

ГОСУДАРСТВЕННЫЙ СТАНДАРТ СОЮЗА ССР

ГОСУДАРСТВЕННАЯ СИСТЕМА ОБЕСПЕЧЕНИЯ ЕДИНСТВА ИЗМЕРЕНИЙ

АРЕОМЕТРЫ

ЗНАЧЕНИЯ КОЭФФИЦИЕНТОВ ПОВЕРХНОСТНОГО НАТЯЖЕНИЯ ЖИДКОСТЕЙ

> FOCT 8.428—81 [CT C9B 630—84]

Издание официальное

ГОСУДАРСТВЕННЫЙ КОМИТЕТ СССР ПО СТАНДАРТАМ
Москва

ГОСУДАРСТВЕННЫЙ СТАНДАРТ СОЮЗА ССР

Государственная система обеспечения единства измерений АРЕОМЕТРЫ

Значения коэффициентов поверхностного натяжения жидкостей

State system for ensuring the uniformity of measurements. Areometers

The values of coefficients of surface tension of liquids ГОСТ 8.428—81*

[CT C3B 630-84]

OKCTY 0008

Постановлением Государственного комитета СССР по стадартам от 17 мюня 1981 г. № 2968 срок введения установлен с 01.07.82

в части значений коэффициентов поверхностного натяжения по табл. 6 и 16 с 01.07.85

 Настоящий стандарт устанавливает значения коэффициента поверхностного натяжения наиболее важных жидкостей, применяемых при поверке и испытаниях ареометров, а также жидкостей, плотность или концентрацию которых измеряют ареометрами.

Стандарт соответствует СТ СЭВ 630-84 в части, изложенной

в справочном приложении.

 Зависимости коэффициентов поверхностного натяжения σ₂₀ от плотности р₂₀ при температуре 20°С и нормальном атмосферном

давлении приведены в табл. 1-17.

 Зависимость коэффициента поверхностного натяжения σ₂₀ от плотности ρ₂₀ и концентрации C_м водных растворов сахара при температуре 20°C и нормальном атмосферном давлении приведена в табл. 18.

Издание официальное

Перепечатка воспрещена

Переиздание (декабрь 1985 г.) с Изменением № 1, утвержденным в сентябре 1985 г. (ИУС 12—85).

 Зависимости коэффициента поверхностного натяжения от от температуры t жидких углеводородов, дистиллированной воды и водных растворов этанола (этилового спирта) при нормальном атмосферном давлении приведены в табл. 19—21.

2-4. (Измененная редакция, Изм. № 1).

Таблица 1 Зависимость σ_{2b} от ρ_{2b} смеси серной кислоты (H_2SO_4) (с массовой долей 96%) с водным раствором этанола (с объемной долей спирта 85.5%)

р ₂₂ , кт/м³	σ₂₀, иН/м	Ω ₂₆₊ KΓ/M ³	од, мН/м	P20, K7/M ⁸	σ ₂₁ , иН/1
900	26,0	1220	39.4	1540	46.8
910	26,2	1230	39.9	1550	46.9
920	26,4	1240	40,3	1560	47.1
930	26.6	1250	40.7	1570	47.2
940	26,9	1260	41.1	1580	47,3
950	27,2	1270	41,5	1590	47.5
960	27,5	1280	41,8	1600	47.6
970	27,8	1290	42,2	1610	47.8
980	28,2	1300	42,5	1620	48,0
990	28,6	1310	42,8	1630	48.2
1000	29,0	1320	43.1	1640	48.4
1010	29,4	1330	43.4	1650	48.6
1020	29,8	1340	43,7	1660	48.9
1030	30,3	1350	43,9	1670	49,1
1040	30,7	1360	44,2	1680	49.4
1050	31,2	1370	44,4	1690	49,7
1060	31,7	1380	44,6	1700	50,0
1070	32,2	1390	44,8	1710	50,3
1080	32,7	1400	45,0	1720	50,7
1090	33,2	1410	45,2	1730	51,1
1100	33,7	1420	45,3	1740	51,5
1110	34,2	1430	45,5	1750	51,9
1120	34,7	1440	45,6	1760	52,3
1130	35,2	1450	45,8	1770	52,8
1140	35,7	1460	45.9	1780	53,3
1150	36,2	1470	46,0	1790	53,8
1160	36,7	1480	46,1	1800	54,3
1170	37,1	1490	46,3	1810	54,8
1180	37,6	1500	46,4	1820	55,3
1190	38,1	1510	46,5	1830	55,9
1200	38,6	1520	46,6	1840	56,4
1210	39,0	1530	46,7		

Таблица 5

Таблица 2

Зависимость	O20	OT	P20	нес	ртепроду	KTOE
-------------	-----	----	-----	-----	----------	------

р _{э0+} кг/м³	σ _{Nν} MH/M	Р₂э, кг/и ⁵	σ _N , мH/м
600	15,0	840	27.0
620	16,0	860	28.0
640	17,0	880	29.0
660	18,0	900	30,0
680	19,0	920	31,0
700	20,0	940	32,0
720°	21,0	960	33.0
740*	22,0	980	34.0
760*	23,0	1000	35.0
780	24,0	1100	35.0
800	25.0		
820	26.0	1	

Значения соответствуют поверхностному натяжению этилового эфира.
 (Измененная редакция, Изм. № 1).

	Зави	симость	σ20 οτ ρ	20 BHH	градно	го сока	1	140%	н ц а
ρ₂о, кг/м³	1000	1020	1040	1060	1080	1100	1120	1140	1150
σ₂0, мН/м	72,6	72,8	73,0	73,3	73,5	73.8	74,0	74,3	74.4

	Зависимо	ость σ20 от ρ	20 молока и с	ливок	гаолица 4
ρ₂о, кг/м³	1010	1020	1030	1040	1050
σ20, мН/м	45,0	45,0	45,0	45,0	45,0

Зависимость бра от бра пивного сусла

ρπ, кг/м³	σ₂, мН/м	ρ ₂₆ , κτ/m ¹	σ ₁₀ , мН/м	P ₈₀ Kr/M³	б ы, мН/м
1000,0	60.0	1008	50,2	1018	45,9
1000,5	58,6	1009	49,6	1019	45,5
1001,0	57,7	1010	49.0	1020	45,2
1001.5	56,7	1011	48,5	1021	44,9
1002.0	55.9	1012	48.1	1022	44.7
1003,0	54,5	1013	48.1 47,7	1023	44,4
1004	53.4	1014	47.3	1024	44,1
1005	52,5	1015	46,9	1025	43,9
1006	51,6	1016	46.5	1026	43,7
1007	50,9	1017	46,2	1027	43.4

р _{ээн} кт/м ⁵	σю, мН/м	0 ₁₀ , кт/м ³	би, мН/м	ρ ₁₀ , κτ/m ³	б;;, мН/ы
1028	43,2	1036	41,7	1044	40,9
1029	43.0	1037	41.6	1045	40,9
1030	42.8	1038	41.4	1050	40,9
1031	42,6	1039	41,3	1060	40,9
1032	42.4	1040	41,2	1070	41,3
1033	42,2	1041	41,1	1080	41,7
1034	42,0	1042	41,0	1090	42.1
1035	41,9	1043	41.0	1100	42,5

(Измененная редакция, Изм. № 1). Зависимость σ_{20} от ρ_{20} морской воды

Таблица 6-

ρ ₂₀ , кг/м³	1000	1010	1020	1030
σ₂о, мН/м	73,9	74,4	74,9	75,5

Таблица? Зависимость σ_{20} от ρ_{20} водных растворов серной кислоты (H₂SO₄)

р _{эз} , кт/м ⁸	σ₂, мН/м	р ₂₀ , кг/м³	σ ₂₈ , мН/м	ρ ₂₀ , кг/м³	σ₂, мН/н
1000	72,8	90	75,8	80	75,2
10	72,8	1300	75,9	90	74,9
20	72,8	10	76,0	1600	74,7
30	72,9	20	76,0	10	74,5
40	72,9	30	76.1	20	74,4
50	73,0	40	76.1	30	74,0
60	73,1	50	76.2	40	73.8
70	73,2	60	76,2	50	73,6
80	73,3	70	76,2	60	73,3
90	73,5	80	76,2	70	73,1
1100	73,6	90 .	76.2	80	72,8
10	73,7	1400	76,2	90	72.4
20	73.8	1 10	76,2	1700	72,2
30	73,9	20	76,2	10	71.8
40	74,0	30	76,3	20	71,4
50	74.1	40	76.3	30	70,8
60	74,3	50	76,2	40	70,3
70	74,5	60	76,2	50	69.9
. 80	74,5	70	76.1	60	69.2
90	74,7	80	76.2	70	68.6
1200	74,9	90	76,2	80	67,8
10	74,9	1500	76,1	90	66,7
20	75,0	10	76,0	1800	65,5
30	75,2	20	75,9	10	64.1
40	75,3	30	75,8	20	62,5
50	75,4	40	75,7	30	60,3
-60	75,5	50	75.6	40	57,8
70	75,6	60	75.4		
80	75,7	70	75,3		

Таблица 8 Зависимость σ_{20} от ρ_{20} водных растворов соляной кислоты (HCI)

р _ж , кг/м²	Си, мН/м	р ₂₀ , нт/м ³	σ;;, мН/м
1000	72,6	1110	70,6
1010	72,4	1120	70,3
1020	72,3	1130	69,9
1030	72,1	1140	69,4
1040	72,0	1150	68,9
1050	71,8	1160	68,3
1060	71,7	1170	67,7
1070	71,5	1180	67,1
1080	71,3	1190	66,4
1090	71,1	1200	65,7
1100	70,9		

Таблица 9 Зависимость σ_{20} от ρ_{20} водных растворов азотной кислоты (HNO₂)

1000 1010 1020	72,6			1	
1020		1180	68,0	1360	59,2
	72.3	1190	67,7	1370	58,5
	72.1	1200	67.3	1380	57,7
1030	71,8	1210	67.0	1390	56,9
1040	71.6	1220	66.6	1400	56,1
1050	71.4	1230	66,3	1410	55,2
1060	71,2	1240	65,9	1420	54,3
1070	70.9	1250	65.5	1430	53,3
1080	70.7	1260	65,1	1440	52,2
1090	70,4	1270	64,6	1450	50,9
1100	70.2	1280	64,2	1460	49,5
1110	69.9	1290	63.7	1470	48,0
1120	69,7	1300	63,2	1480	46,4
1130	69.4	1310	62.6	1490	44,7
1140	69.1	1320	62,0	1500	42,9
1150 -	68,8	1330	61.3	1510	41,0
1160	68,6	1340	60.6	1520	39.0
1170	68,3	1350	59.9		

Таблица 10 Зависимость σ_{20} от ρ_{20} водных растворов азотной кислоты (HNO₃) (с массовой долей 48,5%) и азотнокислой ртуги (Hg(NO₃)₂)

ρ ₂₀ , кг/м³	σ20. мН/м	р ₁₈ , кг/м²	σ ₁₀ , мН/м	ρ ₂₀₁ , κτ/η ²	o _{н, мН/в}
1500	52,9	1530	52,3	1560	51,6
1510	52,7	1540	52,0	1570	51,4
1520	52,5	1550	51,8	1580	51,2

Продолжение табл. 10

р _и , кг/м³	σα, мН/м	ر+ KE/M³	σи, мН/м	р∞. кг/м*	σ ₃ , мН/я
1590	51,0	1730	48.7	1870	51,1
1600	50.8	1740	48.7	1880	51,4
1610	50,6	1750	48,7	1890	51.7
1620	50,4	1760	48.8	1900	52.1
1630	50.1	1770	48.9	1910	52,4
1640	49,9	1780	49,0	1920	52,8
1650	49,7	1790	49.2	1930	53,2
1660	49.5	1800	49,3	1940	53,6
1670	49,3	1810	49.5	1950	54.0
1680	49.1	1820	49,7	1960	54,4
1690	48.8	1830	49.9	1970	54,8
1700	48.8	1840	50.2	1980	55,1
1710	48,8	1850	50,5	1990	55,5
1720	48.7	1860	50.8	2000	55,9

 $\label{eq:Tadinu} T\,a\,d\,\pi\,u\,u\,a\,11$ Зависимость σ_{22} от ρ_{10} водных растворов хлористого натрия (NaCl)

ρ ₂₀ , кг/м³	би, мН/и	P10, KI/M ³	о ₂₉ , жН/м
1010	74,4	1120	80,1
1020	74.9	1130	80,6
1030	75,5	1140	81,1
1040	76.0	1150	81,6
1050	76,5	1160	82.0
1060	77,1	1170	82.6
1070	77.6	1180	83.2
1080	78,t	1190	83,8
1090	78.6	1200	84.4
1100	79,1	1210	85.1
1110	79,6		10.00

Табляца 12 Зависимость σ_{20} от ρ_{20} водных растворов гидроокиси натрия (NaOH) и водных растворов основной соли хлористого магния (MgCl₂)

ρ _N , κι/n ¹	g ₂₆ , иН/м	р ₁₈ , кг/м ³	σ ₂₀ , мН/м	ры, кс/ м *	о м, мН/м
1000	72,6	1080	75,8	1160	80,6
1010	72.8	1090	76.4	1170	81,3
1020	73.1	1100	76,9	1180	82,0
1030	73,5	1110	77.5	1190	82.7
1040	73,9	1120	78,1	1200	83,4
1050	74,3	1130	78,7	1210	84,2
1060	74,8	1140	79,3	1220	84,9
1070	75,3	1150	80,0	1230	85,7

Продолжение табл. 12

ρ ₉₀ , кг/м³	σ ₁₀ , мН/м	026, кг/и³	σ₂о, мН/м	р ₂₅ , кг/м³	Са, мН/н
1240	86,5	1280	89,8	1320	93,4 94,3
1250 1260	87,3 88,1	1290 1300	90,7 91,6	1330	95,2
1270	89,0	1310	92,5	1350	96,2

Таблица 13 Зависимость σ_{20} от ρ_{20} водных растворов гидроокиси калия (КОН)

ρ ₂₀ , κι/м ³	G21, МН/M	р ₂₁ . кг/м³	σ ₂₀ , мН/н	р ₂₉ , кг/м ³	σ ₁₀ , μΗ/s
1000	72.6	1110	76,9	1220	82,6
1010	72,8	1120	77,4	1230	83.2
1020	73,2	1130	77,8	1240	83,7
1030	73,5	1140	78.3	1250	84,3
1040	73.9	1150	78,8	1260	84,9
1050	74,3	1160	79,3	1270	85,5
1060	74.7	1170	79,9	1280	86,1
1070	75,1	1180	80,4	1290	86,7
1080	75.6	1190	81,0 81,5	1300	87,4
1090	76.0	1200			
1100	76.4	1210	82.0		1

Таблица 14 Зависимость σ_{20} от ρ_{20} смесей глицерина ($C_3H_3(OH)_1$) с водой

р _{м+} кг/м ^в	o _N , wH/m	р ₂₀ , кг/м²	σ₂, мН/м	Pat Kr/M³	σ ₂₀ , мН/в
1000	72,6	1090	68,7	1180	65,8
1010	71,9	1100	68,3	1190	65,5
1020	71,4	1110	68,0	1200	65,2
1030	71.0	1120	67,6	1210	64,9
1040	70,6	1130	67,3	1220	64,6
1050	70,2	1140	67,0	1230	64,4
1060	69,8	1150	66,7	1240	64,1
1070	69.4	1160	- 66,4	1250	63.8
1080	69.0	1170	66.1		

Таблица 15 Зависимость σ₂₀ от ρ₂₀ водного раствора аммиака (NH₄OH)

р ₁₀ , кг/м ³	880	890	900	910	920	930	940	950	960	970	980	990	1000
0 20, мН/м	54,6	55,4	56,3	57,3	58,5	59,8	61,2	62,8	64,5	66,4	68,3	70,3	72,6

Табл. 7—15. (Измененная редакция, Изм. № 1).

Таблица 16

р ₂₀ , кг/м ³	1000	1010	1020	1030	1040	1050	1060
-------------------------------------	------	------	------	------	------	------	------

$\rho_{20},~\kappa r/m^3$	1000	1010	1020	1030	1040	1050	1060
σ20, мН/м	72,6	71,1	68,1	64,0	59,2	53,9	48,1

Таблица 17 Зависимость б29 от р20 дубильного раствора

р _а , кг/и³	σ ₂₂ , мН/м
1000—1270	55

Таблица 18 Зависимость σ_{20} от ρ_{20} и $C_{\rm st}$ водных растворов сахара ($C_6H_{12}O_8$)

о _ю , нН/м	Ø10, KEÍM³	Массовая доля са- хара, %	σ ₂₀ , мН/н	р _{28 в} кг/м ²	Массовая доля са- хара, %	б _{ге} . мН/м	р ₂₈ , кг/м ³	Массовая доля са- хара, %
72,6	998,20	0	73,5	1098,94	24	75,3	1218,61	48
72.6	1002,09	1 1	73,5	1103,53	25	75,4	1224,05	49
72,7	1005,99	2	73,6	1108,14	26	75,4	1229,53	50
72,7	1009,91	2 3	73,7	1112,80	27	75,5	1235,05	51
72,7	1013,85	4 1	73,8	1117,48	28 -	75,6	1240,61	52
72,7	1017,83	5 6 7	73,8	1122,20	29	75,7	1246,20	53
72,7	1021,83	6	73,9	1126,95	30	75,8	1251,83	54
72,8	1025.86	7	73,9	1126,95	31	75,9	1257,50	55
72.8	1029,91	8 9	74,0	1136,56	32	76,0	1263,20	56
72,8	1034,00	9	74,1	1141,42	33	76,1	1268,95	57
72,9	1038,11	10	74,1	1146,31	34	76.2	1274,74	58
72,9	1042,26	11	74,2	1151,24	35	76,3	1280,56	59
73.0	1046,43	12	74,3	1156,21	36	76,4	1286,42	60
73,0	1050,64	13	74,4	1161,20	37	76.4	1292,32	61
73,0	1054,87	14	74,5	1166,24	38	76,5	1298,25	62
73.1	1059,14	15	74,5	1171,31	39	76,6	1304,23	63
73,1	1063,43	16	74,6	1176,41	40 [76.7	1310,25	64
73,2	1067,76	17	74,7	1181,56	41	76.8	1316,30	65
73,2	1072,12	18	74,8	1186,74	42	76,9	1322,39	66
73,2	1076,51	19	74,8	1191,96	43	77,0	1328,52	67
73,3	1080,93	20	74,9	1197,21	44	77,1	1334,68	68
73,4	1085.38	21	75,0	1202,51	45	77,2	1340,89	69
73,4	1089,87	22	75,1	1207,84	46	77,3	1347,14	70
73,5	1094,39	23	75,2	1213,20	47			

72.1

71.9

71,8

. Таблица 19 3ависимость σ_1 от температуры t жидких углеводородов

	σε. м1	I/м, при темпер	ратуре углеводо	рода, °С
Наименование углеводорода	10	20	25	30
т-Пентан	17,15	16,05	15,49	14,94
r-Гексан	19,42	18,40	17,88	17,37
г-Гептан	21,12	20,14	19.65	19,16
-Oktan	22,57	21,62	21,14	20,67
г-Нонан	23,79	22.85	22,38	21,92
2,3-Диметилгексан	21,91	20,99	20,53	20,07
Інклопентан	23,6	22,42	21.82	21,23
Диклогексан	26,2	24.98	24.38	23.78
Метилциклогексан	24,8	23,70	23,17	22,64
бензол	30,24	28,88	28.18	27,49
Метилбензол	29.70	28.53	27.92	27,32
Этилбензол	30,18	29,04	28,48	27,93
Тропилбензол	30.04	28,99	28.45	27.91

72,7

 σ_t , MH/M

Таблица 21 Зависимость σ_t от температуры t водных растворов этанола различной концентрации \mathbf{C}_{N}

72,6

Массовая доля спярта,	$\sigma_{\rm t}$, иН/м, при температуре водных растворов этилового спирта, ⁴ С							
	минус 20	минус 10	0	10	20	30	40	
0		-	75,6	74,1	72,6	71,1	69,6	
10	_	- 1	51.4	49.7	47.9	46.1	44,4	
20		42,7	41,3	39,8	38,4	37.0	33,6	
30	36.5	35,6	34.7	33.7	32.8	31,9	31,0	
40	32,7	32,0	31,3	30.6	29,9	29,2	28.5	
50	31.0	30,3	29,6	28.9	28.2	27,5	26,8	
60	29.8	29.1	28,4	27.7	27.0	26.3	25,6	
70	28.8	28.1	27.4	26.7	26.0	25,3	24,6	
80	27.8	27.0	26.3	25,6	24,8	24.1	23.4	
90	26.8	26,1	25,3	24.5	23,7	22,9	22,2	
100	25.8	25.0	24.1	23,3	22.4	21.6	20,7	

ИНФОРМАЦИОННЫЕ ДАННЫЕ О СООТВЕТСТВИИ ГОСТ 8.428—81 СТ СЭВ 630—84

FOCT 8.428—81	CT C9B 630-84	FOCT 8.428-81	CT C9B 630-84	
Табл. 1	Табл. 3	Табл. 12	Табл. 15	
Табл. 2	Табл. 4	Табл 13	Табл. 16	
Табл. 3	Табл. 6	Табл. 14	Табл. 17	
Табл. 4	Табл. 7	Табл. 15	Табл. 18	
Табл. 5	Табл. 8	Табл. 16	Табл. 19	
Табл. 6	Табл. 9	Табл. 17	Табл. 20	
Таба. 7	Табл. 10	Табл. 18	Табл. 5	
Табл. 8	Табл. 11	Табл. 19	Табл. 21	
Табл. 9	Табл. 12	Табл. 20	Табл. 22	
Табл. 10	Табл. 13	Табл. 21	Табл. 23	
Табл. 11	Табл. 14			

(Измененная редакция, Изм. № 1).

Редактор В. С. Бабкина Технический редактор Э. В. Митяй Корректор М. М. Герасименко

Сдено в наб. 22.04.96 Поди, в печ. 04.07.95 0.75 усл. п. л. 0.75 усл. кр.-отг. 0.70 уч.-изд. л. Тираж 10.000 Цена 5 коп.