СТАЛЬ АРМАТУРНАЯ

МЕТОДЫ ИСПЫТАНИЯ НА РАСТЯЖЕНИЕ

Издание официальное

МЕЖГОСУДАРСТВЕННЫЙ СТАНДАРТ

СТАЛЬ АРМАТУРНАЯ

Методы испытания на растяжение

ГОСТ 12004—81

Reinforcing-bar steel. Tensile test methods

MKC 77.140.15 OKCTY 1909

Дата введения 01.07.83

Настоящий стандарт устанавливает методы испытаний на растяжение при температуре (20°15) °C арматурной стали номинальным диаметром от 3,0 до 80 мм (проволоки, стержни и арматурные канаты) круглого и периодического профиля, предназначенной для армирования обычных и предварительно напряженных железобетонных конструкций для определения механических свойств:

полного относительного удлинения при максимальной нагрузке;

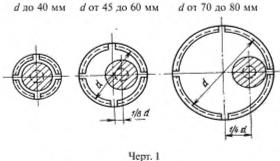
относительного удлинения после разрыва;

относительного равномерного удлинения после разрыва;

относительного сужения после разрыва;

временного сопротивления;

предела текучести (физического);


пределов текучести и упругости (условных);

модуля упругости (начального).

Термины, обозначения и определения приведены в приложении 1.

1. МЕТОДЫ ОТБОРА ОБРАЗЦОВ

1.1. Для испытания на растяжение применяются образцы арматуры круглой или периодического профиля с необработанной поверхностью номинальным диаметром от 3,0 до 80 мм. Допускается проводить испытания образцов горячекатаной стержневой арматуры номинальным диаметром более 20 мм на обточенных образцах цилиндрической формы с головками по возможности с сохранением на головках поверхности проката. Форма, размеры и требования к обработке рабочей части образцов — по ГОСТ 1497.

Вытачивать образцы следует так, чтобы продольные оси стержня и образца были параллельны. При диаметре стержня до 40 мм включительно продольные оси стержия и образца могут совпадать, при диаметре стержней от 45 до 60 мм и от 70 до 80 мм расстояние от оси стержия до оси образца должно соответственно составлять 1/8 и 1/4 d (черт. 1).

(Измененная редакция, Изм. № 2).

 1.2. Допускается перед испытанием проводить правку образца плавным давлением на него или легкими ударами молотка по

Издание официальное

Перепечатка воспрещена

© Издательство стандартов, 1981 © СТАНДАРТИНФОРМ, 2009 образцу, лежащему на подкладке. Подкладка и молоток должны быть из более мягкого материала, чем образец.

Недопустимость правки образцов должна быть оговорена в НТД на арматурную сталь.

 1.3. Полная длина образца арматуры выбирается в зависимости от рабочей длины образца и конструкции захвата испытательной машины.

Рабочая длина образца должна составлять:

для образца номинальным диаметром до 20 мм включительно — не менее 200 мм;

для образца номинальным диаметром свыше 20 мм — не менее 10d;

для арматурных канатов всех диаметров — не менее 350 мм.

Начальная расчетная длина для образцов стержневой арматуры и проволоки должна быть установлена по нормативно-технической документации на готовую продукцию, а для образцов арматурных канатов должна составлять 300 мм.

(Измененная редакция, Изм. № 1, 2).

1.4. Начальную площадь поперечного сечения необработанных образцов арматуры периодического профиля F_0 , мм², вычисляют по формуле

$$F_0 = \frac{m}{\rho I}$$
,

где m - масса испытуемого образца, кг;

длина испытуемого образца, м;

р — плотность стали, 7850 кг/м³.

- 1.5. Для обточенных и круглых образцов арматуры номинальным диаметром от 3,0 до 40,0 мм определяют площадь поперечного сечения измерением диаметра по длине образца в трех сечениях: в середине и по концам рабочей длины; в каждом сечении в двух взаимно перпендикулярных направлениях. Площадь поперечного сечения образца вычисляют как среднеарифметическое значение этих шести измерений.
- Площадь поперечного сечения каната определяют как сумму площадей поперечного сечения отдельных проволок, составляющих канат.

Допускается использовать номинальную площадь сечения канатов, указанную в нормативнотехнической документации на канаты.

(Измененная редакция, Изм. № 1).

- Начадьную расчетную длину I_в измеряют с погрешностью не более 0,5 мм.
- 1.8. Диаметры круглых и обточенных образцов арматуры номинальным диаметром от 3,0 до 40,0 мм измеряют штангенциркулем по ГОСТ 166 или микрометром по ГОСТ 6507.
- 1.9. Массу испытуемых образцов арматуры периодического профиля номинальным диаметром менее 10 мм определяют с погрешностью не более 1,0 г, образцов арматуры диаметром от 10 до 20 мм с погрешностью не более 2,0 г, а образцов диаметром более 20 мм с погрешностью не более 1% от массы образца.

Образцы арматурной стали взвешивают на весах по ГОСТ 29329, а длину образца измеряют металлической линейкой по ГОСТ 427.

2. АППАРАТУРА

- Применяют машины всех систем при условии их соответствия требованиям настоящего стандарта и ГОСТ 1497.
 - 2.2. При проведении испытаний должны соблюдаться требования:

надежное центрирование образца;

плавность нагружения;

средняя скорость нагружения при испытании до предела текучести не должна быть более 10 Н/мм² (1 кгс/мм²) в секунду; за пределом текучести скорость нагружения может быть увеличена так, чтобы скорость перемещения подвижного захвата машины не превышала 0,1 рабочей длины испытуемого образца в минуту; шкала силоизмерителя испытательной машины не должна превышать пятикратного ожидаемого значения наибольшей нагрузки Р для испытуемого образца арматуры;

конструкция захватов испытательной машины должна исключать возможность поворота концов каната вокруг оси образца.

C. 3 FOCT 12004-81

- Измерительные приборы должны соответствовать требованиям настоящего стандарта и другой НТД.
- При определении условных пределов упругости и текучести с помощью тензометра относительная длина деления шкалы тензометра не должна превышать:

0,005% базы тензометра при определении опр

0,05% базы тензометра при определении определении

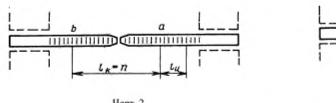
3. ПРОВЕДЕНИЕ ИСПЫТАНИЙ И ОБРАБОТКА РЕЗУЛЬТАТОВ

3.1. Величину относительного удлинения б, %, вычисляют по формуле

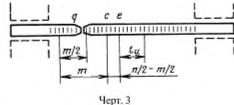
$$\delta = \frac{l_{K} - l_{0}}{l_{0}} \cdot 100.$$

В зависимости от величины начальной расчетной длины образца к букве добавляют индекс. Например, при начальной расчетной длине, равной 5d, $-\delta_4$, при 100 мм $-\delta_{100}$ и т. д.

Для обточенных образцов определение относительного удлинения — по ГОСТ 1497.


3.1.1. Конечную расчетную длину образца І, включающую место его разрыва, определяют следующим способом.

Перед испытанием образец на длине, больше рабочей длины образца, размечается на п равных частей при помощи меток, наносимых делительной машиной, скобками или керном. Расстояние между метками для арматуры диаметром 10 мм и более не должно превышать величину d и быть кратным 10 мм. Для арматуры диаметром менее 10 мм расстояние между метками принимается равным 10 мм. Допускается при разметке образцов расстояние между метками принимать более 10 мм и превышающим величину d, но не более величины начальной расчетной длины la.


Если число интервалов п, соответствующее начальной длине образца, получается дробным, его округляют до целого в большую сторону.

После испытания части образца тщательно складывают вместе, располагая их по прямой линии. От места разрыва в одну сторону откладывают n/2 интервалов и ставят метку a. Если величина п/2 оказывается дробной, то ее округляют до целого числа в большую сторону. Участок от места разрыва до первой метки при этом считается как целый интервал.

От метки a откладывают в сторону места разрыва n интервалов и ставят метку b (черт. 2). Отрезок ab равен полученной по месту разрыва конечной расчетной длине l.

Черт. 2

Если место разрыва ближе к краю захвата машины чем величина n/2 (черт. 3), то полученную после разрыва конечную расчетную длипу І, определяют следующим образом:

от места разрыва до крайней метки q у захвата определяют число интервалов, которое обозначают тим/2. От точки а к месту разрыва откладывают тимпервалов и ставят метку с. Затем от метки с откладывают n/2 - m/2 интервалов и ставят метку е.

Конечную расчетную длину образца /,, мм, вычисляют по формуле

$$l_r = cq + 2ce$$

где cq и ce — соответственно длина участка образца между точками с и q и с и e.

Если место разрыва находится на расстоянии от захвата, меньшем чем длина двух интервалов или 0.3I₀ — для образцов диаметром менее 10 мм, величина расчетной длины не может быть достоверно определена и проводят повторное испытание.

(Измененная редакция, Изм. № 2).

3.2а. Конечную расчетную длину образца I_k арматурных канатов определяют с помощью тензометров, навешиваемых на канат линеек или специальных приборов, позволяющих измерять деформацию образца до разрушения. Перед установкой тензометра, линеек или других приборов к образцу прикладывают начальную нагрузку, составляющую 0.1% - 0.15% от ожидаемого разрывного усилия.

(Введен дополнительно, Изм. № 1).

- 3.2. Относительное равномерное удлинение δ_{ρ} определяется во всех случаях вне участка разрыва на начальной расчетной длине, равной 50 или 100 мм. При этом расстояние от места разрыва до ближайшей метки начальной расчетной длины для арматуры диаметром 10 мм и более не должно быть менее 3d и более 5d, а для арматуры диаметром менее 10 мм от 30 до 50 мм.
- 3.2.1. Для определения величины относительного равномерного удлинения δ_p конечная расчетная длина I_u определяется по меткам (см. черт. 2 и 3).

Величину относительного равномерного удлинения δ_n , %, вычисляют по формуле

$$\delta_p = \frac{I_n - I_0}{I_0} \cdot 100.$$

- 3.2.2. Конечные расчетные длины l_{k} и l_{m} измеряют с погрешностью не более 0,5 мм.
- 3.2.3. Относительное удлинение и относительное равномерное удлинение после разрыва вычисляют с округлением до 0,5%. При этом доли до 0,25% отбрасывают, а доли 0,25% и более принимают за 0,5%.
- 3.3. Полное относительное удлинение при максимальной нагрузке δ_{max} может быть определено одним из способов:
- с помощью тензометров или иных специальных приборов, позволяющих язмерять деформации образца вплоть до разрушения;

суммированием остаточной деформации после разрушения образца с упругими деформациями при максимальной нагрузке по формуле

$$\delta_{\text{max}} = \delta_{\text{p}} + \frac{\sigma_{\text{B}}}{E_{\text{H}}} 100.$$

- 3.4. Относительное сужение после разрыва у определяется на круглых образцах проволоки и стержневой арматуры, а также на обточенных образцах цилиндрической формы в соответствии с требованиями ГОСТ 1497.
- 3.5. Временное сопротивление σ_n , H/mm^2 (кгс/мм²), вычисляют с погрешностью не более $5~H/mm^2$ (0,5 кгс/мм²) по формуле

$$\sigma_u = \frac{P_{\text{max}}}{F_0}$$

3.6. Предел текучести σ_i , H/mm^2 (кгс/мм²), вычисляют с погрешностью не более 5 H/mm^2 (0.5 кгс/мм²) по формуле

$$\sigma_{\tau} = \frac{P_{\tau}}{F_0}$$
.

- 3.7. Условный предел упругости σ_i определяют, исходя из величины допуска i на условномгновенную пластическую деформацию, равную от 0,02% до 0,1% расчетной длины по тензометру включительно. При этом к букве σ добавляют индекс, соответствующий принятому допуску i. Например, при допуске, равном 0,05%, условный предел упругости обозначается $\sigma_{0.05}$ и т. д.
- Условные пределы упругости и текучести могут быть определены аналитическим и графическим способами.

Тензометр на образец устанавливают после приложения начальной нагрузки, соответствующей 0,05—0,10 ожидаемой величины временного сопротивления σ_s.

При испытании арматурных канатов предварительно проводят не менее чем двукратное нагружение — разгружение в интервале 0,1—0,35 ожидаемого разрывного усилия.

Нагрузка прикладывается равными или пропорциональными этапами так, чтобы до нагрузки, соответствующей искомому пределу, было не менее 8—10 этапов нагружения, считая от начальной нагрузки.

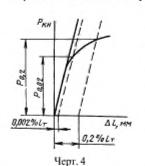
При достижении суммарной нагрузки, соответствующей 0,7—0,9 искомого предела, рекомендуется уменьшить величину этапа нагружения в два или четыре раза. Выдержка при постоянной нагрузке на каждом этапе нагружения без учета времени приложения нагрузки должна быть не более 10 с.

3.7.2. Условный предел текучести $\sigma_{0,2}$ определяют аналитическим способом. Вычисляют величину остаточной деформации $\Delta l_1 = 0.2\%$ базы тензометра; затем определяют среднюю величину упругой деформации Δl_2 на одном этапе нагрузки, исходя из величины средней деформации, найденной на этапах нагружения в интервале 0.10-0.40 предполагаемого усилия, соответствующего пределу текучести, а для арматурных канатов в интервале 0.10-0.40 временного сопротивления.

Нагрузка $P_{0,2}$, при которой будет обеспечено равенство $\Delta l = \Sigma \Delta l_2 + \Delta l_3$, соответствует условному пределу текучести $\sigma_{0,2}$ в $H/\text{мм}^2$ (кгс/мм²), который вычисляется с погрешностью не более 5 H/mm^2 (0.5 кгс/мм²) по формуле

$$\sigma_{0,2} = \frac{P_{0,2}}{F_0}$$
.

Условные пределы упругости определяются в том же порядке: вычисляют величину остаточной деформации, например для $\sigma_{0,02}$ равную $\Delta I_{\rm ocr} = 0.02\%$ базы тензометра, используя среднюю величину упругой деформации ΔI_y на одном этапе, определяют нагрузку $P_{0,02}$, соответствующую удлинению $\Delta I = \Sigma \Delta I_1 + \Delta I_{\rm ocr}$.


Условный предел упругости $\sigma_{0.02}$, H/мм² (кгс/мм²), вычисляют с погрешностью не более 5 H/мм² (0,5 кгс/мм²) по формуле

$$\sigma_{0,02} = \frac{P_{0,02}}{F_0}$$
.

3.7.3. Графический способ определения условных пределов текучести и упругости: строится диаграмма растяжения «нагрузка---удлинение». По оси ординат откладывают нагрузку, а по оси абсцисс — соответствующее удлинение (черт. 4).

На диаграмме проводится прямая, парадлельная участку пропорциональной зависимости $P - \Delta I$, на расстоянии от прямой части диаграммы вправо по оси абсцисс в направлении, равном заданной величине допуска на условно-мгновенную пластическую деформацию для условных пределов упругости или текучести. Сила, соответствующая пределу упругости или текучести, определяется точкой пересечения этой прямой с диаграммой растяжения.

При определении условного предела текучести и условного предела упругости графическим способом диаграмму растяжения $P - \Delta l$ строят в таком масштабе, при котором 0,1% деформации образца соответствовал участок оси ординат длиной не менее 10 мм, а нагрузке, примерно соответ-

ствующей условному пределу текучести, — участок оси абсцисс не менее 100 мм.

Допускается определение условного предела текучести $\sigma_{0,2}$ по машинной диаграмме по ГОСТ 1497 с проведением периодических контрольных испытаний с помощью тензометров.

Объем, периодичность и методика проведения испытаний должны быть установлены по нормативно-технической документации на готовую продукцию.

Примеры определения условных пределов упругости и текучести приведены в приложениях 2 и 3.

(Измененная редакция, Изм. № 2).

 $_{
m qepr.\,4}$ 3.8. Для стержней и проволоки начальный модуль упругости равен отношению приращения напряжений в интервале от 0,1 до 0,35 $P_{
m max}$ к относительному удлинению образца в том же интервале нагружения.

Начальный модуль упругости Е, определяется с погрешностью не более 1% по формуле

$$E_{H} = \frac{(P_{0,35} - P_{0,10}) l_0}{(\Delta l_{0,35} - \Delta l_{0,10}) F_0}.$$

При этом в интервале от 0.1 до $0.35P_{\rm max}$ должно быть не менее трех последовательных этапов нагружения.

3.8.1. Для арматурных канатов начальный модуль упругости определяется по формуле п. 3.8 после двукратного нагружения и разгружения в интервале 0.1 и $0.35P_{max}$.

- 3.9. За результат испытания принимаются механические свойства, полученные при испытании каждого образца. Количество образцов для испытаний указывается в нормативно-технической документации на арматурную сталь.
 - 3.10. Результаты испытаний не учитываются в следующих случаях:

при разрыве образца по нанесенным меткам, если при этом какая-либо характеристика механических свойств по своей величине не отвечает установленным требованиям;

при разрыве образца в захватах испытательной машины;

при обнаружении ошибок в проведении испытаний или записи результатов испытаний.

ПРИЛОЖЕНИЕ 1 Справочное

ТЕРМИНЫ, ОБОЗНАЧЕНИЯ И ОПРЕДЕЛЕНИЯ

Термин	Условное обозначение	Единица измерения	Определение
1. Номинальный диа- метр образца	d	мм	Для стержневой арматуры равен номиналь- ному диаметру равновеликих по площади по- перечного сечения круглых стержней; для упрочненной вытяжки стержневой ар- матурной стали равен номинальному диаметру стержней до их вытяжки; для арматурной проволоки равен номиналь- ному диаметру проволоки до нанесения на нее периодического профиля; для арматурных канатов равен их номиналь-
2. Начальная площадь поперечного сечения об- разиа	\mathcal{F}_0	mm ²	ному диаметру Площадь поперечного сечения образца до его испытания
3. Рабочая длина образ- ца	$I_{\rm f}$	MM	Часть образца между зажимными устрой- ствами испытательной машины
3а. Начальная расчет- ная длина	I_0	ММ	Расчетная длина до начала испытания об- разца, на базе которой проводится измерение удлинений
4. Полная длина образ- па	I_n	MM	Длина образца, равная рабочей длине плюс участок для закрепления стержней в захватах
5. Конечная расчетная длина	$I_{\mathbf{k}}$	мм	Расчетная длина, измеренная после разры- ва образца на участке, включающем место раз- рыва
Конечная расчетная длина, не включающая место разрыва	I_{μ}	MM	Расчетная длина, измеренная после разры- ва образца на участке, не включающем место разрыва
7. Расчетная длина по тензометру	L,	ММ	Участок рабочей длины образца, равный базе тензометра
8. Осевая растягиваю- щая нагрузка	P	Н (кгс)	Нагрузка, действующая на образец в дан- ный момент испытания
9. Напряжение	σ	H/мм ² (кгс/мм ²)	Напряжение, определяемое отношением нагрузки P к площади поперечного сечения F_0 $\left(\sigma = \frac{P}{F_0}\right)$

Термин	Условное обозначение	Единица измерения	Определение
10. Полное относительное удлинение при максимальной нагрузке	δmax	%	Отношение приращения расчетной длины образца, определяемое в момент начала сни- жения наибольшей нагрузки, предшествующей разрушению, к начальной расчетной длине, выраженное в процентах от начальной расчет- ной длины
11. Относительное уд- линение после разрыва	δ	%	Отношение приращения расчетной длины образца, в пределах которой произошел раз- рыв, к начальной расчетной длине, выражен- ное в процентах от начальной расчетной дли- ны
12. Относительное рав- номерное удлинение пос- ле разрыва	$\delta_{\rm p}$	%	Отношение приращения расчетной длины образца после разрыва на участке, не включа- ющем место разрыва, к начальной расчетной длине, выраженное в процентах от начальной расчетной длины
13. Относительное су- жение после разрыва	Ψ	%	Отношение разности начальной и мини- мальной площадей поперечного сечения образ- ца после разрыва к начальной площади попе- речного сечения, выраженное в процентах
14. Временное сопро- тивление	$\sigma_{_{\rm B}}$	H/мм ² (кгс/мм ²)	Напряжение, соответствующее наибольшей нагрузке P_{max} , предшествующей разрушению образна
15. Предел текучести (физический)	$\sigma_{_{\!\scriptscriptstyle T}}$	H/мм ² (кгс/мм ²)	Напряжение, соответствующее наименьшей нагрузке P_{τ} , при которой образец деформиру- ется без заметного ее увеличения
16. Предел упругости (условный)	σ_{i}	Н/мм² (кге/мм²)	Напряжение, при котором условно-мгно- венная пластическая деформация достигает за- данной величины расчетной длины по тензо- метру
17. Предел текучести (условный)	$\sigma_{0,2}$	H/мм ² (кгс/мм ²)	Напряжение, при котором условно-мгно- венная пластическая деформация достигает 0,2% расчетной длины по тензометру
18. Модуль упругости (начальный)	E_{μ}	H/мм ² (кгс/мм ²)	Отношение приращения напряжения к со- ответствующему приращению упругой дефор- мации на начальном этапе нагружения

ПРИЛОЖЕНИЕ 1. (Измененная редакция, Изм. № 1).

ПРИЛОЖЕНИЕ 2 Рекомендуемое

ПРИМЕР ОПРЕДЕЛЕНИЯ УСЛОВНОГО ПРЕДЕЛА УПРУГОСТИ $\sigma_{0,02}$ И УСЛОВНОГО ПРЕДЕЛА ТЕКУЧЕСТИ $\sigma_{0,2}$ ДЛЯ СТЕРЖНЕВОЙ АРМАТУРЫ И ПРОВОЛОКИ

1. Аналитический метод

- 1.1. Образец горячекатаной арматурной стали марки A-IV периодического профиля номинальным диаметром 14 мм. Полная длина образца 400 мм. Начальная площадь сечения $F_0 = 150$ мм².
- 1.2. Испытание проводят с измерением тензометрами деформаций по двум диаметрально противоположным ребрам образца. База одного тензометра $l_z = 100$ мм, а сумма баз двух тензометров $2l_z = 200$ мм.

- 1.3. Величина остаточной деформации при определении условного предела текучести равна 0,2% от суммарной базы тензометров или 0,4 мм при длине 200 мм. Величина остаточной деформации при определении предела упругости равна 0,02% от суммарной базы тензометров или 0,04 мм при длине 200 мм.
- 1.4. На образец после его установки в захваты испытательной машины прикладывается начальная нагрузка, равная $1000~\rm kr$, которая составляет примерно $0.08P_{\rm max}$. Устанавливают тензометры и проводят дальнейшее нагружение образца этапами по $1000~\rm kr$ до $7000~\rm kr$, что составляет $0.7P_{0.2}$, и далее по $500~\rm kr$ до общего удлинения образца порядка 1.0%, что в данном случае соответствует нагрузке $11500~\rm kr$.

Результаты измерений нагрузок и деформаций записывают в таблице испытаний (см. таблицу).

Как видно из таблицы, в диапазоне от 1000 до 4000 кг одному этапу нагрузки в 1000 кг соответствует суммарная деформация 6×10 мм. Определение условных пределов упругости и условного предела текучести аналитическим способом проводится с помощью данных, приведенных в таблице.

		Отсяет по шкале тензометра, мм		Сумиарная деформация	Прираще - ние дефор -	Упругая деформация	Условно- мгновенная
Номер п/п	Номер п/п Нагрузка Р. Н (кгс)	левый	правый	ΣΔ/×10 ⁻² , MM	мации на одном этапе 10°2, мм	ΣΔ(×10 ⁻² , MM	деформации $\Sigma(\Delta l - \Delta l_5) \times \times 10^{-2}$, мм
1	9800 (1000)	0	0	0	0	0	0
2	19600 (2000)	2,5	3,0	5,5	5,5	6,0	0,5
3	29400 (3000)	6.0	6,0	12,0	6,5	12,0	0
4	39200 (4000)	9.0	9,0	18,0	6.0	18.0	0
5	49000 (5000)	12.0	12,0	24,0	6,0	24,0	0
6	58800 (6000)	15,0	15,0	30,0	6,0	30,0	0
7	68600 (7000)	18.0	18,0	36.0	6,0	36.0	0
8	73500 (7500)	20,0	19,0	39.0	3.0	39,0	0
9	78400 (8000)	22,0	21,0	43,0	4,0	42.0	1,0
10	83300 (8500)	24.0	23,5	47.5	4,5	45,0	2,5
11	88200 (9000)	26.5	25,5	52.0	4,5	48,0	4,0
12	93100 (9500)	28.0	29,0	57.0	5,0	51,0	6,0
13	98000 (10000)	37.0	40,0	77.0	20,0	54,0	23.0
14	102900 (10500)	52,0	55.0	107,0	30,0	57.0	50.0
15	107800 (11000)	74.0	77,0	151.0	44,0	60.0	91,0
16	112700 (11500)	98.0	102,0	200,0	49.0	63.0	137,0
17	117600 (12000)	_	_	_			_

По данным опыта величина остаточной деформации 0.04 мм соответствует нагрузке, равной 9000 кгс, т. е. $P_{0.02} = 9000$ кгс, Следовательно, условный предел упругости равен:

$$\sigma_{0,02} = \frac{P_{0,02}}{F_0} = \frac{9000}{150} = 60 \text{ kgc} / \text{mm}^2$$
.

Величина остаточной деформации, соответствующая условному пределу текучести, в данном случае составляет 0.4 или 40 · 10 · 2 мм.

Как видно из таблицы, величина остаточной деформации 0,4 мм несколько больше всличины деформации при нагрузке 10000 кгс и меньше, чем $\Sigma(\Delta l - \Delta l_y)$ при нагрузке 10500 кгс. Поэтому $P_{0,2}$ определяем по интерполяции

$$\begin{split} P_{0,2} = &10000 + \frac{500 \, (40,0-23,0)}{50.0-23,0} = &10000 + \frac{500 \cdot 17.0}{27,0} = 10000 + 315 = 10315 \,\,\mathrm{krc}; \\ \sigma_{0,2} = & \frac{P_{0,2}}{F_0} = & \frac{10315}{150} = 68.8 \approx 69 \,\,\mathrm{krc} \,\,/\,\,\mathrm{mm}^2 \,\,. \end{split}$$

2. Графический метод

2.1. По данным измерений деформаций, приведенным в таблице, строим график $P-\Delta I$. По оси ординат откладываем нагрузку, а по оси абсписс — соответствующее удлинение ΔI (см. черт. 4). На графике проводим прямые, парадлельные участку пропорциональной зависимости диаграммы $P-\Delta I$, на расстоянии от прямой части диаграммы в направлении оси абсциес, равном для условного предела текучести 0,4 мм и для предела упругости 0,04 мм. В точках пересечения этих линий диаграммой растяжения определяем нагрузки $P_{0,2}$ и $P_{0,02}$, соответствующие условным пределам текучести $\sigma_{0,2}$ и упругости $\sigma_{0,02}$.

$$\begin{split} P_{0,2} &= 10300 \text{ krc}; \\ \sigma_{0,2} &= \frac{10300}{150} = 68.7 \text{ krc} / \text{ mm}^2 = 69.0 \text{ krc} / \text{ mm}^2; \\ P_{0,02} &= 9000 \text{ krc}; \\ \sigma_{0,02} &= \frac{9000}{150} = 60.0 \text{ krc} / \text{ mm}^2. \end{split}$$

ПРИЛОЖЕНИЕ З Рекомендуемое

ПРИМЕР ОПРЕДЕЛЕНИЯ УСЛОВНОГО ПРЕДЕЛА ТЕКУЧЕСТИ АРМАТУРНЫХ КАНАТОВ

Аналитический метод

- 1. Испытанию подвергают образец каната номинальным диаметром 15 мм и начальной площадью поперечного сечения 141,6 мм². Измеряют деформацию тензометрами по двум диаметрально противоположным сторонам образца. Цена деления шкалы тензометра 0,01 мм. База тензометра 300 мм. Допуск на величину остаточной деформации при определении условного предела текучести 0,2% от базы тензометра 300 мм составляет 0,6 мм. Учитывая, что измерение деформации производят с двух сторон образца, заданное удвоенное отклонение составит 0,6×2 − 1,2 мм.
- 2. К испытуемому образцу после его установки в захваты испытательной машины прикладывают начальную нагрузку, равную 2000 кгс, которая соответствует примерно 0.1 от ожидаемого разрывного усилия $P_{\rm max} \approx 23000$ кгс. Устанавливают тензометр, снимают начальные отсчеты и проводят двукратное нагружение разгружение образца в интервале 0.10-0.35 $P_{\rm max}$. Затем образец нагружают от 0.10 до 0.35 $P_{\rm max}$ одной ступенью нагружения, от 0.35 до 0.8 $P_{\rm max}$ не менее семи ступеней. Результаты измерений нагрузок и деформаций на каждом этапе нагружения записывают в таблицу.

Далее проводится обработка показаний тензометров.

	The state of the s	але гензометра. Сумма отсчетов Полная Упругая	Условно мгно венная пласти			
Нагрузка Р. Н (кгс)	левыв	правый	тензометрам деформация деформация ческая	ческая деформа иня $\Sigma(\Delta l_0 - \Delta l_2)$, 10 ² , мм		
19600 (2000)	8	7	15	0	0	0
78400 (8000)	72	68	140	125	125	.0
19600 (2000)	8	7	15	0	0	0
78400 (8000)	68	67	135	120	120	0
19600 (2000)	8	7	15	0	0	0
39200 (4000)	28	27	55	40	40	0
58800 (6000)	48	47	95	80	80	0
78400 (8000)	68	67	135	120	120	0
98000 (10000)	88	87	175	160	160	0
117600 (12000)	108	107	215	200	200	0
127200 (14000)	127	128	255	240	240	0
137000 (15000)	141	140	281	266	260	6
146800 (16000)	154	154	308	293	280	13
150600 (17000)	168	168	336	321	300	21
160400 (18000)	185	184	369	354	320	34
170200 (19000)	203	202	405	390	340	50
175100 (19500)	217	218	435	420	350	70
184900 (20000)	230	230	460	445	360	85
194700 (20500)	254	253	507	492	370	122
204500 (21000)	293	293	586	571	380	191

 Заданное отклонение от пропорциональной зависимости между напряжением и деформацией несколько больше полученной при нагрузке 20500 кгс и меньше чем при нагрузке 20000 кгс.
 Поэтому P_{0.2} определяем по интерполяции

$$P_{0,2} = 20000 + \frac{500(120 - 86)}{122 - 86} = 20472 \text{ krc};$$

 $\sigma_{0,2} = \frac{20472}{141.6} = 144.6 \text{ krc} / \text{mm}^2.$

ИНФОРМАЦИОННЫЕ ДАННЫЕ

- 1. РАЗРАБОТАН И ВНЕСЕН Министерством металлургии СССР
- УТВЕРЖДЕН И ВВЕДЕН В ДЕЙСТВИЕ Постановлением Государственного комитета СССР по стандартам от 15.12.81 № 5419
- 3. B3AMEH FOCT 12004-66
- 4. ССЫЛОЧНЫЕ НОРМАТИВНО-ТЕХНИЧЕСКИЕ ДОКУМЕНТЫ

Обозначение НТД, на который дана ссылка	Номер пункта, подпункта
ΓΟCT 166—89	1.8
ΓΟCT 427—75	1.9
ΓΟCT 1497—84	I.1; 2.1; 3.1; 3.4; 3.7.3
ΓΟCT 650790	1.8
ΓOCT 29329—92	1.9

- Ограничение срока действия снято по протоколу № 5—94 Межгосударственного совета по стандартизации, метрологии и сертификации (ИУС 11-12—94)
- ИЗДАНИЕ (сентябрь 2009 г.) с Изменениями № 1, 2, утвержденными в июне 1985 г., августе 1990 г. (ИУС 9—85.11—90)

Редактор М.Н. Максимова Технический редактор Н.С. Гришанова Корректор Е.Ю. Митрофанова Компьютерная верстка В.Н. Грищенко

Подписано в печать 29.10,2009. Формат 60х841/_{кг.} Бумага офсетная, Гарнитура Таямс, Печать офсетная. Усл. веч. л. 1,40. Уч.-изд. л. 1,10. Тираж 84 экз. Зак. 669.

ФГУП «СТАНДАРТИНФОРМ», 123995 Москва, Гранатныя пер., 4.

www.gostinfo.ru info@gostinfo.ru

Набрано в Калужской типографии стандартов.

Отпечатано в филиале ФГУП «СТАНДАРТИНФОРМ» - тип. «Московский печатник», 105062, Москва, Лялин пер., 6.