КОНЦЕНТРАТ ВОЛЬФРАМОВЫЙ

МЕТОД ОПРЕДЕЛЕНИЯ ФОСФОРА

Издание официальное

МЕЖГОСУДАРСТВЕННЫЙ СТАНДАРТ

КОНЦЕНТРАТ ВОЛЬФРАМОВЫЙ

Метод определения фосфора

ΓΟCT 11884.4—78

Tungsten concentrate.

Method of determination of phosphorus

OKCTY 1709

Дата введения 01.07.80

Настоящий стандарт распространяется на вольфрамовые концентраты всех марок, предусмотренных ГОСТ 213, и устанавливает фотоколориметрический метод определения содержания фосфора при массовой доле его от 0.005 до 2 %.

Метод основан на образовании фосфорванадатомолибдатного комплекса и фотометрировании окрашенного соединения. Влияние вольфрама устраняется путем осаждения его в виде вольфрамовой кислоты.

(Измененная редакция, Изм. № 2, 3).

1. ОБЩИЕ ТРЕБОВАНИЯ

- Общие требования к методу анализа по ГОСТ 27329.
- Требования безопасности по ГОСТ 11884.15.
- Контроль правильности результатов анализа по ГОСТ 11884.15.
- За окончательный результат анализа принимают среднее арифметическое результатов трех параллельных определений.

Разд. 1. (Измененная редакция, Изм. № 2).

2. АППАРАТУРА, РЕАКТИВЫ И РАСТВОРЫ

2.1. Для проведения анализа применяют:

фотоэлектроколориметр типа ФЭК-56М или типа КФК-2-УХЛ 4.2;

кислоту азотную по ГОСТ 4461, разбавленную 1:2:

кислоту серную по ГОСТ 4204, разбавленную 1:5;

кислоту соляную по ГОСТ 3118;

калия гидроокись, растворы с массовой долей 2 и 10 % по ГОСТ 24363;

кальций азотнокислый по ГОСТ 4142, раствор, приготовленный следующим образом: 59 г азотнокислого кальция растворяют приблизительно в 100 см³ воды, фильтруют и доливают раствор водой до объема 500 см³;

промывную жидкость, приготовленную следующим образом: доливают водой 300 см³ 10 %ного раствора гидроокиси калия до объема 1000 см³, прибавляют 20 см³ раствора азотнокислого кальция, энергично перемешивают, дают отстояться в течение 2 ч и фильтруют через беззольный фильтр средней плотности;

аммоний азотнокислый по ГОСТ 22867, раствор с массовой долей 1 % в азотной кислоте с массовой долей 1 % (по объему);

аммоний молибденовокислый по ГОСТ 3765;

аммоний ванадиевокислый (мета) по ГОСТ 9336:

калий фосфорнокислый однозамещенный по ГОСТ 4198;

Издание официальное

Перепечатка воспрещена

© Издательство стандартов, 1978 © ИПК Издательство стандартов, 1999 Переиздание с Изменениями ванадато-молибдатный реактив, приготовленный следующим образом: 50 г молибденовокислого аммония растворяют при нагревании в 400—500 см³ воды, полученный раствор, помешивая, вливают в темную склянку, содержащую 135 см³ азотной кислоты, предварительно освобожденной от окислов азота кипячением. Склянку закрывают пробкой и ставят в темное место на двое суток. Затем раствор фильтруют. Фильтрат собирают в мерную колбу вместимостью 1 дм³. Одновременно растворяют 2,4 г ванадиевокислого аммония в смеси, состоявшей из 100 см³ воды и 160 см³ серной кислоты, разбавленной 1:5. Если раствор окажется мутным, его фильтруют. Далее раствор ванадата аммония, помещивая, вливают в мерную колбу, в которой находится раствор молибденовокислого аммония, и перемещивают. Доливают раствор водой до метки, вновь перемещивают и переливают в темную склянку с притертой пробкой (в темной склянке раствор устойчив в течение нескольких месяцев), если появляется муть, фильтруют.

Стандартный раствор фосфора (раствор В), приготовленный следующим образом: 0,4394 г однозамещенного фосфорнокислого калия помещают в мерную колбу вместимостью 1 дм³, растворяют в небольшом количестве воды и водой доливают до метки.

1 см3 раствора содержит 0,1 мг фосфора.

Стандартный раствор фосфора (раствор Г) готовят разбавлением раствора В в 10 раз водой. 1 см³ раствора содержит 0.01 мг фосфора.

(Измененная редакция, Изм. № 1, 2, 3).

3. ПРОВЕДЕНИЕ АНАЛИЗА

3.1. Навеску концентрата всех марок, кроме марок КШ-2, КШ-3, КШ-4, массой 0,5—1 г помещают в стакан вместимостью 200—250 см³, приливают 60 см³ смеси азотной и соляной кислот в соотношении 1:3, накрывают стакан часовым стеклом и нагревают в течение 2 ч на кипящей водяной бане или слое асбеста.

Снимают стекло и выпаривают раствор до получения влажного остатка (следует избегать перегрева). Выпаривание повторяют еще два раза, приливая каждый раз по 10 см^3 азотной кислоты и выпаривают раствор до объема $1-2 \text{ см}^3$. К остатку от выпаривания приливают 5 см^3 азотной кислоты, нагретой до 60-70 °C, и 10 см^3 воды. Содержимое стакана нагревают в течение нескольких минут.

(Измененная редакция, Изм. № 2, 3).

- 3.2. Раствор охлаждают, фильтруют через фильтр с синей лентой, осадок вольфрамовой кислоты промывают на фильтре 7—8 раз раствором азотнокислого аммония. При анализе концентратов марок КВГ(Т), КВГ(К), КШ(Т) осадок вольфрамовой кислоты сохраняют.
- 3.3. При определении фосфора в концентратах марок КВГ, КШ-1, КМШ фильтрат переносят в мерную колбу вместимостью 100 см³ (если объем раствора больше 80 см³, его следует упарить), прибавляют отмеренные пипеткой 10 см³ ванадато-молибдатного реактива и перемешивают. Через 15 мин раствор доливают водой до объема 100 см³, снова перемешивают и измеряют оптическую плотность на фотоколориметре, применяя светофильтр с максимумом светопропускания 413 нм в кювете с толщиной колориметрируемого слоя 50 мм.

В качестве раствора сравнения применяют раствор контрольного опыта.

По оптической плотности анализируемого раствора устанавливают содержание фосфора по градуировочному графику.

(Измененная редакция, Изм. № 3).

3.4. Содержание фосфора в концентратах марок КВГ(Т), КВГ(К), КШ(Т) определяют следующим образом. Фильтрат от осадка вольфрамовой кислоты выпаривают до объема 20 см³ и сохраняют (раствор А). Осадок вольфрамовой кислоты смывают минимальным количеством воды обратно в стакан, в котором проводилось разложение, и приливают 65 см³ нагретого до кипения 10 %-ного раствора гидроокиси калия, после растворения вольфрамовой кислоты раствор фильтруют через тот же фильтр и промывают нерастворимый остаток 8—10 раз 2 %-ным раствором гидроокиси калия.

После этого раствор доливают водой до объема 250 см³, охлаждают, прибавляют 7 см³ раствора азотнокислого кальция, энергично перемешивают и оставляют на 2,5 ч.

3.5. Осадок гидроокиси кальция (и фосфорнокислого кальция) отфильтровывают через фильтр с синей лентой и промывают 8—10 раз промывной жидкостью. Затем осадок смывают струей воды в колбу, в которой проводилось осаждение, оставшиеся на фильтре частички осадка обрабатывают азотной кислотой, прибавляя ее по каплям, и промывают небольшим количеством воды.

К раствору с осадком прибавляют 5 см³ азотной кислоты и кипятят до растворения осадка (раствор Б).

3.6. Растворы А и Б объединяют и фильтруют через ватный тампон, собирая фильтрат в мерную колбу вместимостью 100 см³, доливают водой до метки и перемешивают. Пипеткой отбирают аликвотную часть раствора: объемом 50 см³ при анализе концентратов марок КВГ(К), КВГ(Т) и 15 см³ при анализе концентрата марки КШ(Т). Прибавляют столько азотной кислоты, освобожденной от окислов азота, чтобы в конечном объеме раствора содержалось 5 % кислоты.

Доливают раствор водой до объема 70—80 см³, приливают отмеренные пипеткой 10 см³ ванадато-молибдатного реактива и перемешивают. Через 15 мин раствор доливают водой до объема 100 см³, снова перемешивают и измеряют оптическую плотность, как указано в п. 3.3.

В качестве раствора сравнения применяют раствор контрольного опыта.

По оптической плотности анализируемого раствора устанавливают содержание фосфора.

3.7. Для построения градуировочного графика в мерные колбы вместимостью 100 см³ при помощи микробюретки отмеривают 0,5; 1,0; 1,5; 2,0; 2,5; 3,0; 3,5; 4,0; 4,5 и 5,0 см³ раствора В. Приливают в каждую колбу по 70—80 см³ воды, 5 см³ азотной кислоты, освобожденной от окислов азота, и отмеренные пипеткой 10 см³ ванадато-молибдатного реактива и перемешивают. Через 15 мин растворы доливают водой до метки, снова перемешивают и измеряют оптическую плотность, как указано в п. 3,3.

В качестве раствора сравнения применяют раствор контрольного опыта.

По полученным средним значениям оптической плотности растворов и известным содержаниям фосфора строят градуировочный график.

(Измененная редакция, Изм. № 2).

- 3.8. Навеску концентрата марок КШ-2, КШ-3 и КШ-4 массой 0,1—0,25 г помещают в стакан вместимостью 200—250 см³, приливают 40 см³ смеси азотной и соляной кислот в соотношении 1:3, накрывают стакан часовым стеклом и нагревают в течение 1 ч на кипящей водяной бане. Снимают часовое стекло и выпаривают раствор до получения влажного остатка (следует избегать перегрева). Выпаривание повторяют еще два раза, приливая каждый раз по 10 см³ азотной кислоты и выпаривают до объема 1—2 см³. К остатку от выпаривания приливают 5 см³ азотной кислоты, освобожденной от окислов азота и 10 см³ воды, нагревают до кипения и охлаждают.
- 3.9. Раствор вместе с осадком переносят в мерную колбу вместимостью 100 см³, доливают до метки водой, перемешивают. Раствор фильтруют через сухой фильтр с синей лентой в сухую колбу (первые порции фильтрата отбрасывают). От прозрачного фильтрата отбирают пипеткой аликвотную часть 10 см³ для КШ-2 и КШ-3 и 5 см³ для КШ-4 в мерную колбу вместимостью 50 см³, прибавляют 2—2,5 см³ азотной кислоты, освобождениой от окислов азота, доливают водой до объема 35—40 см³, приливают 5 см³ ванадато-молибдатного реактива и перемешивают.

Через 15 мин раствор доливают водой до метки, перемешивают и измеряют оптическую плотность на фотоэлектроколориметре, применяя светофильтр с максимумом светопропускания 413 нм, в кювете с толщиной колориметрируемого слоя 50 или 10 мм или применяя светофильтр с максимумом светопропускания 440 нм и кювету с толщиной колориметрируемого слоя 30 мм.

В качестве раствора сравнения применяют раствор контрольного опыта (берут аликвотную часть соответственно пробам).

По оптической плотности анализируемого раствора устанавливают массовую долю фосфора по градуировочному графику.

3.10. Для построения градуировочного графика в мерные колбы вместимостью 50 см³ при помощи бюретки отмеряют 3,0; 4,0; 5,0; 6,0; 7,0; 8,0; 9,0; 10,0 см³ раствора Γ (для кюветы с толщиной колориметрируемого слоя 50 мм), 1,0; 2,0; 3,0; 4,0; 5,0; 6,0; 7,0 см³ раствора Γ (для кюветы с толщиной колориметрируемого слоя 10 мм), 5,0; 6,0; 7,0; 8,0; 9,0; 10,0; 11,0 см³ раствора Γ (для кюветы с толщиной колориметрируемого слоя 30 мм).

Приливают в каждую колбу до 30 см³ воды, 2,5 см³ азотной кислоты, освобожденной от окислов азота, 5 см³ ванадато-молибдатного реактива и перемешивают.

Через 15 мин растворы доливают до метки водой, перемешивают и измеряют оптическую плотность по п. 3.9.

В качестве раствора сравнения применяют раствор контрольного опыта.

По полученным средним значениям оптической плотности растворов и известным содержаниям фосфора строят градуировочный график.

3.9, 3.10. (Измененная редакция, Изм. № 3).

3.8—3.10. (Введены дополнительно, Изм. № 2).

4. ОБРАБОТКА РЕЗУЛЬТАТОВ

 4.1. Массовую долю фосфора (X) в процентах в концентратах марок КВГ, КШ-1, КМШ вычисляют по формуле

$$X = \frac{m_1 \cdot 100}{m \cdot 1000}$$

где т. - масса фосфора, найденная по градуировочному графику, мг;

т — масса навески концентрата, г;

1000 — коэффициент пересчета граммов на миллиграммы.

(Измененная редакция, Изм. № 3).

4.2. Массовую долю фосфора (X_1) в процентах в концентратах марок КВГ(K), КВГ(T), КШ(T), КШ-2, КШ-3 и КШ-4 вычисляют по формуле

$$X_1 = \frac{m_{\scriptscriptstyle 1} \cdot V \cdot 100}{m \cdot V_{\scriptscriptstyle 1} \cdot 1000} \,,$$

где V — объем анализируемого раствора, см³;

 V_1 — объем аликвотной части раствора, см³.

(Измененная редакция, Изм. № 2).

4.3. Максимальные расхождения между результатами параллельных определений и двумя результатами анализа при доверительной вероятности P = 0.95 не должны превышать абсолютных допускаемых расхождений сходимости (d_{ex}) и воспроизводимости (d_{ex}), приведенных в таблице.

Массовая доля фосфора, %	Допускаемое расхождение, абс. %	
	d _{ex}	d _{ac}
От 0,005 до 0,010 включ.	0,002	0,003
CB. 0,010 * 0,020 *	0,003	0,005
* 0,020 * 0,050 *	0,005	0,008
» 0,05 » 0,10 »	0,01	0.02
» 0,10 » 0,20 »	0,02	0,03
» 0,20 » 0,50 »	0,04	0,06
* 0,50 * 1,00 *	0.05	0,07
* 1.00 * 2.00 *	0.06	0.08

(Измененная редакция, Изм. № 3).

ИНФОРМАЦИОННЫЕ ДАННЫЕ

1. РАЗРАБОТАН И ВНЕСЕН Министерством цветной металлургии СССР

РАЗРАБОТЧИКИ

- Ф.М. Мумджи, З.С. Септар, И.В. Мартынова, С.А. Балахнина
- УТВЕРЖДЕН И ВВЕДЕН В ДЕЙСТВИЕ Постановлением Государственного комитета СССР по стандартам от 26.10.78 № 2769
- 3. B3AMEH FOCT 11887-66
- 4. Стандарт полностью унифицирован с УСТ 1888-77
- 5. ССЫЛОЧНЫЕ НОРМАТИВНО-ТЕХНИЧЕСКИЕ ДОКУМЕНТЫ

Обозначение НТД, на который дана ссылка	Номер пункта
ΓΟCT 213—83	Вводная часть
ΓΟCT 3118—77	2.1
ΓΟCT 3765—78	2.1
ΓOCT 4142-77	2.1
ΓΟCT 4198—75	2.1
ΓOCT 4204—77	2.1
ΓΟCT 4461-77	2.1
ΓOCT 9336—75	2.1
ΓOCT 11884.15—78	1.2
ΓΟCT 22867—77	2.1
ΓΟCT 24363—80	2.1
ΓΟCT 27329—87	1.1

- Ограничение срока действия снято по протоколу № 4—93 Межгосударственного Совета по стандартизации, метрологии и сертификации (ИУС 4—94)
- ПЕРЕИЗДАНИЕ (июнь 1999 г.) с Изменениями № 1, 2, 3, утвержденными в декабре 1983 г., мае 1987 г., декабре 1989 г. (ИУС 3-84, 8-87, 4-90)

Редактор Р.С. Федорова
Технический редактор Л.А. Кулецова
Корректор В.Н. Кануркина
Компьютерная верстка С.В. Рябовой

Изд. лиц. № 021007 от 10.08.95, Сдано в набор 27.07.99, Подписано в печать 24.08.99, Усл.печ.л. 0,93, Уч.-изд.л. 0,57, Тираж 118 экз. С 3548. Зак. 693.

ИПК Издательство стандартов, 107076, Москва, Колодезный пер., 14. Набрано в Издательстве на ПЭВМ Фидиал ИПК Издательство стандартов — тип. "Московский печатник", Москва, Лялин пер., 6 Плр № 080102