МЕЖГОСУДАРСТВЕННЫЙ СТАНДАРТ

КАЛМИЙ

Методы определения сурьмы

ΓΟCT 12072.6—79

Cadmium. Methods of antimony determination

ОКСТУ 1709

Дата введения 01.12.80

Настоящий стандарт устанавливает фотометрический и полярографический методы определения сурьмы (при массовой доле сурьмы от 0,0005 % до 0,005 %).

Стандарт полностью соответствует СТ СЭВ 921-78.

1. ОБЩИЕ ТРЕБОВАНИЯ

 Общие требования к методам анализа и требования безопасности по ГОСТ 12072.0. (Измененная редакция, Изм. № 1).

2. ФОТОМЕТРИЧЕСКИЙ МЕТОД С КРИСТАЛЛИЧЕСКИМ ФИОЛЕТОВЫМ

2.1. Сущность метода

Метод основан на осаждении сурьмы с гидроксидом циркония в аммиачной среде и фотометрическом ее определении с кристаллическим фиолетовым после экстракции трихлорэтиленом при длине волны 595 нм.

(Измененная редакция, Изм. № 2).

2.2. Аппаратура, материалы и реактивы

Спектрофотометр или фотоэлектроколориметр любого типа для измерения в видимой области спектра.

Кислота азотная по ГОСТ 4461, разбавленная 1 : 2.

Кислота соляная по ГОСТ 3118 и раствор 9 моль/дм3.

Кислота серная по ГОСТ 4204, разбавленная 1 : 3, и раствор 2,5 моль/дм3.

Аммиак водный по ГОСТ 3760 и разбавленный 1:49.

Цирконий хлористый 8-водный по ТУ 6—09—3677, раствор 3 г/дм³: навеску 0,3 г хлорокиси циркония растворяют в 10 см³ раствора соляной кислоты 9 моль/дм³, доливают до объема 100 см³ водой и перемешивают.

Водорода перекись (пероксид) по ГОСТ 10929.

Церий сернокислый окисный по ТУ 6—09—1646, раствор 4 г/дм³: навеску соли массой 0,4 г помещают в мерную колбу вместимостью 100 см³, приливают 20 см³ воды, 1,5 см³ серной кислоты, доливают до метки водой и перемешивают.

Гидроксиламин солянокислый по ГОСТ 5456, раствор 10 г/дм³.

Кристаллический фиолетовый по ТУ 6-09-4119, раствор 2 г/дм3.

Трихлорэтилен.

Сурьма по ГОСТ 1089.

Стандартные растворы сурьмы.

Издание официальное

Перепечатка воспрещена

Раствор А: навеску тонко измельченной сурьмы массой 0,100 г помещают в коническую колбу вместимостью $250~{\rm cm}^3$, приливают $20~{\rm cm}^3$ серной кислоты, нагревают до полного растворения навески, охлаждают, осторожно приливают $60~{\rm cm}^3$ воды, охлаждают, количественно переносят в мерную колбу вместимостью $1~{\rm gm}^3$, доливают до метки серной кислотой, разбавленной 1:3, и перемешивают.

1 см³ раствора А содержит 0,1 мг сурьмы.

Раствор Б: в мерную колбу вместимостью 100 см³ отмеривают пипеткой 10 см³ раствора А, приливают 75 см³ соляной кислоты, доливают до метки водой и перемешивают.

1 см³ раствора Б содержит 0,01 мг сурьмы.

(Измененная редакция, Изм. № 1, 2).

2.3. Проведение анализа

2.3.1. Навеску кадмия массой 1,000 г (при массовой доле сурьмы более 0,0025 %) или 0,500 г (при массовой доле сурьмы более 0,0025 %) помещают в коническую колбу вместимостью 250 см³, приливают 15 см³ азотной кислоты, разбавленной 1 : 2, нагревают до растворения навески и удаления оксидов азота, приливают 10 см³ раствора хлористого циркония. Раствор разбавляют до объема 80—90 см³ водой, нагревают до 65—70 °С, нейтрализуют аммиаком до появления осадка гидроксида кадмия, дают избыток аммиака 5 см³ и оставляют на 30 мин на теплом месте. Осадок отфильтровывают на фильтр средней плотности, промывают колбу и осадок на фильтре 5—6 раз горячим раствором аммиака, разбавленного 1 : 49. Осадок с развернутого фильтра смывают водой в колбу, в которой проводилось осаждение, фильтр обрабатывают 10 см³ горячего раствора серной кислоты 2,5 моль/дм³ с добавлением 5—6 капель пероксида водорода, после чего выпаривают до выделения паров серной кислоты.

Охлаждают, приливают 7,5 см³ соляной кислоты и перемешивают. Через 5 мин раствор переводят в делительную воронку вместимостью 100 см³, промывают колбу 2,5 см³ воды и промывную жидкость присоединяют к раствору в делительной воронке. Добавляют 0,5 см³ раствора сернокислого церия, перемешивают и выдерживают 1 мин. Добавляют 1 см³ раствора солянокислого гидроксиламина, перемешивают, выдерживают 1 мин, приливают 19 см³ воды, перемешивают, приливают из бюретки 25 см³ трихлорэтилена, 1 см³ раствора кристаллического фиолетового и встряхивают воронку в течение 2 мин. После разделения фаз органический слой переводят в сухую колбу вместимостью 25 см³. Оптическую плотность окращенного раствора измеряют в соответствующей кювете при длине волны 595 нм. Раствором сравнения служит раствор контрольного опыта. Содержание сурьмы устанавливают по градуировочному графику.

(Измененная редакция, Изм. № 2).

2.3.2. Для построения градуировочного графика в пять из шести делительных воронок вместимостью 100 см³ отмеривают соответственно микробюреткой 0,5; 1,0; 1,5; 2,0 и 2,5 см³ стандартного раствора Б сурьмы (что соответствует 5; 10; 15; 20 и 25 мкг сурьмы), приливают в каждую из воронок до объема 10 см³ раствора соляной кислоты 9 моль/дм³, добавляют по 0,5 см³ раствора сернокислого церия и далее поступают, как указано в п. 2.3.1.

По полученным значениям оптических плотностей растворов и соответствующим им содержаниям сурьмы строят градуировочный график.

3. ФОТОМЕТРИЧЕСКИЙ МЕТОД С РОДАМИНОМ Б

3.1. Сущность метода

Метод основан на экстракции ионов сурьмы (V) диизопропиловым эфиром из раствора соляной кислоты, отмывании мешающих ионов таллия (III) раствором сернистокислого натрия, образовании окрашенного комплекса родамина Б с гексахлорантимонатом (V) и измерении его светопоглощения при длине волны 550 нм.

3.2. Аппаратура, материалы и реактивы

Спектрофотометр или фотоэлектроколориметр любого типа для измерения в видимой области спектра.

Кислота соляная по ГОСТ 3118 и раствор 1 моль/дм3.

Кислота серная по ГОСТ 4204 и растворы, разбавленные 1:3 и 2,5 моль/дм3.

Кислота азотная по ГОСТ 4461, разбавленная 1 : 1.

Натрий сернистокислый по ТУ 6-09-5313, раствор 0,5 г/дм³.

Эфир диизопропиловый по ТУ 6-09-3704.

Родамин Б, раствор 1 г/дм³: 0,500 г 3,6-бис-диэтиламинофлуорона (родамина Б) помещают в мерную колбу вместимостью 500 см³, растворяют в растворе соляной кислоты 1 моль/дм³, доводят до метки этим же раствором и перемещивают.

Церий (IV) сернокислый по ТУ 6—09—1646, раствор 0,5 моль/дм³: к 8,3 г сернокислого церия (IV) приливают 8 см³ серной кислоты и нагревают до выделения паров серной кислоты. Охлаждают, осторожно разбавляют водой до 100 см³ и снова охлаждают. Сернокислый раствор переводят в мерную колбу вместимостью 250 см³, доводят до метки водой и перемешивают.

Сурьма по ГОСТ 1089.

Стандартные растворы сурьмы.

Раствор А: навеску тонко измельченной сурьмы массой 0,100 г помещают в коническую колбу вместимостью 250 см³, приливают 20 см³ серной кислоты, нагревают до полного растворения навески, охлаждают, осторожно приливают 60 см³ воды, охлаждают, количественно переносят в мерную колбу вместимостью 1 дм³, доливают до метки серной кислотой, разбавленной 1 : 3, и перемешивают.

1 см3 раствора А содержит 0,1 мг сурьмы.

Раствор Б: 10 см³ раствора А переносят в мерную колбу вместимостью 100 см³, доводят до метки раствором серной кислоты 2,5 моль/дм³ и перемешивают.

1 см³ раствора Б содержит 0,01 мг сурьмы.

(Измененная редакция, Изм. № 2).

3.3. Проведение анализа

3.3.1. Навеску кадмия массой 2,000 г растворяют в 20 см³ раствора азотной кислоты в конической колбе вместимостью 250 см³. Раствор упаривают досуха. Охлаждают. Приливают 5 см³ раствора серной кислоты и упаривают до появления ее паров. Остаток растворяют в 10 см³ соляной кислоты. Раствор охлаждают, переводят в мерную колбу вместимостью 50 см³, доводят до метки соляной кислотой и перемешивают.

Отбирают аликвотную часть раствора 20 см³ (при массовой доле сурьмы от 0,0005 % до 0,001 %), 10 см³ (при массовой доле сурьмы от 0,001 % до 0,003 %) или 5 см³ (при массовой доле сурьмы св. 0,003 %) в делительную воронку вместимостью 150 см³, и при необходимости добавляют до 20 см³ соляную кислоту.

Приливают 2 см³ раствора сернокислого церия (IV), 10 см³ диизопропилового эфира и встряхивают 30 с. После экстракции приливают 20 см³ воды и снова встряхивают. После отстаивания водную фазу сливают и отбрасывают. Органическую фазу промывают смесью, состоящей из 5 см³ раствора соляной кислоты 1 моль/дм³ и 2 см³ раствора сернистокислого натрия. Полученную водную фазу сливают и отбрасывают. Органический слой еще раз промывают 5 см³ раствора соляной кислоты 1 моль/дм³ и 1 см³ раствора сульфата церия (IV). Промывной раствор отбрасывают. К органической фазе приливают 2 см³ раствора родамина Б и проводят экстракцию в течение 15 с. Водный слой отбрасывают. Органический слой переводят в сухую колбу вместимостью 25 см³ и в соответствующей кювете измеряют оптическую плотность окрашенного комплекса при длине волны 550 нм. Раствором сравнения служит раствор контрольного опыта.

Содержание сурьмы устанавливают по градуировочному графику.

(Измененная редакция, Изм. № 2).

3.3.2. Для построения градуировочного графика в шесть из семи конических колб вместимостью 100 см³ отмеривают микробюреткой 1,0; 1,5; 2,0; 2,5; 3,0 и 3,5 см³ стандартного раствора Б сурьмы (что соответствует 10, 15, 20, 25, 30 и 35 мкг сурьмы). Раствор выпаривают до появления паров серной кислоты и охлаждают. Во все семь колб приливают по 20 см³ соляной кислоты и переносят растворы в мерные колбы вместимостью 50 см³. Объем доводят до метки соляной кислотой и перемешивают. Отбирают по 20 см³ из каждого раствора и далее поступают, как указано в п. 3.3.1.

По полученным значениям оптических плотностей растворов и соответствующим им содержаниям элементов строят градуировочный график.

4. ПОЛЯРОГРАФИЧЕСКИЙ МЕТОД

4.1. Сущность метода

Метод основан на осаждении сурьмы на диоксиде мартанца из раствора азотной кислоты 1 моль/дм³ и ее полярографировании на кислом натриевохлоридном фоновом электролите при потенциале пика минус 0,18 В до отношению к насыщенному каломельному электроду.

4.2. Аппаратура, материалы и реактивы

Полягрограф осциллографический или переменного тока с принадлежностями.

Кислота азотная по ГОСТ 4461, разбавленная 1 : 1, и раствор 1 моль/дм3.

Кислота соляная по ГОСТ 3118.

Кислота серная по ГОСТ 4204 и разбавленная 1 : 4.

Аммиак водный по ГОСТ 3760.

Калий марганцовокислый по ГОСТ 20490, раствор 6 г/дм³.

Гидразин солянокислый по ГОСТ 22159.

Натрий хлористый по ГОСТ 4233.

Сурьма по ГОСТ 1089.

Стандартный раствор сурьмы А: навеску тонко измельченной сурьмы массой 0,100 г помещают в коническую колбу вместимостью 250 см³, приливают 20 см³ серной кислоты, нагревают до полного растворения навески, охлаждают, количественно переливают в мерную колбу вместимостью 1 дм³, доливают до метки раствором серной кислоты, разбавленной 1: 4, и перемешивают.

1 см3 раствора A содержит 0,1 мг/дм3 сурьмы.

Стандартный раствор сурьмы Б: отмеривают пипеткой 20 см³ стандартного раствора сурьмы А в мерную колбу вместимостью 100 см³, доливают до метки серной кислотой, разбавленной 1: 4, и перемешивают.

1 см³ раствора Б содержит 0,02 мг сурьмы.

Градуировочные растворы сурьмы (способ сравнения): в семь конических колб вместимостью 100 см³ отмеривают соответственно 0,2; 0,4; 0,6; 0,8; 1,0; 1,2 и 1,4 см³ стандартного раствора сурьмы А, приливают в каждую из колб по 50 см³ фонового электролита, кипятят 1 мин, охлаждают, количественно переводят в мерные колбы вместимостью 100 см³, доливают до метки фоновым электролитом и перемешивают. Растворы соответственно содержат 0,2; 0,4; 0,6; 0,8; 1,0; 1,2 и 1,4 мг сурьмы.

Градуировочные растворы сурьмы (способ добавки стандартного раствора): к двум навескам кадмия отмеривают микропипеткой стандартный раствор сурьмы Б согласно табл. 1, приливают по 20 см³ азотной кислоты, разбавленной 1: 1, накрывают часовым стеклом, нагревают до растворения навески и удаления оксидов азота. Далее поступают, как указано в п. 4.3.

Массовая концентрация сурьмы в анализируемом растворе, соответствующая введенной добавке стандартного раствора сурьмы, указана в табл. 1.

Фоновый электролит: в склянку вместимостью 2 дм³ помещают 200 г хлористого натрия, 40 г солянокислого гидразина, 400 см³ соляной кислоты, приливают воду до объема 2 дм³ и перемешивают.

Таблица 1

Массовая доля сурьмы в навеске калмия, %	Масса навески,		добавленного иствора сурьмы Б	Объем мерной колбы, см ³	Массовая концентрация сурьмы,
a martin angles (r	см ⁵	MI		мг/см ³
До 0,001	2,000	0,5	0,01	50	0,2
CB. 0,001 » 0,003	2,000	1,0	0,02	50	0,4
» 0,001 » 0,003	2,000	2,0	0.04	50	0,8
» 0,003 » 0,006	1,000	2,5	0,05	50	1.0
» 0,003 » 0,006	1,000	3,5	0.07	50	1,4

Марганец азотнокислый по ТУ 6-09-4011, раствор 10 г/дм³.

(Измененная редакция, Изм. № 1, 2).

4.3. Проведение анализа

Навеску кадмия массой 2,000 г (при массовой доле сурьмы до 0,003 %) или 1,000 г (при массовой доле сурьмы св. 0,003 %) помещают в коническую колбу вместимостью 250 см³, приливают 20 см³ азотной кислоты, разбавленной 1 : 1, накрывают часовым стеклом и нагревают до растворения навески. Часовое стекло ополаскивают 4—5 см³ воды, приливают 125 см³ воды и нейтрализуют аммиаком до рН 3—3,5 по универсальной индикаторной бумаге, прибавляют 3 см³ раствора азотнокислого марганца, нагревают до кипения, приливают по каплям 5 см³ раствора марганцово-кислого калия, кипятят 5 мин и оставляют в теплом месте на 50—60 мин. При этом должен выпадать крупнозернистый осадок диоксида марганца. Осадок отфильтровывают на бумажный фильтр средней плотности. Осадок на фильтре и колбу промывают 5—6 раз горячим раствором азотной кислоты 1 моль/дм³ и 2 раза горячей водой. Осадок смывают с развернутого фильтра (с помощью промывал-ки) 30—35 см³ горячего фонового электролита в колбу, в которой проводилось осаждение, накры-

вают колбу часовым стеклом, кипятят 1 мин, охлаждают, количество переводят в мерную колбу вместимостью 50 см³, доливают до метки фоновым электролитом и перемешивают. Часть раствора помещают в электролизер и проводят полярографирование сурьмы при потенциале пика минус 0,18В по отношению к насыщенному каломельному электроду. В аналогичных условиях проводят полярографирование градуировочных растворов сурьмы и соответствующих растворов контрольных опытов.

При расчете содержания сурьмы способом сравнения с градуировочными растворами из высоты волны анализируемой пробы вычитают высоту волны контрольного опыта.

При расчете содержания сурьмы способом добавки стандартного раствора из высоты волны анализируемой пробы с добавкой вычитают высоты волн анализируемой пробы и контрольного опыта.

4.2, 4.3. (Измененная редакция, Изм. № 2).

5. ОБРАБОТКА РЕЗУЛЬТАТОВ

 5.1. Массовую долю сурьмы (X), %, при фотометрическом методе определения вычисляют по формуле

$$X = \frac{m_1}{m \cdot 10000},$$

где m — масса навески, соответствующая отобранной аликвотной части, г,

т.— количество сурьмы, найденное в растворе анализируемой пробы по градуировочному графику, мкг.

5.2. Массовую долю сурьмы (X) в процентах при полярографическом методе определения вычисляют по формуле

$$X = \frac{H \cdot V \cdot C}{h \cdot m \cdot 10000},$$

где H — высота волны сурьмы анализируемого раствора пробы, мм;

V — объем мерной колбы, см³;

С — массовая концентрация сурьмы в градуировочном растворе, мг/дм³;

h — высота волны сурьмы градуировочного раствора, мм;

т — масса навески, г.

5.3. Абсолютные допускаемые расхождения результатов параллельных определений и результатов анализа не должны превышать значений, приведенных в табл. 2.

Таблина 2

Массовая доля сурьмы, %	Допускаемое расхождение параллельных определений, %	Допускаемое расхождение результатов анализа, %	
От 0,0005 до 0,0010 включ.	0,0002	0,0003	
CB. 0,0010 * 0,0020 *	0,0004	0,0005	
» 0,0020 » 0,0050 »	0,0006	0,0008	

5.1-5.3. (Измененная редакция, Изм. № 2).

ИНФОРМАЦИОННЫЕ ДАННЫЕ

- 1. РАЗРАБОТАН И ВНЕСЕН Министерством цветной металлургии СССР
- УТВЕРЖДЕН И ВВЕДЕН В ДЕЙСТВИЕ Постановлением Государственного комитета СССР по стандартам от 27.08.79 № 3230
- 3. Стандарт полностью соответствует СТ СЭВ 921-78
- 4. B3AMEH ΓΟCT 12072.6-71
- 5. ССЫЛОЧНЫЕ НОРМАТИВНО-ТЕХНИЧЕСКИЕ ДОКУМЕНТЫ

Обозначение НТД, на который дана семлка	Номер пункта	Обозначеняе НТД, на который дана есылка	Номер пункта	
ΓΟCT 108982	2.2, 3.2, 4.2	ΓΟCT 20490-75	4.2	
ГОСТ 3118-77	2.2, 3.2, 4.2	ГОСТ 22159-76	4.2	
FOCT 3760-79	2.2, 4.2	TY 6-09-1646-77	2.2, 3.2	
FOCT 4204-77	2.2, 3.2, 4.2	TY 6-09-3677-74	2.2	
ΓΟCT 4233-77	4.2	TY 6-09-3704-74	3.2	
ΓΟCT 4461—77	2.2, 3.2, 4.2	TY 6-09-4011-75	4.2	
ГОСТ 5456—79	2.2	TY 6-09-4119-75	2.2	
ГОСТ 10929—76	2.2	TY 6-09-5313-87	3.2	
ΓΟCT 12072.0-79	1.1	77.7		

- Ограничение срока действия сиято по протоколу № 5—94 Межгосударственного Совета по стандартизации, метрологии и сертификации (ИУС 11-12—94)
- ИЗДАНИЕ с Изменениями № 1, 2, утвержденными в августе 1984 г., июле 1990 г. (ИУС 12-84, 11-90)