернокислотный метод. 50 см³ раствора А помещают в стакан вместимостью 250—300 см³, приливают 25—30 см³ серной кислоты 1:2, нагревают до появления ее паров, нагревают еще 3—5 мин, после чего охлаждают. Осторожно прибавляют 10 см³ соляной кислоты, нагревают 3—5 мин и охлаждают. При перемешивании прибавляют небольшими порциями 80—100 см³ горячей воды. Стакан накрывают часовым стеклом и нагревают раствор почти до кипения.

Осадок отфильтровывают на фильтр «белая лента» с добавлением небольшого количества беззольной фильтробумажной массы. Осадок на фильтре промывают 3—5 раз горячей соляной кислотой 1:20 и 2—3 раза горячей водой. Фильтр с осадком сохраняют. Фильтрат и промывную жидкость переносят в стакан, в котором производили первое осаждение кремниевой кислоты, нагревают до появления паров серной кислоты, нагревают еще 3—5 мин, после чего охлаждают. Прибавляют 10 см³ соляной кислоты, нагревают 3—5 мин и осторожно, при перемешивании, приливают небольшими порциями 80—100 см³ горячей воды.

Стакан накрывают часовым стеклом и нагревают раствор почти до кипения. Осадок отфильтровывают на фильтр «белая лента» с добавлением небольшого количества беззольной фильтробумажной массы, промывают 3—5 раз горячей соляной кислотой 1:20 и еще 2—3 раза горячей водой. Фильтры с основным и дополнительно выделенным осадками помещают в платиновый тигель, высушивают и озоляют.

Осадок прокаливают при 1000 °C—1100 °C. После охлаждения в эксикаторе тигель с осадком взвешивают. Осадок смачивают 2—3 каплями воды, добавляют 3—4 капли серной кислоты 1:1, 3—5 см³ фтористоводородной кислоты и, не давая раствору кипеть, осторожно выпаривают досуха. Остаток в тигле прокаливают при 1000 °C—1100 °C, охлаждают в эксикаторе и взвешивают.

В обоих случаях осадок в тигле прокаливают до постоянной массы.

Массовую концентрацию кремния, Γ , содержащегося в 1 см³ раствора кремнекислого натрия (T) вычисляют по формуле

$$T = \frac{[(m_1 - m_2) - (m_3 - m_4)] \cdot 0,4674}{50},$$

где m₁ — масса тигля с осадком двуокиси кремния, г;

т, - масса тигля с остатком после обработки фтористоводородной кислотой, г;

т. — масса тигля с осадком в контрольном опыте, г;

 m₄ — масса тигля с остатком в контрольном опыте после обработки фтористоводородной кислотой, г;

0,4674 - коэффициент пересчета двуокиси кремния на кремний;

50 — объем стандартного раствора А, взятого для опыта, см³.

Раствор Б готовят перед употреблением. 10 см³ стандартного раствора А помещают в мерную колбу вместимостью 100 см³, доливают до метки водой и перемешивают.

1 см³ раствора Б содержит 0,00001 г кремния.

(Измененная редакция, Изм. № 2, 3, 4).

2.3. Проведение анализа

0,1 г стали помещают в стакан или колбу вместимостью 100 см³, приливают 10 см³ соляной кислоты (1:3) и 1 см³ азотной кислоты при массовой доле кремния до 0,40 % или 20 см³ соляной кислоты (1:3) и 1 см³ азотной кислоты при массовой доле кремния 0,40 % — 0,80 %. Накрывают стакан или колбу часовым стеклом и нагревают до растворения навески, не допуская кипения. Приливают 10 см³ воды и кипятят 2—3 мин до удаления окислов азота.

Если сталь не растворяется в указанных кислотах, навеску можно растворять в смеси соляной и азотной кислот (1:1), (3:1) или в смеси азотной и соляной кислот (1:6), (1:8).

Количество прибавленной для растворения навески соляной и азотной кислот не должно превышать вышеуказанного.

Фильтр с осадком помещают в платиновый тигель, высушивают и озоляют. Осадок прокаливают при $900 \,^{\circ}\text{C} - 1000 \,^{\circ}\text{C}$. После охлаждения в эксикаторе содержимое тигля сплавляют с $0.5 \,^{\circ}$ г углекислого натрия при $1000 \,^{\circ}\text{C} - 1100 \,^{\circ}\text{C}$.

Тигель с плавом охлаждают, ополаскивают внешние стенки тигля водой и помещают в стакан вместимостью 200 см³. Плав выщелачивают в 20—25 см³ воды при нагревании. Раствор охлаждают и присоединяют к основному фильтрату; доливают до метки водой и перемешивают. Полученный раствор фильтруют через сухой фильтр «белая лента» в коническую колбу вместимостью 100 см³, отбрасывая первые порции раствора, предварительно ополоснув ими колбу.

В две мерные колбы вместимостью 100 см^3 помещают по 20 см^3 раствора, если в стали содержится 0.05 % - 0.40 % кремния, или по 10 см^3 раствора, если в стали содержится 0.40 % - 0.80 % кремния. В колбы приливают по 50 см^3 воды и в одну из них добавляют 10 см^3 раствора молибдено-

вокислого аммония. Раствор второй колбы используют в качестве раствора сравнения. Появление осадка или легкой опалесценции при добавлении молибденовокислого аммония свидетельствует о pH 1,3—1,5, необходимом для образования кремнемолибденового комплекса.

Через 15 мин после добавления раствора молибденовокислого аммония приливают в указанном порядке: по 5 см³ серной кислоты 4:5, по 5 см³ 8 %-ного раствора щавелевой кислоты и по 5 см³ 2 %-ного раствора аскорбиновой кислоты. После добавления каждого реактива растворы перемешивают. Растворы доливают водой до метки, перемешивают и выдерживают в течение 30 мин при (20 ± 4) °C.

Величину оптической плотности растворов измеряют на спектрофотометре при $\lambda = 810$ нм в кювете с толщиной поглощающего слоя 10 мм или на фотоэлектроколориметре при $\lambda = (630 \pm 10)$ нм в кювете с толщиной поглощающего слоя 20 мм.

Количество кремния в миллиграммах с учетом поправки контрольного опыта определяют по градуировочному графику.

(Измененная редакция, Изм. № 3).

2.3.1. Построение градуировочного графика

В семь мерных колб или стаканов вместимостью 100 см³ помещают по 0,1 г карбонильного железа, приливают по 10 см³ соляной кислоты 1:3 и нагревают, не допуская кипения раствора, 3—5 мин. Приливают по 1 см³ азотной кислоты и продолжают нагревание до полного растворения железа. Затем приливают по 10 мл воды и кипятят 2—3 мин до удаления окислов азота. Растворы охлаждают.

К растворам приливают определенные количества миллилитров стандартного раствора Б кремнекислого натрия, содержащие 0,02; 0,05; 0,10; 0,20; 0,30; 0,40 мг кремния. Седьмая мерная колба или стакан служит для проведения контрольного опыта. При растворении навесок в стаканах растворы переносят в мерные колбы вместимостью 100 см³, доливают водой до меток и перемешивают. Полученные растворы фильтруют через сухие фильтры «белая лента» в конические колбы вместимостью 150—200 мл, отбрасывая первые порции раствора, предварительно ополоснув ими колбы.

В две мерные колбы вместимостью 100 см³ помещают по 20 см³ фильтрата, приливают по 50 см³ воды и в одну из них добавляют 10 мл раствора молибденовокислого аммония. Раствор второй колбы используют в качестве раствора сравнения. Появление осадка или легкой опалесценции при добавлении молибденовокислого аммония свидетельствует о рН 1,3—1,5, необходимом для образования кремнемолибденового комплекса.

Через 15 мин после добавления раствора молибденовокислого аммония приливают при перемешивании в указанном порядке: по 5 см³ серной кислоты 4:5, по 5 см³ раствора щавелевой кислоты и по 5 см³ раствора аскорбиновой кислоты. Доливают водой до меток, перемешивают и выдерживают 30 мин при (20 ± 4) °C.

Оптическую плотность растворов измеряют на спектрофотометре при $\lambda = 810$ нм в кювете с толщиной поглощающего слоя 10 мм или на фотоэлектроколориметре при $\lambda = (630 \pm 10)$ нм в кювете с толщиной поглошающего слоя 20 мм.

Из значений оптической плотности анализируемых растворов вычитают значение оптической плотности раствора контрольного опыта.

По найденным значениям оптической плотности и соответствующим значениям массы кремния строят градуировочный график.

(Измененная редакция, Изм. № 2, 3).

2.4. Обработка результатов

2.4.1. Массовую долю кремния (Х) в процентах вычисляют по формуле

$$X = \frac{m_1 \cdot 100}{m},$$

где m — масса навески стали, соответствующая аликвотной части раствора, мг;

т. — масса кремния, найденная по градуировочному графику, мг.

(Измененная редакция, Изм. № 2).

 2.4.2. Нормы точности и нормативы контроля точности определения массовой доли кремния указаны в табл. 1.

	Погрешность результатов анализа А, %	Допускаемое расхождение, %			
Массовая доля кремния. Я		двух средних результатов анализа, выполненных в различных условиях d_{κ}	двух параллельных определений d_2	трех параллельных определений d_3	результатов анализа стандартного образца от аттестованного значения в
От 0,05 до 0,1 включ.	0,008	0,010	0,008	0,010	0,005
CB. 0,1 » 0,2 »	0,016	0,020	0,016	0,020	0.010
* 0,2 * 0,5 *	0,020	0,030	0,025	0,030	0,015
* 0,5 * 1,0 *	0.03	0,04	0,03	0.04	0.02
* 1,0 * 2,0 *	0.06	0,08	0,07	0,08	0,04
* 2,0 * 5,0 *	0.10	0,12	0,10	0,12	0,06
* 5.0 * 7.0 *	0,1	0,2	0.2	0,2	0.1

(Измененная редакция, Изм. № 4).

3. ГРАВИМЕТРИЧЕСКИЙ МЕТОД ОПРЕДЕЛЕНИЯ КРЕМНИЯ (0,10 %—7,00 %)

3.1. Сущность метода

Метод основан на выделении кремния в виде полимеризованной кремниевой кислоты из кислого раствора, ее дегидратации и взвешивании полученной двуокиси кремния.

3.2. Реактивы и растворы

Кислота соляная по ГОСТ 14261 и разбавленная 1:1, 1:10, 1:50.

Кислота азотная по ГОСТ 4461.

Кислота серная по ГОСТ 4204, разбавленная 1:1 и 1:4.

Кислота фтористоводородная (плавиковая) по ГОСТ 10484.

Кислота хлорная плотностью не менее 1,54 г/см3.

Аммоний роданистый, по ГОСТ 19522, 50 г/дм³; 5 %-ный раствор.

Натрий углекислый безводный по ГОСТ 83.

Калий углекислый - натрий углекислый по ГОСТ 4332.

(Измененная редакция, Изм. № 2, 3, 4).

3.3. Проведение анализа

3.3.1. Масса навески и количество кислот, применяемых для ее растворения, приведены в табл. 2.

Таблица 2

Массовая доля кремния, %		Количество кислоты, см ³		
	Навеска, г	нсю ₄	H ₂ SO ₄ (1:4)	
Эт 0,1 до 0,2	2	30	60	
CB. 0,2 * 2	1	30	60	
* 2 * 3	0,5	20	40	
* 3 * 7	0,25	20	40	

(Измененная редакция, Изм. № 1, 3).

3.3.2. (Исключен, Изм. № 3).

3.3.3. Определение кремния в сталях, содержащих до 5 % вольфрама и до 10 % хрома, сернокислотным методом

Навеску стали (п. 3.3.1) помещают в стакан вместимостью 250—300 см³ и приливают серную кислоту, 1:4. Стакан накрывают часовым стеклом и нагревают до полного разложения навески. К

раствору приливают небольшими порциями 3—5 см³ азотной кислоты, выпаривают при умеренном нагревании до появления паров серной кислоты и нагревают еще 3—5 мин.

Если навеска не растворяется в серной кислоте, ее растворяют в 30—50 см³ смеси соляной и азотной кислот в соотношении 3:1. Затем приливают 40—60 см³ серной кислоты 1:4, нагревают до появления ее паров и нагревают еще 3—5 мин.

Стакан охлаждают, прибавляют 10 см³ соляной кислоты и осторожно, при перемешивании, приливают небольшими порциями 130—150 см³ горячей воды. Стакан накрывают часовым стеклом, нагревают до растворения солей и затем почти до кипения.

Осадок отфильтровывают на фильтр «белая лента» с добавлением небольшого количества беззольной фильтробумажной массы. Осадок на фильтре промывают горячей соляной кислотой 1:20 до отсутствия в промывной жидкости ионов трехвалентного железа (по реакции с роданистым аммонием) и 2—3 раза горячей водой. Фильтр с осадком сохраняют.

Фильтрат и промывную жидкость переносят в стакан, в котором проводили растворение навески, нагревают до появления паров серной кислоты и нагревают еще 3—5 мин.

Стакан охлаждают, прибавляют 10 см³ соляной кислоты, нагревают 3—5 мин и осторожно, при перемешивании, приливают небольшими порциями 130—150 см³ воды. Стакан накрывают часовым стеклом, нагревают до растворения солей и затем почти до кипения.

Осадок отфильтровывают на фильтр «белая лента» с добавлением небольшого количества беззольной фильтробумажной массы, промывают горячей соляной кислотой 1:20 до отсутствия в промывной жидкости ионов трехвалентного железа (по реакции с роданистым аммонием) и 2—3 раза горячей водой.

Фильтры с основным и дополнительно выделенным осадками помещают в платиновый тигель, высушивают и озоляют. Осадок прокаливают при 1000 °C —1100 °C.

После охлаждения в эксикаторе тигель с осадком взвешивают. Осадок смачивают 2-3 каплями воды, добавляют 3-4 капли серной кислоты 1:1 (при наличии в осадке окислов вольфрама, ниобия и др. добавляют 4-6 капель серной кислоты 1:1), приливают 3-5 см 3 фтористоводородной кислоты и, не давая раствору кипеть, осторожно выпаривают содержимое тигля до удаления паров серной кислоты. Остаток в тигле прокаливают при 1000 °C -1100 °C (если в стали содержится более 0.5 % вольфрама, осадок в тигле прокаливают при 750 °C -800 °C), охлаждают в эксикаторе и взвенивают

В обоих случаях осадок в тигле прокаливают до постоянной массы.

(Измененная редакция, Изм. № 1, 2, 3).

3.3.4. Определение кремния в сталях, содержащих до 1 % вольфрама, хлорнокислотным методом

Навеску стали (п. 3.3.1) помещают в стакан вместимостью 250—300 см³, приливают 20—30 см³ смеси соляной и азотной кислот в соотношении 3:1 или 40 см³ смеси соляной кислоты, разбавленной 1:1, и азотной кислоты, разбавленной 3:1, и нагревают до полного разложения навески. Приливают 20—30 см³ хлорной кислоты плотностью 1,65 и нагревают до появления ее паров. Стакан накрывают часовым стеклом и нагревают 15—20 мин.

Раствор охлаждают, осторожно, при перемешивании, приливают 120—130 см³ горячей воды, нагревают до растворения солей и затем почти до кипения.

Осадок отфильтровывают на фильтр «белая лента» с добавлением небольшого количества беззольной фильтробумажной массы. Осадок промывают горячей соляной кислотой 1:20 до отсутствия в промывной жидкости ионов трехвалентного железа (по реакции с роданистым аммонием) и еще 2—3 раза горячей водой. Фильтр с осадком сохраняют.

Фильтрат и промывную жидкость переносят в стакан, в котором проводили растворение навески. Раствор выпаривают до появления паров хлорной кислоты и нагревают 15—20 мин. Стакан охлаждают, осторожно, при перемешивании, приливают 120—130 см³ горячей воды, нагревают до растворения солей и затем почти до кипения.

Осадок отфильтровывают на фильтр «белая лента» с добавлением небольшого количества беззольной фильтробумажной массы. Осадок на фильтре промывают горячей соляной кислотой 1:20 до отсутствия в промывной жидкости ионов трехвалентного железа (по реакции с роданистым аммонием), затем 2—3 раза горячей водой.

Фильтры с основным и дополнительно выделенным осадками помещают в платиновый тигель, высушивают и озоляют. Осадок прокаливают при 1000 °C—1100 °C до постоянной массы. После охлаждения в эксикаторе тигель с осадком взвешивают. Осадок смачивают 2—3 каплями воды, добавляют 3—4 капли серной кислоты 1:1 (при наличии в осадке окислов вольфрама, ниобия и др. добавляют 4—6 капель серной кислоты 1:1) приливают 3—5 см³ фтористоводородной кислоты, и не давая раствору кипеть, осторожно выпаривают содержимое тигля до удаления паров серной кислоты. Тигель прокаливают при 1000 °C—1100 °C (если в стали содержится более 0,5 % вольфрама, осадок в тигле прокаливают при 750 °C—800 °C), охлаждают в эксикаторе и взвешивают.

В обоих случаях осадок прокаливают до постоянной массы.

(Измененная редакция, Изм. № 2, 3).

3.4. Обработка результатов

3.4.1. Массовую долю кремния (Х) в процентах вычисляют по формуле

$$X = \frac{\left[\left(m_1 - m_2 \right) - \left(m_3 - m_4 \right) \right] \cdot 0.4674 \cdot 100}{m} \,,$$

где т - масса навески, г;

т — масса тигля с осадком двуокиси кремния, г;

т. – масса тигля с остатком после обработки фтористоводородной кислотой, г;

т. — масса тигля с осадком, полученным в контрольном опыте, г;

 m₄ — масса тигля с остатком, полученным в контрольном опыте после обработки фтористоводородной кислотой, г;

0,4674 — коэффициент пересчета двуокиси кремния на кремний.

(Измененная редакция, Изм. № 2).

3.4.2. Нормы точности и нормативы контроля точности определения массовой доли кремния указаны в табл. 1.

(Измененная редакция, Изм. № 4).

ИНФОРМАЦИОННЫЕ ДАННЫЕ

- 1. РАЗРАБОТАН И ВНЕСЕН Министерством черной металлургии СССР
- УТВЕРЖДЕН И ВВЕДЕН В ДЕЙСТВИЕ Постановлением Государственного комитета СССР по стандартам от 23.11.78 № 3081
- 3. ВЗАМЕН ГОСТ 12346-66, кроме общих указаний
- 4. Стандарт полностью соответствует СТ СЭВ 484-77 и стандартам ИСО 439-82 и ИСО 4829-1-86
- 5. ССЫЛОЧНЫЕ НОРМАТИВНО-ТЕХНИЧЕСКИЕ ДОКУМЕНТЫ

Обозначение НТД, на который дана ссылка	Номер пункта		
ГОСТ 83—79	2.2, 3.2		
ΓΟCT 311877	2.2		
FQCT 3765—78	2.2		
TOCT 420477	2.2, 3.2		
ΓΟCT 433276	2.2, 3.2		
FOCT 4461-77	2.2, 3.2		
ΓΟCT 9428-73	2.2		
ΓΟCT 10484—78	2.2, 3.2		
ΓΟCT 11125—84	2.2		
ΓΟCT 14261-77	2.2, 3.2		
ΓΟCT 14262—78	2.2		
ΓΟCT 18300-87	2.2		
ΓΟCT 19522—74	3.2		
ΓΟCT 22180-76	2.2		
ΓΟCT 28473-90	1.1		

- 6. Ограничение срока действия снято Постановлением Госстандарта СССР от 23.10.91 № 1640
- 7. ИЗДАНИЕ (август 2009 г.) с Изменениями № 1, 2, 3, 4, утвержденными в августе 1980 г., августе 1984 г., июне 1989 г., октябре 1991 г. (ИУС 11-80, 11-84, 8-89, 1-92)

Редактор Т.А. Леонова Технический редактор В.Н. Прусакова Корректор В.И. Варенцова Компьютерная верстка В.И. Грищенко

Сдано в набор 17.09.2009. Подписано в печать 23.09.2009. Формат $60 \times 84^{1}/_{8}$. Бумага офестная. Гарнитура Таймс. Печать офестная. Усл. печ. л. 1,40. Уч. изд. л. 0,90. Тираж 129 экз. Зак. 594.

ФГУП «СТАНДАРТИНФОРМ», 123995 Москва, Гранатныя пер., 4. www.gostinfo.ru info@gostinfo.ru

Набрано во ФГУП «СТАНДАРТИНФОРМ» на ПЭВМ.

Отпечатано в филяале ФГУП «СТАНДАРТИНФОРМ» — тип. «Московский печатник», 105062 Москва, Лялин пер., 6