молочные продукты

МЕТОДЫ ОПРЕДЕЛЕНИЯ САХАРА

Издание официальное

межгосударственный стандарт

МОЛОЧНЫЕ ПРОДУКТЫ

Методы определения сахара

Milk products.

Methods for sugar determination

ΓΟCT 3628-78

МКС 67.100.10 ОКСТУ 9209

Дата введения 01.07.79

Настоящий стандарт распространяется на молочные и молокосодержащие продукты и устанавливает йодометрический, Бертрана, ускоренный феррицианидный и поляриметрический методы определения сахара (сахарозы), общего сахара (сахарозы, лактозы, глюкозы и фруктозы) в пересчете на инвертный сахар.

Стандарт не распространяется на определение сахара в молочных консервах.

(Измененная редакция, Изм. № 1, Поправка*).

1. ОТБОР ПРОБ

Отбор проб и подготовка к испытаниям — по ГОСТ 3622, ГОСТ 26809.

2. ЙОДОМЕТРИЧЕСКИЙ МЕТОД

2.1. Сущность метода

Метод основан на окислении редуцирующих сахаров (лактоза, глюкоза), содержащих альдегидную группу, йодом в щелочной среде. Массовую долю сахарозы определяют по разности между количеством взятого и неизрасходованного йода, определяемого титрованием тиосульфатом натрия.

Метод применяется для молочных продуктов, в рецептуру которых входит сахар: творожных изделий, кремов, кисломолочных продуктов, мороженого и шоколадного масла.

При возникновении разногласий в оценке качества пользуются настоящим методом.

2.2. Аппаратура, материалы и реактивы

Весы лабораторные 2-го класса точности с наибольшим пределом взвешивания 200 г, поверочной ценой деления не более 0,001 г по ГОСТ 24104** (для взвешивания реактива п. 2.3.4).

Весы лабораторные 4-го класса точности с наибольшим пределом взвешивания 500 г, поверочной ценой деления не более 0,05 г по ГОСТ 24104.

Баня водяная с обогревом.

Термометр ртутный с диапазоном измерения от 0 до 100 °C, ценой деления шкалы 1 °C по ГОСТ 28498.

Колбы типа Кн исполнения 1, вместимостью 500 см³ с взаимозаменяемым конусом 29/32, из термически стойкого стекла ТС по ГОСТ 25336.

Стаканы типа В и Н исполнения I и 2, вместимостью 100 и 150 см³, из термически стойкого стекла TC по ГОСТ 25336.

Пипетки исполнения 2, 1-го и 2-го классов точности, вместимостью 5, 10 и 25 см³ по ГОСТ 29169.

* Действует только на территории Российской Федерации.

** C 1 июля 2002 г. действует ГОСТ 24104—2001.

Излание официальное

Перепечатка воспрещена

Колбы мерные исполнения 1 и 2, 2-го класса точности, вместимостью 250 и 1000 см³ по ГОСТ 1770.

Бюретки исполнений 1, 2, 3, 1-го и 2-го классов точности, вместимостью 50 см³ по ГОСТ 29251.

Бумага фильтровальная по ГОСТ 12026.

Натрия гидроокись по ГОСТ 4328, х. ч. или ч. д. а., 0,1 и 1 н. растворы.

Медь сернокислая по ГОСТ 4165, х. ч. или ч. д. а.

Калий йодистый по ГОСТ 4232, ч. д. а.

Кислота соляная по ГОСТ 3118, х. ч., 0,5 и 7,3 н. растворы; раствор, разбавленный 1:5.

Йод по ГОСТ 4159, ч. д. а., 0,1 н. раствор.

Калий двухромовокислый по ГОСТ 4220 х. ч., 0,1 н. раствор.

Метиловый оранжевый (индикатор), 0,1 %-ный раствор.

Крахмал растворимый по ГОСТ 7699 1 %-ный раствор.

Известь натронная.

Натрий серноватистокислый (тиосульфат натрия) х. ч., 0,1 н. раствор.

Натрий углекислый безводный по ГОСТ 83, х. ч.

Кальций хлористый кристаллический.

Вода дистиллированная по ГОСТ 6709.

(Измененная редакция, Изм. № 1).

- 2.3. Подготовка к анализу
- 2.3.1. Приготовление раствора сернокислой меди (раствор Фелинга № 1)
- 69,26 г перекристаллизованной сернокислой меди, не содержащей железа, взвешивают и растворяют в мерной колбе вместимостью 1 дм³.

(Измененная редакция, Изм. № 1).

- 2.3.2. Приготовление 7,3 н. раствора соляной кислоты для инверсии
- К 120 см3 соляной кислоты плотностью 1,19 г/см3 добавляют 80 см3 воды.
- 2.3.3. Приготовление 0,1 н. раствора йода
- 20—25 г йодистого калия, взвещенного в стакане вместимостью 100 см³, растворяют в возможно малом количестве воды. В стакан с раствором йодистого калия прибавляют 12,7 г металлического йода. Жидкость перемешивают до полного растворения йода и количественно переносят в мерную колбу вместимостью 1 дм³, затем объем доводят водой до метки.
 - 2.3.4. Приготовление 0,1 н. раствора двухромовокислого калия
- 4,9038 г двухромовокислого калия, перекристаллизованного и высушенного при (158 ± 2) °С взвешивают, переносят количественно в мерную колбу вместимостью 1 дм³, растворяют и доводят водой объем раствора до метки.

Также можно приготовить 0,1 н. раствор двухромовокислого калия из фиксанала.

- 2.3.3—2.3.4. (Измененная редакция, Изм. № 1).
- 2.3.5. Приготовление 1%-ного растворимого крахмала
- 1 г крахмала размешивают с 10 см³ холодной воды. Полученную смесь приливают тонкой струйкой при непрерывном помешивании в 90 см³ кипящей воды. Горячий готовый крахмал отфильтровывают в бутылку и закрывают ее пробкой. Можно разлить крахмал в маленькие бутылки, закрыть их ватными пробками и пропастеризовать. В таком виде раствор крахмала сохраняется длительное время.
 - Приготовление 0,1 н. раствора серноватистокислого натрия (тиосульфата натрия)
- 24,8 г тиосульфата натрия переносят в мерную колбу вместимостью 1 дм³, растворяют, прибавляют 0,2 г безводного углекислого натрия и объем раствора доводят водой до метки. Для приготовления раствора тиосульфата используют бидистиллированную или дистиллированную свежепрокипяченную воду. Охлаждают воду в колбе с закрытой пробкой, через которую проходит хлоркальциевая трубка, наполненная кусочками натронной извести.
- 2.3.6.1. Массовую концентрацию раствора тиосульфата натрия устанавливают следующим образом: в коническую колбу вместимостью 500—750 см³ с притертой пробкой вносят 1—2 г йодистого калия, растворяют его в 2—3 см³ воды, прибавляют 5 см³ соляной кислоты, разбавленной 1:5, 20 см³ 0,1 н. раствора двухромовокислого калия. Закрыв колбу пробкой, содержимое тщательно перемешивают, дают раствору постоять 5 мин, после этого титруют раствором тиосульфата (массовую концентрацию которого устанавливают), приливая его из бюретки постепенно, все время перемешивая жидкость. Когда коричневый цвет раствора перейдет в желтовато-зеленый, в колбу добавляют 1 см³ 1 %-ного раствора крахмала и для более четкого определения окончания титрования 250—300 см³ воды.

Титрование продолжают, приливая тиосульфат натрия по каплям до резкого перехода цвета раствора от синего до светло-зеленого, обусловленного ионами трехвалентного хрома.

Массовую концентрацию раствора тиосульфата натрия $\mathit{Mc}_{\mathrm{Na}_{3}\mathrm{s}_{3}\mathrm{O}_{3}/\mathrm{s}}$, г/см³, вычисляют по формуле

$$Mc_{Na_2s_2O_3/s} = \frac{0.0171 \cdot 20}{V}$$
,

где 0,0171 — массовая концентрация сахарозы, соответствующая 1 см³ 0,1 н. раствора тиосульфата натрия, г/м³;

20 — объем 0,1 н. раствора двухромовокислого калия, см³;

V — объем раствора гипосульфата натрия, израсходованный на титрование 20 см³ 0,1 н. раствора двухромовокислого калия, см³.

2.3.6—2.3.6.1. (Измененная редакция, Изм. № 1).

2.4. Проведение анализа

2.4.1. Приготовление фильтрата из творожных изделий с сахаром, кремов, кисломолочных продуктов с сахаром, мороженого с сахаром

(Фильтраты должны быть совершенно прозрачны)

5 г продукта взвешивают в стакане вместимостью 100 см³. Для определения массовой доли сахара в сладкой простокваще и других молочных продуктах, содержащих менее 10 % сахара, берут навеску массой 10 г. В стакан с продуктом прибавляют 25 см³ воды; содержимое стакана тщательно растирают оплавленной стеклянной палочкой и количественно переносят в мерную колбу вместимостью 250 см³. Содержимое стакана смывают несколько раз водой температурой (20 ± 2) °C, количество которой не превышает половины объема колбы.

Затем в колбу прибавляют 5 см³ раствора Фелинга № 1 и 2 см³ 1 н. раствора гидроокиси натрия, содержимое колбы хорошо перемешивают и оставляют в покое на 5 мин. Если жидкость в колбе над осадком окажется мутной, то в колбу приливают дополнительно еще несколько капель раствора Фелинга № 1.

После появления над осадком прозрачного слоя жидкости, указывающего на полноту осаждения, колбу доливают водой до метки и содержимое колбы тщательно перемешивают. Колбу оставляют в покое 20—30 мин для того, чтобы дать возможность осадку отстояться, после чего прозрачную жидкость, находящуюся над осадком, фильтруют через сухой складчатый бумажный фильтр в сухую колбу. Первые 25—30 см³ фильтрата отбрасывают.

2.4.2. Приготовление фильтрата из шоколадного масла

10 г масла взвещивают в стакане вместимостью 100 см³. В стакан с маслом вносят пипеткой 50 см³ воды, нагретой до температуры (45 ± 5) °С. После того как масло расплавилось, содержимое стакана тщательно перемещивают и переносят в сухую делительную воронку.

После отстаивания жира большую часть водного слоя сливают из воронки в сухую колбу.

40 см³ водной вытяжки (соответствует 8 г испытуемого масла) пипеткой переносят в мерную колбу вместимостью 250 см³ и дополняют колбу водой приблизительно до половины объема. В колбу с раствором водной вытяжки из масла приливают 5 см³ раствора Фелинга № 1 и 2 см³ 1 н. раствора гидроокиси натрия. Содержимое колбы перемешивают, доливают водой до метки и после вторичного тщательного перемешивания оставляют на 20—30 мин для отстаивания. Прозрачный слой жидкости, находящийся над осадком, фильтруют через сухой складчатый бумажный фильтр в сухую колбу.

2.4.1—2.4.2. (Измененная редакция, Изм. № 1).

2.4.3. Определение редуцирующей способности фильтрата до инверсии

25 см³ фильтрата, приготовленного по пп. 2.4.1 и 2.4.2, вносят пипеткой в коническую колбу с притертой пробкой вместимостью 250 см³. Затем пипеткой приливают в колбу 25 см³ 0,1 н. раствора йода и из бюретки, при непрерывном помещивании, 37,5 см³ 0,1 н. раствора гидроокиси натрия. Затем колбу закрывают притертой пробкой и оставляют в покое в темном месте.

Через 20 мин в колбу приливают 8 см³ 0,5 н. раствора соляной кислоты и титруют выделившийся йод 0,1 н. раствором серноватистокислого натрия. После перехода цвета титруемого раствора из бурого в желтоватый в колбу прибавляют 1 см³ 1 %-ного раствора крахмала и титрование продолжают до исчезновения синей окраски.

После титрования записывают количество серноватистокислого натрия, израсходованного на титрование выделившегося йода. 2.4.4. Определение редуцирующей способности фильтрата после инверсии

Другие 25 см³ фильтрата, приготовленного по пп. 2.4.1 и 2.4.2, приливают пипеткой в коническую колбу вместимостью 250 см³ с притертой пробкой. Колбу закрывают пробкой с пропущенным через нее термометром так, чтобы ртутный резервуар находился в жидкости, и нагревают в водяной бане до температуры (65 \pm 3) °C.

Приоткрыв пробку, приливают в колбу 2,5 см 3 7,3 н. раствора соляной кислоты для инверсии, жидкость перемешивают и держат в водяной бане при температуре (68 \pm 2) °C.

Через 10 мин после приливания соляной кислоты колбу вынимают из водяной бани и, не вынимая термометра, быстро охлаждают до температуры (20 ± 2) °C.

После прибавления одной капли раствора метилового оранжевого в колбу при непрерывном помешивании приливают по каплям 1 н. раствора гидроокиси натрия до наступления слабокислой реакции (переход окраски раствора от розовой к желтой). Термометр вынимают из колбы после промывания его первыми каплями раствора гидроокиси натрия.

Пипеткой в колбу приливают 25 см³ 0,1 н. раствора йода, а из бюретки, при непрерывном помешивании, 37,5 см³ 0,1 н. раствора гидроокиси натрия.

Затем колбу закрывают притертой пробкой и оставляют в покое в темном месте.

Через 20 мин в колбу приливают 8 см³ 0,5 н. раствора соляной кислоты и титруют выделившийся йод 0,1 н. раствором серноватистокислого натрия. После перехода цвета титруемого раствора из бурого в желтоватый в колбу прибавляют 1 см³ 1 %-ного раствора крахмала и титрование продолжают до исчезновения синей окраски.

После окончания титрования записывают количество серноватистокислого натрия, пошедшего на титрование выделившегося йода. Конец титрования устанавливают по резкому переходу синей окраски в бледно-розовую, обусловленную наличием метилового оранжевого.

2.5. Обработка результатов

Массовую долю сахарозы в продукте S, %, вычисляют по формуле

$$S = \frac{(V_1 - V_2) \cdot Mc_{\text{Na}_2 s_2 \text{O}_3/\text{s}} \cdot 100 \cdot 0,99}{m},$$

где V_1 — объем раствора серноватистокислого натрия, израсходованный на титрование до инверсии, см³;

 V_2 — объем раствора серноватистокислого натрия, израсходованный на титрование после инверсии, см³;

 $\mathit{Mc}_{\mathrm{Na_2S_2O_3/S}}$ — массовая концентрация серноватистокислого натрия, г/см³;

0,99 — коэффициент, найденный эмпирическим путем;

т — навеска продукта, соответствующая 25 см³ фильтрата, взятого для титрования, г.

m = 0.5 г при первоначальной навеске 5 г и разведении до 250 см³ (п. 2.4.1);

m = 1.0 г при первоначальной навеске 10 г и разведении до 250 см³ (п. 2.4.1);

m = 0.8 г при первоначальной навеске 10 г и разведении до 50 см³, из которых взято 40 см³, и разведено водой до 250 см³ (п. 2.4.2).

За окончательный результат определения принимают среднеарифметическое результатов двух параллельных определений, вычисленных до десятых долей процента.

Расхождение между двумя парадлельными определениями не должно превышать 0,5 %.

Проведение контрольного анализа (для проверки точности приготовленных растворов)

Контрольные образцы молочных продуктов приготовляют из сахара-рафинада по ГОСТ 22, молока или творога.

Например: в два стаканчика взвешивают 1,3 г сахарозы и 3,7 г творога, добавляют небольшое количество дистиллированной воды. Содержимое стакана тшательно растирают оплавленной стеклянной палочкой и количественно переносят эти компоненты в мерную колбу вместимостью 250 см 3 , заполняя ее примерно на $^1/_2$ объема. Далее анализ проводят так, как описано в пп. 2.4.1, 2.4.3 и 2.4.4. Взятые навески соответствуют творожному изделию, содержащему 26 % сахарозы. Если отклонение установленных результатов сахарозы, по сравнению с фактическим ее содержанием, не превышает \pm 0,3 %, такие растворы можно применять для контроля молочных продуктов. Если отклонение результатов сахарозы в контрольном образце превышает \pm 0,3 %, то необходимо менять растворы или внести соответствующую поправку в результаты, полученные описанным выше йодометрическим методом.

2.5-2.5.1. (Измененная редакция, Изм. № 1).

3. МЕТОД БЕРТРАНА

3.1. Сущность метода

Метод основан на способности редуцирующих сахаров — лактозы, глюкозы, фруктозы восстанавливать в щелочной среде двухвалентную медь (CuSO₄ — жидкость Фелинга) в одновалентную закись меди (красный осадок). Осадок закиси меди окисляют железоаммонийными квасцами до CuSO₄. При этом трехвалентное железо восстанавливается до двухвалентного, количество которого определяют титрованием перманганатом калия. По количеству израсходованного перманганата калия рассчитывают количество меди, восстановленной из окиси в закись. На основании полученного результата по эмпирически составленным таблицам определяют содержание сахара.

Метод применяется для фруктового масла, плодово-ягодного и ароматического мороженого и мороженого на модочной основе, изготовляемого с использованием инвертного сиропа.

3.2. Аппаратура, материалы и реактивы

Весы лабораторные 2-го класса точности с наибольшим пределом взвешивания 200 г, поверочной ценой деления не более 0,001 г по ГОСТ 24104 (для взвешивания реактивов п. 3.3.4 и 3.3.5).

Весы лабораторные 4-го класса точности с наибольшим пределом взвешивания 500 г, поверочной ценой деления не более 0.05 г по ГОСТ 24104.

Баня водяная с обогревом.

Термометр ртутный с диапазоном измерения от 0 до 100 °C, ценой деления шкалы 1 °C по ГОСТ 28498.

Колбы типа Кн исполнения 1 и 2, вместимостью 500 см³, из термически стойкого стекла ТС по ГОСТ 25336.

Стаканы типа В и Н исполнения 1 и 2, вместимостью 100 и 150 см³, из термически стойкого стекла ТС по ГОСТ 25336.

Пипетки исполнения 2, 1-го и 2-го классов точности, вместимостью 5, 10 и 25 см³ по ГОСТ 29169.

Колбы мерные исполнения 1 и 2, 2-го класса точности, вместимостью 250 и 1000 см³ по ГОСТ 1770.

Бюретки исполнения 1, 2, 3, 1-го и 2-го классов точности, вместимостью 50 см³ по ГОСТ 29251.

Насос водоструйный по ГОСТ 25336.

Сетка асбестовая.

Воронка типа ВФ исполнения 1, диаметром фильтра 40 и 60 мм, класса ПОР 40, из термически и химически стойкого стекла группы ТКФ по ГОСТ 25336.

Колбы с тубусом исполнения 1, вместимостью 250 и 500 см3 по ГОСТ 25336.

Бумага фильтровальная по ГОСТ 12026.

Медь сернокислая по ГОСТ 4165, х. ч. или ч. д. а.

Калий-натрий виннокислый по ГОСТ 5845, ч. д. а.

Натрия гидроокись по ГОСТ 4328, х. ч. или ч. д. а., 1 н. раствор.

Кислота серная по ГОСТ 4204, х. ч. или ч. д. а.

Квасцы железоаммонийные по ТУ 6-09-5359, х. ч. или ч. д. а.

Натрий щавелевокислый по ГОСТ 5839, х. ч. или ч. д. а. или аммоний щавелевокислый по ГОСТ 5712, х. ч. или ч. д. а.

Кислота соляная по ГОСТ 3118, х. ч. или ч. д. а.

Калий марганцовокислый по ГОСТ 20490, х. ч. или ч. д. а.

Метиловый оранжевый (индикатор), 0,1 %-ный раствор.

Вода дистиллированная по ГОСТ 6709.

(Измененная редакция, Изм. № 1).

3.3. Подготовка к анализу

3.3.1. Приготовление раствора Фелинга № 1 производят по п. 2.3.1.

3.3.2. Приготовление раствора Фелинга № 2

365 г виннокислого калия-натрия растворяют при слабом нагревании в 600 см³ воды и фильтруют в мерную колбу вместимостью 1 дм³, куда затем приливают приготовленный отдельно раствор гидроокиси натрия (103 г гидроокиси натрия растворяют в 200 см³ воды). Объем раствора доводят водой до 1 дм³.

(Измененная редакция, Изм. № 1).

3.3.3. Приготовление железоаммонийных квасцов

 $K~250~cm^3$ насыщенного на холоду раствора железоаммонийных квасцов приливают 25 см³ серной кислоты. Раствор перемешивают, охлаждают, переводят в мерную колбу вместимостью 1 дм³, разбавляют водой до горлышка колбы, и, после охлаждения до температуры (20 ± 2) °C, доводят водой до метки. В момент определения раствор должен иметь температуру (20 ± 2) °C.

3.3.4. Приготовление раствора марганцовокислого калия

1 см³ раствора должен соответствовать приблизительно 10 мг меди. 4,98 г марганцовокислого калия взвешивают и количественно переносят в мерную колбу вместимостью 1 дм³, растворяют и объем доводят водой до 1 дм³. Раствор кипятят в течение 5 мин, охлаждают и фильтруют через асбестовый фильтр, предварительно промытый тем же раствором, и хранят в бутылке из темного стекла.

3.3.5. Массовую концентрацию раствора марганцовокислого калия устанавливают следующим образом: 0,25 г шавелевокислого натрия (аммония) взвешивают, количественно переносят в коническую колбу и растворяют в 100 см³ воды. После прибавления в колбу 2 см³ серной кислоты раствор нагревают до температуры (80 ± 2) °C и титруют раствором марганцовокислого калия до появления розового окрашивания.

Массовую концентрацию марганцовокислого калия $Mc_{\mathrm{KMnO}_4/\mathrm{Cu}}$, г/см³, вычисляют по формуле:

$$Mc_{\mathrm{KMnO_4/Cu}} = \frac{m \cdot \kappa \cdot 1000}{V},$$

где m — навеска щавелевокислого натрия (аммония), г;

К — коэффициент пересчета щавелевокислых солей на медь;

K = 0,9488 для щавелевокислого натрия;

K = 0.8951 для щавелевокислого аммония;

V — объем марганцовокислого калия, израсходованный на титрование, см³;

(Измененная редакция, Изм. № 1).

3.3.6. Приготовление 7,3 н. раствора соляной кислоты для инверсии — по п. 2.3.2.

3.4. Проведение анализа

3.4.1. Приготовление фильтрата из мороженого плодово-ягодного, ароматического и на молочной основе, изготовляемого с использованием инвертного сиропа, производят по п. 2.4.1, фруктового масла — по п. 2.4.2.

3.4.2. Определение редуцирующей способности фильтрата до инверсии

В коническую колбу вместимостью 250 см³ пипеткой приливают 50 см³ фильтрата, а также последовательно по 25 см³ растворов Фелинга № 1 и 2. После перемешивания колбу с раствором помещают на асбестовую сетку с вырезанным в ней круглым отверстием диаметром 40—50 мм и нагревают. Раствор кипятят точно 6 мин, считая с момента его закипания. При этом выпадает красный осадок закиси меди.

Не переводя осадок на фильтр, жидкость из конической колбы декантируют на воронку типа ВФ или колбу с тубусом с асбестовым фильтром при слабом отсасывании. Для предохранения закиси меди от окисления осадок на дне колбы все время должен быть покрыт жидкостью, для чего колбу с осадком поддерживают во время фильтрования в наклонном положении. По окончании фильтрования жидкости Фелинга осадок закиси меди промывают несколько раз водой, отфильтровывая каждую порцию воды после кратковременного отстаивания через тот же фильтр.

К промытому осадку закиси меди в колбу приливают небольшими порциями при постоянном помешивании 30 см³ раствора железоаммонийных квасцов, до полного растворения осадка. Содержимое конической колбы количественно переносят на тот же фильтр и фильтруют в другую чистую колбу.

Остаток на фильтре промывают 15 см^3 раствора железоаммонийных квасцов. Коническую колбу из-под осадка закиси меди и фильтр дополнительно промывают три-четыре раза небольшими порциями воды, нагретой до температуры (80 ± 5) °C.

По окончании промывания фильтрат с промывными водами титруют раствором марганцовокислого калия до слабо-розового окращивания, отмечая количество раствора, пошедшего на титрование.

3.4.3. Определение редуцирующей способности фильтрата после инверсии

20 см³ фильтрата пипеткой приливают в чистую коническую колбу вместимостью 250 см³. Закрывают колбу с фильтратом пробкой с пропущенным через нее термометром так, чтобы ртутный резервуар находился в жидкости, и нагревают в водяной бане до температуры (65 ± 5) °C.

Приоткрыв пробку, приливают в колбу 2,5 см 3 7,3 н. раствора соляной кислоты для инверсии, жидкость перемешивают и держат в водяной бане при температуре (68 ± 2) °C.

Через 10 мин после приливания соляной кислоты колбу вынимают из водяной бани, и, не вынимая термометра, быстро охлаждают до температуры (20 ± 2) °C.

После прибавления одной капли раствора метилового оранжевого в колбу при непрерывном помешивании приливают по каплям 1 н. раствора гидроокиси натрия до наступления слабокислой реакции. Термометр вынимают из колбы после промывания его первыми каплями раствора гидроокиси натрия.

После окончания нейтрализации в колбу с инвертированным раствором приливают последовательно пипеткой по 25 см³ растворов Фелинга № 1 и 2 и далее проводят определение редуцирующей способности фильтрата.

После перемешивания колбу с раствором помещают на асбестовую сетку с вырезанным в ней круглым отверстием диаметром 40—50 мм и нагревают. Раствор кипятят точно 6 мин, считая с момента его закипания. При этом выпадает красный осадок закиси меди.

Не переводя осадок на фильтр, жидкость из конической колбы декантируют на воронку типа ВФ или колбу с тубусом с асбестовым фильтром при слабом отсасывании. Для предохранения закиси меди от окисления осадок на дне колбы все время должен быть покрыт жидкостью, для чего колбу с осадком поддерживают во время фильтрования в наклонном положении. По окончании фильтрования жидкости Фелинга осадок закиси меди промывают несколько раз водой, отфильтровывая каждую порцию воды после кратковременного отстаивания через тот же фильтр.

К промытому осадку закиси меди в колбе приливают небольшими порциями при постоянном помешивании 30 см³ раствора железоаммонийных квасцов, до полного растворения осадка. Содержимое конической колбы количественно переносят на тот же фильтр и фильтруют в другую чистую колбу.

Остаток на фильтре промывают посредством 15 см^3 раствора железоаммонийных квасцов. Коническую колбу из-под осадка закиси меди и фильтр дополнительно промывают три-четыре раза небольшими порциями воды, нагретой до температуры (80 ± 5) °C.

По окончании промывания фильтрат с промывными водами титруют раствором марганцовокислого калия до слабо-розового окрашивания, отмечая количество раствора, пошедшее на титрование.

3.4.2-3.4.3. (Измененная редакция, Изм. № 1).

3.5. Обработка результатов

3.5.1. Количество меди, восстановленное 20 см³ фильтрата после инверсии Сu, мг, вычисляют по формуле

$$\mathrm{Cu} = \left(V_2 - \frac{V_1}{2.5}\right) \cdot Mc_{\mathrm{KMnO}_4/\mathrm{Cu}} \; ,$$

где $V_2 =$ объем раствора марганцовокислого калия, израсходованный на титрование $20~{\rm cm}^3$ фильтрата после инверсии, ${\rm cm}^3$;

 $\frac{V_1}{2,5}$ — объем раствора марганцовокислого калия, израсходованный на титрование $20\,\mathrm{cm}^3$ фильтрата до инверсии, cm^3 ;

 $Mc_{{
m KMnO}_4\,/\,{
m Cu}}$ — массовая концентрация раствора марганцовокислого калия, г/см³.

(Измененная редакция, Изм. № 1).

3.5.2. По количеству меди, вычисленному по формуле, указанной в п. 3.5.1, сахарозу в 20 см³ фильтрата находят по приложению (табл. 1).

3.5.3. Массовую долю сахарозы в продукте S_i , %, вычисляют по формуле

$$S_1 = \frac{m_1 \cdot 100}{m},$$

где m₁ — масса сахарозы, содержащаяся в 20 см³ фильтрата, г;

т — масса продукта, соответствующая 20 см³ фильтрата, г.

За окончательный результат определения принимают среднеарифметическое двух параллельных определений, вычисленных до десятых долей процента.

Расхождение между двумя параллельными определениями не должно превышать 0,5 %.

 3.5.4. Для определения массовой доли общего сахара в ароматическом и плодово-ягодном мороженом находят количество миллиграммов меди, восстановленной 20 см3 фильтрата до инверсии, по формуле

Cu (до инверсии) =
$$\frac{V_1}{2.5}$$
 · $Mc_{\text{KM}_{10}Q_4/\text{Cu}}$,

где $\frac{V_1}{2.5}$ — объем раствора марганцовокислого калия, пошедший на титрование $20~{\rm cm}^3~$ фильтрата до инверсии, см3;

Мскмп04/Сп — массовая концентрация раствора марганцовокислого калия, выраженная в мг меди.

По табл. 2 приложения находят соответствующее количество миллиграммов инвертного сахара, которое переводят в граммы (m_1) .

Массовую долю общего сахара, в пересчете на инвертный S,, %, вычисляют по формуле

$$S_2 = \frac{(m_s \cdot 1,053 + m_l) \cdot 100}{m},$$

где m_c — масса сахарозы, содержащаяся в 20 см³ фильтрата, г;

т. — масса инвертного сахара, содержащаяся в 20 см³ фильтрата, г;

т — масса продукта, соответствующая 20 см³, г;

1,053 — коэффициент для перевода сахарозы в инвертный сахар.

За окончательный результат определения принимают среднеарифметическое двух парадлельных определений, вычисленных до десятых долей процента.

Расхождение между двумя параллельными определениями не должно превышать 0,5 %.

(Измененная редакция, Изм. № 1).

4. ПОЛЯРИМЕТРИЧЕСКИЙ МЕТОЛ

4.1. Сущность метода

Метод основан на разрушений лактозы окисью кальция и поляриметрическом определении сахарозы.

Метод применяется для молочных продуктов, в рецептуру которых входит сахар — творожные изделия и мороженое.

4.2. Аппаратура, материалы и реактивы:

Сахариметр универсальный типа СУ-3 Поламат-С со стеклянными кюветами длиной 200 и 400 мм.

Весы лабораторные 4-го класса точности с наибольшим пределом взвешивания 160 г по ΓΟCT 24104.

Анализатор потенциометрический с диапазоном измерения, включающим в себя величину pH = 13,00, с ценой деления 0,05 ед. pH.

Термометр лабораторный ртутный с диапазоном измерения 0—100 °С, с ценой деления 1,0 °С по ГОСТ 28498.

Баня водяная с обогревом или термостат водяной, обеспечивающий нагрев до (85 ± 2) °C.

Стаканы типа В и Н исполнения 1 и 2, вместимостью 100 см3, из термически стойкого стекла ТС по ГОСТ 25336.

Колбы типа Кн исполнения 1 и 2, вместимостью 250 см3 из термически стойкого стекла ТС по ГОСТ 25336.

Пипетки исполнения 2, 1-го и 2-го классов точности, вместимостью 5 и 50 см³ по ГОСТ 29169. Колбы мерные исполнения 1 и 2, 2-го класса точности, вместимостью 100, 200 и 1000 см3 по ΓΟCT 1770.

Воронки типа В, диаметром 36, 75, 100 мм, из стойкого стекла группы ХС по ГОСТ 25336. Бумага фильтровальная по ГОСТ 12026.

Цинк уксуснокислый по ГОСТ 5823, ч. д. а.

Калий железистосинеродистый (желтая кровяная соль) по ГОСТ 4207, х. ч. или ч. д. а.

Кислота уксусная по ГОСТ 61.

Окись кальция по ГОСТ 8677, ч. д. а., свежепрокаленная.

Натрий тетраборнокислый по ГОСТ 4199, х. ч.

Натрия гидроокись по ГОСТ 4328, х. ч. или ч. д. а., раствор с молярной коицентрацией 1 моль/дм³. Вода листиллированная по ГОСТ 6709.

Допускается применение других средств измерений с метрологическими характеристиками и оборудования с техническими характеристиками не хуже, а также реактивов по качеству не ниже вышеуказанных.

(Измененная редакция, Изм. № 1, 2).

- 4.3. Подготовка к анализу
- 4.3.1. Приготовление раствора уксуснокислого цинка
- 300 г уксуснокислого цинка взвешивают и растворяют в мерной колбе вместимостью 1 дм³.
- 4.3.2. Приготовление раствора железистосинеродистого калия
- 150 г железистосинеродистого калия взвешивают и растворяют в мерной колбе вместимостью 1 дм³.
 - 4.3.1—4.3.2. (Измененная редакция, Изм. № 1).
 - 4.3.3. Приготовление раствора тетраборнокислого натрия

Навеску 19,07 г тетраборнокислого натрия помещают в колбу вместимостью 1000 см³, приливают к ней 500 см³ воды, перемешивают до полного растворения соли и доводят содержимое колбы водой до метки.

4.3.4. Приготовление буферного раствора

240 см³ раствора тетраборнокислого натрия и 88 см³ раствора гидроокиси натрия вносят в колбу вместимостью 1000 см³, добавляют 200 см³ воды и тщательно перемешивают.

Буферный раствор должен иметь (13 ± 0.05) ед. pH. Если pH раствора не соответствует данному значению, то исправляют его добавлением тетраборнокислого натрия или гидроокиси натрия и устанавливают по потенциометрическому анализатору.

- 4.3.3, 4.3.4. (Введены дополнительно, Изм. № 2).
- 4.4. Проведение анализа
- 4.4.1. Приготовление фильтрата из творожных изделий с сахаром и мороженого с сахаром

В стакан вместимостью 100 см^3 взвешивают 26 г творожных изделий или 30 г мороженого. Навеску растирают стекдянной палочкой с небольшим количеством дистиллированной воды температурой (45 ± 2) °C, количественно переносят в мерную колбу вместимостью 200 см^3 для творожных изделий и 100 см^3 для мороженого, смывая стакан несколько раз водой. Воду для смыва нужно брать в количестве, равном приблизительно половине объема колбы.

Колбу с навеской охлаждают до (20 ± 2) °C и прибавляют по 3 см³ для творожных изделий и по 5 см³ для мороженого растворов уксуснокислого цинка и железистосинеродистого калия.

После добавления каждого раствора содержимое колбы осторожно перемешивают во избежание образования пузырыков. Содержимое колбы доводят водой до метки, тщательно перемешивают и спустя 10 мин, фильтруют через сухой складчатый бумажный фильтр в сухую колбу.

(Измененная редакция, Изм. № 1).

 $4.4.2.50 \, \mathrm{cm}^3$ фильтрата приливают пипеткой в мерную колбу вместимостью $100 \, \mathrm{cm}^3$, добавляют в колбу $0.3 \, \mathrm{r}$ окиси кальция и выдерживают колбу в кипящей водяной бане $4-5 \, \mathrm{muh}$, перемешивая. После этого колбу с раствором быстро охлаждают до температуры $(20 \pm 2) \, ^{\circ}\mathrm{C}$ и прибавляют $1-2 \, \mathrm{cm}^3$ концентрированной уксусной кислоты. (Допускается неполное растворение окиси кальция). Колбу доливают до метки дистиллированной водой, тщательно перемешивают и фильтруют через сухой складчатый бумажный фильтр.

Для мороженого на молочной основе: отбирают пипеткой $25 \, \mathrm{cm}^3$ фильтрата и помещают в мерную колбу вместимостью $100 \, \mathrm{cm}^3$. Затем добавляют $25 \, \mathrm{cm}^3$ раствора буфера и $3 \, \mathrm{cm}^3$ раствора гидроокиси натрия и содержимое перемешивают. Колбу с раствором помещают в водяную баню или термостат и выдерживают $5 \, \mathrm{mu}$ при температуре $(85 \pm 2) \, ^{\circ}\mathrm{C}$, а затем быстро охлаждают до температуры $(20 \pm 2) \, ^{\circ}\mathrm{C}$. Добавляют $3 \, \mathrm{cm}^3$ концентрированной уксусной кислоты, колбу доливают до метки водой и содержимое тщательно перемешивают.

Для фруктового мороженого: отбирают пипеткой 25 см³ фильтрата и помещают в мерную колбу вместимостью 100 см³. Затем доливают колбу до метки водой и содержимое тщательно перемешивают.

4.4.3. Фильтрат поляризуют без светофильтра в поляриметрической кювете длиной 400 или 200 мм. Кювету заполняют раствором дважды и каждый раз делают по 3-5 отсчетов по шкале сахариметра. Среднеарифметическое результатов показаний шкалы сахариметра (P) находят из 6-10 отсчетов.

4.4.1, 4.4.3. (Измененная редакция, Изм. № 2).

4.5. Обработка результатов

Массовую долю сахарозы S, вычисляют по формуле

$$S_3 = P \cdot 2 \cdot K,$$

где P — среднеарифметическое показаний шкалы сахариметра;

К — поправка на объем осадка; для творожных изделий K = 0,979; для мороженого K = 0,983; для отдельных видов мороженого: молочного — 0,988, сливочного — 0,962, пломбира — 0,919, для молочного с фруктовыми наполнителями — 0,984, фруктового — 0,985.

Массовую долю сахарозы S_4 , %, в мороженом при использовании в качестве разрушителя лактозы буферного раствора вычисляют по формуле

$$S_4 = \frac{P \cdot K_1}{7.5} \cdot K.$$

где Р — среднеарифметическое значение показаний прибора, в градусах сахара;

 K_1 — коэффициент пересчета, г/100 см³; для Поламата-С со шкалой 13 г/100 см³ и сахариметра с длиной кюветы 400 мм K_1 = 13; для Поламата-С со шкалой 26 г/100 см³ и сахариметра с длиной кюветы 200 мм K_1 = 26;

К — поправка на объем осадка;

7,5 — эмпирический коэффициент пересчета,

Предел относительной допускаемой погрешности результата измерений массовой доли сахарозы в процентах составляет:

± 2.7 — для молочного мороженого:

± 2,0 — для фруктового мороженого;

 \pm 1,4 — для молочного мороженого с фруктовыми наполнителями при доверительной вероятности 0.95.

При большем расхождении испытание повторяют с четырьмя параллельными определениями. При этом допускаемое расхождение между среднеарифметическим результатом из четырех определений и любым из результатов определения не должно превышать 0,36 % массовой доли сахарозы. При большем расхождении приготовляют заново все реактивы, производят государственную поверку используемых приборов и повторяют испытание с четырьмя параллельными определениями. В этом случае при наличии расхождения более 0,36 % массовой доли сахарозы выполнение данной работы поручают оператору более высокой квалификации.

За окончательный результат определения принимают среднеарифметическое двух параллельных определений, вычисленных до десятых долей процента.

Расхождение между двумя параллельными определениями не должно превышать 0,5 %.

4.6. Поправка на объем осадка (К) для отдельного вида продукта колеблется в незначительном интервале, поэтому при повседневном определении сахарозы поправку (К) можно принять за постоянную величину, равную для творожных изделий 0,979; для мороженого 0,983; для отдельных видов мороженого: молочного — 0,988, сливочного — 0,962, пломбира — 0,919, для молочного с фруктовыми наполнителями — 0,984, фруктового — 0,985.

4.5, 4.6. (Измененная редакция, Изм. № 2).

5. УСКОРЕННЫЙ ФЕРРИЦИАНИДНЫЙ МЕТОД ОПРЕДЕЛЕНИЯ МАССОВОЙ ДОЛИ ОБЩЕГО САХАРА

5.1. Сущность метода

Метод основан на способности редуцирующих сахаров окисляться и восстанавливать в щелочной среде железосинеродистый калий в железистосинеродистый. По объему испытуемого фильтрата, израсходованного на титрование определенного объема железосинеродистого калия, вычисляют массовую долю общего сахара в продукте.

Метод предназначен для контроля массовой доли общего сахара в кисломолочных продуктах с плодово-ягодными наполнителями.

5.2. Аппаратура, материалы и реактивы

Весы лабораторные 4-го класса точности с наибольшим пределом взвешивания 500 г, с поверочной ценой деления 0,05 г по ГОСТ 24104.

Холодильник бытовой по ГОСТ 16317.

Электроплитка по ГОСТ 14919.

Баня водяная.

Термометр ртутный с диапазоном измерения от 0 до 100 °C, ценой деления шкалы 1 °C по ГОСТ 28498.

Колбы мерные исполнений 1 и 2, 3-го класса точности, вместимостью 100 и 250 см³ по ГОСТ 1770.

Бюретки исполнений 1, 2, 3, 1-го и 2-го классов точности, вместимостью 25 см3 по ГОСТ 29251.

Пипетки исполнения 2, 1-го и 2-го классов точности, вместимостью 5, 20, 25 и 50 см³ по ГОСТ 29169.

Колбы типа Кн исполнения 1 и 2, вместимостью 100, 200 и 250 см³, из термически стойкого стекла ТС по ГОСТ 25336.

Цилиндры мерные исполнения 1, 2-го класса точности, вместимостью 100, 500 и 1000 см³ по ГОСТ 1770.

Воронка типа В, диаметром 36, 75, 100 мм, из химически стойкого стекла группы ХС по ГОСТ 25336.

Бумага фильтровальная по ГОСТ 12026.

Вода дистиллированная по ГОСТ 6709.

Натрия гидроокись по ГОСТ 4328, х. ч. или ч. д. а., 20 %-ный, 1 %-ный и 2,5 н. растворы.

Соляная кислота по ГОСТ 3118, х. ч. плотностью 1,17-1,19 г/см³.

Цинк сернокислый 7-водный по ГОСТ 4174, х. ч. или ч. д. а., 10 %-ный раствор.

Калий йодистый по ГОСТ 4232, х. ч. или ч. д. а., 20 %-ный раствор.

Натрий серноватистокислый, х. ч. или ч. д. а., 0,1 н. раствор.

Калий железосинеродистый по ГОСТ 4206, х. ч. или ч. д. а., 1 %-ный раствор.

Медь сернокислая 5-водная по ГОСТ 4165, х. ч. или ч. д. а.

Метиловый оранжевый (пара-диметиламиноазобензосульфокислый натрий), 0,02 %-ный раствор.

Основной метиденовый голубой хлоргидрат 1 %-ный раствор или другие индикаторы аналогичного действия.

Крахмал растворимый по ГОСТ 7699, ч. д. а., 1 %-ный раствор.

- 5.3. Подготовка к анализу
- 5.3.1. Приготовление раствора сернокислой меди (раствор Фелинга) осуществляют по п. 2.3.1.
- Установленные поправки для 1 %-ного раствора железосинеродистого калия.

В коническую колбу вместимостью 200 или 250 см³ вносят 50 см³ приготовденного раствора железосинеродистого калия, прибавляют 20 см³ 10 %-ного раствора сернокислого цинка и 20 см³ 10 %-ного раствора йодистого калия (не содержащего йода), взбалтывают содержимое колбы и немедленно титруют выделившийся йод 0,1 н. раствором серноватистокислого натрия в присутствии крахмала в качестве индикатора. Поправку к 1 %-ному раствору железосинеродистого калия вычисляют до четвертого десятичного знака по формуле

$$K = \frac{V \cdot 0.3291}{0.5},$$

- где V объем 0,1 н. раствора серноватистокислого натрия, пошедший на титрование выделившегося йола, см³:
- 0,3291 массовая концентрация железосинеродистого калия, соответствующая 1 см³ 0,1 н. раствора серноватистокислого натрия, г/см³;
 - 0,5 масса железосинеродистого калия в 50 см³ 1 %-ного раствора, г.

Раствор железосинеродистого калия хранят в темной посуде.

5.3.3. Приготовление 1 %-ного раствора крахмала

1 г крахмала растворяют в 40—50 см³ дистиллированной воды, с температурой 30—40 °C, затем приливают еще 50—60 см³ дистиллированной воды, доводят смесь до кипения и фильтруют через бумажный складчатый фильтр. Раствор хранят при температуре 6—12 °C не более 7 дней.

5.4. Проведение анализа

5.4.1. Приготовление фильтрата из кисломолочных продуктов с плодово-ягодными наполнителями проводят по п. 2.4.1, применяя навеску 10 г.

5.4.2. Проведение инверсии

50 см³ фильтрата переносят в мерную колбу вместимостью 100 см³, прибавляют 5 см³ соляной кислоты, затем нагревают раствор в водяной бане до температуры 68—70 °C и выдерживают при той же температуре в течение 8 мин. Контроль температуры осуществляют термометром, опущенным в исследуемый раствор.

После инверсии охлажденный раствор осторожно нейтрализуют по метиловому оранжевому до желто-оранжевого окрашивания, приливая по капле 20 %-ный раствор гидроокиси натрия, а к концу нейтрализации — 1 %-ный раствор гидроокиси натрия. Нейтрализованный раствор сахаров доливают до метки дистиплированной водой.

5.4.3. Определение редуцирующей способности фильтрата после инверсии

5.4.3.1. Предварительное определение общего сахара

В коническую колбу вместимостью 100 см³ вносят 20 см³ 1 %-ного раствора железосинеродистого калия и 5 см³ 2,5 н. раствора гидроокиси натрия, прибавляют 1 каплю раствора хлоргидрата метиленового голубого и нагревают до кипения. Кипящую смесь осторожно титруют полученным раствором сахаров (п. 5.4.2), медленно прибавляя его по капле. При этом железосинеродистый калий переводится в железистосинеродистый. Первая избыточная капля раствора сахара приводит к исчезновению синей окраски. Раствор приобретает слабо-желтую окраску железистосинеродистого калия. Титрование в этот момент прекращают. Появление фиолетовой окраски после остывания раствора во внимание не принимают. Результат получается наиболее точным, если на титрование расходуется 5—6 см³ раствора сахара.

5.4.3.2. Окончательное определение общего сахара

К смеси железосинеродистого калия и гидроокиси натрия (п. 5.4.3) приливают из бюретки на 0.2-0.3 см³ меньше полученного раствора сахара, чем было израсходовано при ориентировочном определении. Нагревают смесь до кипения, кипятят 55—60 с, затем прибавляют 1 каплю раствора хлоргидрата метиленового голубого и дотитровывают раствором сахара из бюретки до исчезновения синей окраски.

5.5. Обработка результатов

Массовую долю общего сахара, %, вычисляют по формуле

$$X = \frac{(20,12 + 0,035 \cdot V) \cdot K \cdot 250 \cdot 100 \cdot 100}{m \cdot V \cdot 50 \cdot 1000},$$

где V — объем израсходованного при повторном титровании раствора сахара, см³;

т — масса навески продукта, г:

К — поправка для 1 %-ного раствора железосинеродистого калия;

250 — объем, до которого разведена навеска, см³;

12 и 0.035 — эмпирически установленные коэффициенты:

50 — объем фильтрата для инверсии, см³;

100 — объем фильтрата после инверсии, см³;

100 — коэффициент пересчета на 100 г продукта;

1000 — коэффициент пересчета из мг в г.

За результат анализа принимают среднеарифметическое результатов двух параллельных определений.

Допускаемое расхождение между парадлельными определениями не должно превышать 0,5 % при доверительной вероятности 0,95. Вычисление проводят до первого десятичного знака.

Разд. 5. (Введен дополнительно, Изм. № 1).

Таблица 1

Расчет сахарозы по количеству восстановленной меди

MF

Медь	Сака- роза	Медь	Caxa- posa	Медь	Caxa- posa	Медь	Caxa- posa	Медь	Caxa- posa	Медь	Caxa- posa
80,8	39,9	123,4	61,4	166,1	83,2	208,7	105,5	251,3	128,6	293.9	152,1
81.7	40,4	124,3	61,8	166.9	83,7	209,6	106,0	252,2	129,1	294,8	152.7
82,6	40,9	125,2	62,3	167,8	84,1	210,5	107,0	253,1	129,6	295,7	153,1
83,5	41,3	126,1	62,7	168.7	84,5	211,3	106,5	254,0	130,0	296,6	153,7
84,4	41,7	127,0	63,2	169.7	85,0	212,2	107,4	254,9	130,5	297,5	154,2
85,2	42,2	127.9	63,6	170.5	85,5	213,1	107,9	255,7	131,0	298,4	154,7
86,1	42,6	128,8	64,1	171,4	85,9	214,0	108,5	256,6	131,5	299,3	155,2
87,0	43,0	129,6	64.5	172,3	86,3	214,9	109,0	257,5	131,9	300,1	155,7
87,9	43,5	130,5	65,0	173,2	86,8	215,8	109,4	258,4	132,4	301,0	156,2
88,8	44,0	131,4	65,5	174,0	87,3	216,7	109,9	259,3	133,0	301,9	156,8
89.7	44,4	132,3	65,8	174.9	87,7	217,6	110,4	260,2	133,5	302,8	157,2
90,6	44,8	133,2	66.3	175,8	88,3	218,4	110,9	261,1	134.0	303,7	157.7
91,5	45.2	134,1	66,8	176,7	88,6	219,3	111,3	262,0	134,4	304,6	158,2
92,3	45,5	135,0	67.3	177,6	89,1	220,2	111,8	262,8	134,9	305,5	158,6
93,2	46,1	135,9	67,6	178,5	89,5	221,1	112,3	263,7	135,4	306,4	159,1
94,1	46,5	136,8	68,1	179,4	90,0	222,0	112,8	264,6	135,8	307,2	159,6
95,0	47,0	137,6	68,6	180,3	90,4	222,9	113,2	265,5	136,3	308,1	160,2
95,9	47,4	138.5	69,1	181.2	90.7	223,8	113,7	266,4	136,8	309,0	160,6
96,8	47,9	139,4	69,5	182,0	91,4	224,7	114,2	267,3	137,3	309.9	161,1
97,7	48.3	140,3	69.9	182,9	91.8	225,6	114,7	268,2	137,7	310,8	161,6
98,6	48,8	141,2	70,4	183,8	92,2	226,4	115,1	269,1	138,2	311,7	162,1
99,4	49.2	142,1	70,9	184,7	92,7	227,3	115,6	270,0	138,8	312,6	162,6
100,3	49.7	143.0	71,3	185,6	93,2	228,2	116,1	270,8	139,3	313,5	163,1
101,2	50,2	143,9	71,7	186,5	93,7	229,1	116,6	271,7	139,7	314,4	163,7
102,1	50,5	144,7	72,2	187.4	94,1	230,0	117,0	272,6	140,2	315,2	164,2
103,0	51,0	145.6	72,7	188.3	94,6	230,9	117,5	273,5	140,7	316,1	164,6
103,9	51,5	146,5	73.0	189,1	95,1	231,8	118,0	274,4	141,2	317,0	165,2
104,8	52,0	147.4	73.5	190,0	95,6	232,7	118,5	275,3	141,6	317.9	165,7
105,7	52,4	148,3	74.0	190,9	96,0	233,5	118,9	276,2	142,1	318,8	166,2
106,6	52,9	149,2	74,5	191,8	96,5	234,4	119,4	277,1	142,6	319,7	166,6
107,4	53,3	150,1	74,9	192,7	97,0	235,3	119,9	277,9	143,1	320,6	167,2
108,3	53,7	151,0	75,4	193,6	97,5	236,2	120,4	278,8	143,6	321,6	167,7
109,2	54,1	151,8	75,9	194,5	97,9	237,1	120,8	279,7	144,1	322,3	168,1
110,1	54,6	152,7	76,4	195,4	98,4	238,0	121,4	280,6	144,7	323,2	168,6
111,0	55,1	153,6	76,9	196,2	98,9	238,9	121,9	281,5	145,2	324,1	169,1
111,9	55,6	154.5	77,3	197,1	99,4	239,8	122,4	282,4	145,6	325,0	169,7
112,8	56,0	155,4	77.8	198,0	99.8	240,6	122,8	283,3	146,2	325,9	170,1
113,7	56,4	156,3	78,3	198.9	100,3	241,5	123,3	284,2	146,7	326,8	170,6
114,5	56,9	157.2	78,7	199,8	100,8	242,4	123,8	285,0	147,1	327,7	171,2
115,4	57,3	158.1	79.1	200,7	101,3	243,3	124,3	285,9	147,6	328,6	171,7
116,3	57,8	159.0	79.7	201,6	101,7	244,2	124,7	286,8	148,1	329,4	172,1
117,7	58,2	159,8	80,1	202,5	102,2	245,1	125,2	287,7	148,7	330,4	172,7
118,1	58,7	160,7	80,5	203,4	102,7	246,0	125,7	288,6	149,1	331,2	173,2
119,0	59,2	161,6	80,9	204,2	103,2	246,9	126,2	289,5	149,6	332,1	173,7
119,9	59,6	162,5	81,4	205,1	103,6	240,9	126,6	290,4	150,1	333,0	174,3
120,8	60,0	163,4	81,9	206,0	103,0	248,6	127,1	291,3	150,7	333,0	174,8
121,6	60,5	164,3	82,3	206,9	104,1	249,5	127,7	292,2	151,1	334,8	175,3
				The second second				293,0			
122,5	60,9	165,2	82,7	207,8	105,1	250,4	128,I	293,0	151,6	335,7	175,8

ГОСТ 3628-78 С. 14

ПРИЛОЖЕНИЕ Обязательное

 $\label{eq:Table} T\ a\ 6\ \pi\ u\ \mu\ a\ \ 2$ Расчет инвертного сахара по количеству восстановленной меди до инверсии

MT

Медь	Инпертный сахар	Медь	Инвертный сахар 28,1	
43,5	22,5	54,2		
44.4	23,0	55,1	28,6	
45,3	23,5	55,9	29,0	
46,2	23,9	56,8	29,5	
47,1	24,4	57,7	30,0	
48,0	24,9	58,6	30,4	
48,8	25,3	59,5	30,9	
49,7	25,8	60,4	31,4	
50,6	26,2	61,3	31,8	
51,5	26,7	62,2	32,3	
52,4	27,2	63,0	32,7	
53,3	27,6	63,9	33,1	

ИНФОРМАЦИОННЫЕ ДАННЫЕ

1. РАЗРАБОТАН И ВНЕСЕН Министерством мясной и молочной промышленности СССР

РАЗРАБОТЧИКИ

- А. П. Патратий, канд. сельхоз. наук; А. А. Творогова, канд. техн. наук; О. В. Устинова; О. А. Гераймович (руководитель темы); Е. А. Фетисов, канд. техн. наук; Л. Н. Семенова, канд. техн. наук; Л. А. Еремина
- УТВЕРЖДЕН И ВВЕДЕН В ДЕЙСТВИЕ Постановлением Государственного комитета СССР по управлению качеством продукции и стандартам от 18.05.78 № 1338
- 3. B3AMEH FOCT 3628-47

4. ССЫЛОЧНЫЕ НОРМАТИВНО-ТЕХНИЧЕСКИЕ ДОКУМЕНТЫ

Обозначение НТД, на который дана ссылка Номер пункт.		Обозначение НТД, на который дана ссылка	Номер пункта
ГОСТ 22—94	2.5.1	ГОСТ 5823—78	4.2
ΓΟCT 61-75	4.2	FOCT 5839-77	3.2
ΓΟCT 83-79	2.2	ΓΟCT 5845—79	3.2
ΓΟCT 1770-74	2.2, 3.2, 4.2, 5.2	ΓΟCT 670972	2,2, 3.2, 4.2, 5.2
ΓΟCT 3118-77	2.2, 3.2, 5.2	ГОСТ 7699—78	2.2, 5.2
ΓΟCT 362268	1.1	FOCT 8677—76	4.2
ΓΟCT 4159-79	2.2	ГОСТ 12026—76	2.2, 3.2, 4.2, 5.2
ΓΟCT 4165-78	2.2, 3.2, 5.2	FOCT 14919-83	5.2
ΓΟCT 4174-77	5.2	FOCT 16317-87	5.2
ΓΟCT 4199-76	4.2	ΓOCT 20490—75	3.2
ΓΟCT 4204-77	3.2	ΓΟCT 24104—88	2.2, 3.2, 4.2, 5.2
ΓΟCT 4206-75	5.2	FOCT 25336—82	2.2, 3.2, 4.2, 5.2
ΓΟCT 4207-75	4.2	ΓΟCT 26809—86	1.1
ΓΟCT 4220-75	2.2	FOCT 28498-90	2.2, 3.2, 4.2, 5.2
ΓΟCT 4232-74	2.2, 5.2	ΓΟCT 29169—91	2.2, 3.2, 4.2, 5.2
ΓΟCT 4328-77	2.2, 3,2, 4.2, 5.2	FOCT 29251—91	2.2, 3.2, 4.2, 5.2
ΓΟCT 5712-78	3.2	ТУ 6-09-5359-87	3.2

- Ограничение срока действия снято по протоколу № 3—93 Межгосударственного совета по стандартизации, метрологии и сертификации (ИУС 5-6—93)
- ИЗДАНИЕ (август 2009 г.) с Изменениями № 1, 2, утвержденными в марте 1984 г., июне 1991 г. (ИУС 6—84, 10—91), Поправкой (ИУС 8—2009).

Поправка к ГОСТ 3628—78* Молочные продукты. Методы определения сахара

В каком месте	Напечатано	Должно быть		
Вводная часть. Первый абзац	Настоящий стандарт распространяется на молочные продукты и устанавливает	Настоящий стандарт распространяется на молочные и молокосодержащие продукты и устанавливает		

^{*} Действует только на территории Российской Федерации.

(ИУС № 8 2009 г.)

Поправка к ГОСТ 3628—78* Молочные продукты. Методы определения сахара

В каком месте	Напечатано	Должно быть		
Вводная часть. Первый абзац	Настоящий стандарт распространяется на молочные продукты и устанавливает	Настоящий стандарт распространяется на молочные и молокосодержащие продукты и устанавливает		

^{*} Действует только на территории Российской Федерации.

(ИУС № 8 2009 г.)