МЕЖГОСУДАРСТВЕННЫЙ СТАНДАРТ

РЕАКТИВЫ

МЕТОДЫ ПРИГОТОВЛЕНИЯ ТИТРОВАННЫХ РАСТВОРОВ ДЛЯ ОКИСЛИТЕЛЬНО-ВОССТАНОВИТЕЛЬНОГО ТИТРОВАНИЯ

Издание официальное

МЕЖГОСУДАРСТВЕННЫЙ СТАНДАРТ

Реактивы

МЕТОДЫ ПРИГОТОВЛЕНИЯ ТИТРОВАННЫХ РАСТВОРОВ ДЛЯ ОКИСЛИТЕЛЬНО-ВОССТАНОВИТЕЛЬНОГО ТИТРОВАНИЯ

ГОСТ 25794.2—83

Reagents.

Methods of preparation of standard volumetric solutions for redox titration

MKC 71.040.30 OKCTY 2609

Дата введения 01.07.84

Настоящий стандарт распространяется на реактивы и устанавливает методы приготовления следующих титрованных растворов для окислительно-восстановительного титрования и методы проверки их молярной концентрации:

аммоний ванадиевокислый мета, растворы молярных концентраций:

```
c (NH_4VO_3) = 0.1 \text{ моль/дм}^3 (0.1 \text{ н.});
```

 $c (NH_4VO_3) = 0.05 \text{ моль/дм}^3 (0.05 \text{ н.});$

соль закиси железа и аммония двойная сернокислая (соль Мора), раствор молярной концентрации:

 $c (NH_4), SO_4 \cdot FeSO_4 \cdot 6H, O) = 0.1 \text{ моль/дм}^3 (0.1 \text{ н.});$

йод, раствор молярной концентрации:

 $c(1/2, J_2) = 0.1$ моль/дм³ (0.1 н.);

калий бромноватокислый, раствор молярной концентрации:

 $c(^{1}/_{6} \text{ KBrO}_{3}) = 0.1 \text{ моль/дм}^{3}(0.1 \text{ н.});$

калий двухромовокислый, раствор молярной концентрации:

 $c(^{1}/_{6} \text{ K,Cr,O}_{7}) = 0.1 \text{ моль/дм}^{3}(0.1 \text{ H.});$

калий железосинеродистый, раствор молярной концентрации:

 $c (K_1 \text{Fe}(CN_6) = 0.05 \text{ моль/дм}^3 (0.05 \text{ н.});$

калий йодноватокислый, растворы молярных концентраций:

 $c (KJO_3) = 0.1 моль/дм^3;$

 $c(^{1}/_{6} \text{ KJO}_{3}) = 0.1 \text{ моль/дм}^{3};$

 $c(^{1}/_{5} \text{ KJO}_{3}) = 0,1 \text{ моль/дм}^{3};$

калий марганцовокислый, раствор молярной концентрации:

 $c(^{1}/_{*} \text{ KMnO}_{*}) = 0.1 \text{ моль/дм}^{3}(0.1 \text{ H.});$

кислота щавелевая, раствор молярной концентрации:

 $c(^{1}/_{2} H_{2}C_{2}O_{4}-2H_{2}O) = 0.1 \text{ моль/дм}^{3}(0.1 \text{ н.});$

мышьяк (ПІ) окись (мышьяковистый ангидрид), раствор концентрации:

 $c(^{1}/_{4} \text{ As}_{2}\text{O}_{3}) = 0.1 \text{ моль/дм}^{3}(0.1 \text{ н.});$

натрий серноватистокислый, раствор молярной концентрации:

 $c (Na,S,O_1.5H_2O) = 0.1 моль/дм^3 (0.1 н.);$

церий (IV) сульфат, растворы молярных концентраций:

c (Ce(SO₄)₂-4H₂O) = 0,05 моль/дм³ (0,05 н.),

c (Ce(SO₄), 4H,O) = 0,1 моль/дм³ (0,1 н.).

1. ОБЩИЕ УКАЗАНИЯ

Общие указания — по ГОСТ 25794.1

Издание официальное

Перепечатка воспрещена

2. ПРИГОТОВЛЕНИЕ ТИТРОВАННЫХ РАСТВОРОВ

2.1. Аммоний ванадиевокислый мета, раствор молярной концентрации $c \, (\mathrm{NH_4VO_3}) = 0.1 \, \mathrm{моль/дm^3}$

Формула NH₄VO₁.

Относительная молекулярная масса — 116,98.

Молярная масса эквивалента — 116,98 г/моль.

2.1.1. Реактивы и растворы

Аммоний ванадиевокислый мета по ГОСТ 9336.

Дифениламин по ТУ 6-09-5467, раствор с массовой долей 1 %.

Натрий N-фенилсульфанилат (индикатор), раствор с массовой долей 0,5 %.

Кислота серная по ГОСТ 4204.

Кислота ортофосфорная по ГОСТ 6552.

Кислота N-фенилантрониловая по ТУ 6-09-3592, раствор с массовой долей 0,1 %.

Смесь кислот, готовят следующим образом: к 300 см³ воды добавляют при перемешивании 100 см³ серной кислоты и после охлаждения 100 см³ ортофосфорной кислоты.

Соль закиси железа и аммония двойная сернокислая (соль Мора) по ГОСТ 4208, раствор молярной концентрации c (NH₄)₂SO₄·FeSO₄·6H₂O) = 0,1 моль/дм³, приготовленный по п. 2.2.

2.1; 2.1.1. (Измененная редакция, Изм. № 1).

2.1.2. Приготовление растворов

11,70 г (для раствора 0,1 моль/дм³) или 5,85 г (для раствора 0,05 моль/дм³) ванадиевокислого аммония мета растворяют в смеси, состоящей из 200 см³ воды и 150 см³ серной кислоты, при энергичном перемешивании. После растворения препарата раствор охлаждают и доводят объем раствора водой до 1 дм³.

2.1.3. Определение коэффициента поправки

25—35 см³ раствора соли Мора, отмеренные бюреткой, помещают в коническую колбу вместимостью 500 см³, добавляют 50 см³ смеси кислот, 100 см³ воды, 2—3 капли раствора N-фенилсульфанилата натрия и медленно при тщательном перемешивании титруют из бюретки приготовленным раствором ванадиевокислого аммония мета до перехода окраски в сине-фиолетовую.

Допускается проводить титрование в присутствии 2—3 капель раствора N-фенилантраниловой кислоты до перехода окраски в вишнево-красную или в присутствии 5 капель раствора дифениламина до перехода окраски в сине-фиолетовую.

2.2. Соль закиси железа и аммония двойная сернокислая (соль Мора), раствор молярной концентрации c (NH₄)₂SO₄·FeSO₄·6H₂O) = 0,1 моль/дм³ (0,1 н.)

Формула (NH₄), SO₄-FeSO₄-6H₂O.

Относительная молекулярная масса — 392,13.

Молярная масса эквивалента — 392,13 г/моль.

2.2.1. Реактивы и растворы

Вода дистиллированная, не содержащая кислорода.

Калий марганцовокислый по ГОСТ 20490, раствор молярной концентрации c ($^{1}/_{5}$ KMnO₄) = = 0.1 моль/дм³ (0.1 н.), приготовленный по п. 2.8.

Калий двухромовокислый по ГОСТ 4220, раствор молярной концентрации $c(^1/_6 \text{ K}_2\text{Cr}_2\text{O}_7) = 0.1 \text{ моль/дм}^3 (0.1 \text{ н.}), приготовленный по п. 2.5.$

Кислота серная по ГОСТ 4204.

Кислота ортофосфорная по ГОСТ 6552.

Кислота N-фенилантраниловая, раствор с массовой долей 1 %.

Соль закиси железа и аммония двойная сернокислая (соль Мора) по ГОСТ 4208.

2.1.3—2.2.1. (Измененная редакция, Изм. № 1).

2.2.2. Приготовление раствора

40,00 г соли Мора растворяют в смеси, состоящей из 200 см³ воды и 30 см³ серной кислоты, и доводят объем раствора водой до 1 дм³ (если необходимо, раствор фильтруют). Коэффициент поправки устанавливают в день применения.

2.2.3. Определение коэффициента поправки по раствору марганцовокислого калия

25—35 см³ раствора соли Мора, отмеренные бюреткой, помещают в коническую колбу вместимостью 250 см³, добавляют 5 см³ ортофосфорной кислоты и титруют из бюретки раствором марганцовокислого калия до появления не исчезающей в течение 30 с розовой окраски.

При необходимости в результат определения вносят поправку, устанавливаемую контрольным опытом.

(Измененная редакция, Изм. № 1).

2.2.4. Определение коэффициента поправки по раствору двухромовокислого калия

25—30 см³ раствора соли Мора, отмеренные бюреткой, помещают в коническую колбу вместимостью 500 см³, прибавляют 250 см³ воды, не содержащей кислорода, 10 см³ серной кислоты, 0,5 см³ раствора N-фенилантраниловой кислоты и титруют из бюретки раствором двухромовокислого калия до появления вишнево-красной окраски раствора.

(Введен дополнительно, Изм. № 1).

2.3. Йод, раствор молярной концентрации $c(1/, J_2) = 0.1$ моль/дм³ (0.1 н.)

Формула Ј.,

Относительная молекулярная масса — 253,80.

Молярная масса эквивалента — 126,90 г/моль.

2.3.1. Реактивы и растворы

Йод по ГОСТ 4159.

Калий йодистый по ГОСТ 4232.

Кислота серная по ГОСТ 4204, раствор с массовой долей 25 %.

Крахмал растворимый по ГОСТ 10163, раствор с массовой долей 0,5 %.

Натрий серноватистокислый (натрия тиосульфат) 5-водный по ГОСТ 27068, раствор молярной концентрации c (Na₂S₂O₂·5H₂O) = 0,1 моль/дм³ (0,1 н.), приготовленный по п. 2.11.

2.3.2. Приготовление раствора

12,70 г йода растворяют в 60 см³ воды, содержащих 40 г йодистого калия, и тщательно перемешивают до полного растворения йода. Затем объем раствора доводят водой до 1 дм³. Раствор сохраняют в склянке из темного стекла с пришлифованной пробкой. Коэффициент поправки устанавливают не реже одного раза в 10 сут.

Допускается готовить раствор с 25 г йодистого калия, но при этом коэффициент поправки определяют не реже одного раза в 2 сут.

2.3.3. Определение коэффициента поправки

30—40 см³ раствора йода, отмеренные бюреткой, помещают в коническую колбу (с пришлифованной пробкой) вместимостью 250 см³, прибавляют около 25 см³ воды, 5 см³ раствора серной кислоты и титруют из бюретки раствором 5-водного серноватистокислого натрия до перехода бурой окраски раствора в соломенно-желтую. Затем прибавляют 2 см³ раствора крахмала и продолжают титрование при тщательном перемещивании до обесцвечивания раствора.

Допускается определять коэффициент поправки по окиси мышьяка (III) по п. 2.10.3 раствором

точной молярной концентрации, приготовленным по п. 2.10.4.

2.4. Калий бромноватокислый, раствор молярной концентрации c ($^{1}/_{6}$ KBrO $_{3}$) = 0,1 моль/дм 3 (0,1 н.)

Формула КВгО_з.

Относительная молекулярная масса — 167,00.

Молярная масса эквивалента — 27,83 г/моль.

2.4.1. Реактивы и растворы

Калий бромистый по ГОСТ 4160.

Калий бромноватокислый по ГОСТ 4457.

Калий йодистый по ГОСТ 4232, раствор с массовой долей 30 % свежеприготовленный.

Кислота серная по ГОСТ 4204, раствор с массовой долей 20 %.

Крахмал растворимый по ГОСТ 10163, раствор с массовой долей 0,5 %.

Натрий серноватистокислый (натрия тиосульфат) 5-водный по ГОСТ 27068, раствор молярной концентрации c (Na,S,O,·5H,O) = 0,1 моль/дм³ (0,1 н.), приготовленный по п. 2.11.

2.3-2.4.1. (Измененная редакция, Изм. № 1).

2.4.2. Приготовление раствора

10,00 г бромистого калия и 2,78 г бромноватокислого калия растворяют в воде и доводят объем раствора водой до 1 дм³.

2.4.3. Определение коэффициента поправки

30—40 см³ раствора бромноватокислого калия, отмеренные бюреткой, помещают в коническую колбу вместимостью 500 см³ с пришлифованной пробкой, прибавляют 10 см³ раствора йодистого калия, 20 см³ раствора серной кислоты, сразу закрывают колбу пробкой, смоченной раствором йодистого калия, затем перемешивают и выдерживают в темноте в течение 10 мин, после чего пробку и стенки колбы обмывают водой и выделившийся йод титруют из бюретки раствором 5-водного серноватистокислого натрия до перехода окраски раствора в соломенно-желтую, затем добавляют 2 см³ раствора крахмала и продолжают титрование при тщательном перемешивании до обесцвечивания раствора.

При необходимости в результат определения вносят поправку, устанавливаемую контрольным опытом.

2.5. Калий двухромовокислый, раствор молярной концентрации c ($^{1}/_{6}$ K $_{2}$ Cr $_{2}$ O $_{7}$) = 0,1 моль/дм 3 (0,1 н.)

Формула К,Сг,О,.

Относительная молекулярная масса — 294.18.

Молярная масса эквивалента — 49,03 г/моль.

2.5.1. Реактивы и растворы

Калий двухромовокислый по ГОСТ 4220.

Калий двухромовокислый с массовой долей основного вещества (100,0±0,2) % или дважды перекристаллизованный из воды (растворимость в 100 см³ воды при 20 °C — 12,3 г, при 100 °C — 103 г) и после измельчения высушенный при 150 °C до постоянной массы или стандартный образец калия двухромовокислого для титриметрии ГСО I разряда № 2215—81 или ГСО II разряда.

Калий йодистый по ГОСТ 4232, раствор с массовой долей 30 % свежеприготовленный.

Крахмал растворимый по ГОСТ 10163, раствор с массовой долей 0,5 %.

Кислота серная по ГОСТ 4204, раствор с массовой долей 20 %.

Натрий серноватистокислый (натрия тиосульфат) 5-водный по ГОСТ 27068, раствор молярной концентрации c (Na,S,O₂·5H₂O) = 0,1 моль/дм³ (0,1 н.), приготовленный по п. 2.11.

(Измененная редакция, Изм. № 1).

2.5.2. Приготовление раствора

4,90 г двухромовокислого калия растворяют в воде и доводят объем раствора водой до 1 дм³.

2.5.3. Определение коэффициента поправки

30—40 см³ раствора двухромовокислого калия, отмеренные бюреткой, помещают в коническую колбу вместимостью 500 см³ с пришлифованной пробкой, прибавляют 10 см³ раствора йодистого калия, 20 см³ раствора серной кислоты, сразу закрывают колбу пробкой, смоченной раствором йодистого калия, перемешивают и выдерживают в течение 10 мин в темноте, после этого обмывают пробку и стенки колбы водой, прибавляют 200 см³ воды и титруют выделившийся йод из бюретки раствором 5-водного серноватистокислого натрия до изменения цвета раствора в желтый, затем прибавляют 2 см³ раствора крахмала и продолжают титрование при тщательном перемешивании до перехода синей окраски в светло-зеленую.

При необходимости в результат определения вносят поправку, устанавливаемую контрольным опытом.

2.5.4. Приготовление раствора точной молярной концентрации

4,9031 г двухромовокислого калия (с массовой долей основного вещества (100,0±0,2) % или перекристаллизованного) или стандартного образца двухромовокислого калия для титриметрии ГСО I разряда № 2215—81 или ГСО II разряда растворяют в воде в мерной колбе вместимостью 1 дм³ и доводят объем раствора водой до метки.

2.6. Калий железосинеродистый, раствор молярной концентрации c (K_3 Fe (CN)₆= = 0.05 моль/дм³ (0.05 н.)

Формула K₃Fe (CN)₆.

Относительная молекулярная масса — 329.25.

Молярная масса эквивалента — 329,25 г/моль.

2.6.1. Реактивы и растворы

Калий железосинеродистый по ГОСТ 4206 и перекристаллизованный из воды, измельченный и высушенный при 105—110 °C до постоянной массы.

Калий йодистый по ГОСТ 4232, раствор с массовой долей 30 %, свежеприготовленный.

Крахмал растворимый по ГОСТ 10163, раствор с массовой долей 0,5 %.

Натрий серноватистокислый (натрия тиосульфат) 5-водный по ГОСТ 27068, раствор молярной концентрации c (Na₂S₂O₃·5H₂O) = 0,05 моль/дм³ (0,05 н.), приготовленный по п. 2.11 с соответствующим изменением навески.

Цинк сернокислый 7-водный по ГОСТ 4174, раствор с массовой долей 10 %.

2.6.2. Приготовление раствора

16,50 г железосинеродистого калия растворяют в воде и доводят объем раствора водой до 1 дм³.

Раствор хранят в склянке из темного стекла. Коэффициент поправки раствора определяют не реже одного раза в 10 сут.

2.6.3. Определение коэффициента поправки

30-40 см3 раствора железосинеродистого калия, отмеренные бюреткой, помещают в коническую колбу вместимостью 500 см3 с пришлифованной пробкой, прибавляют 30 см3 раствора 7-водного сернокислого цинка, 10 см³ раствора йодистого кадия, закрывают колбу пробкой, смоченной раствором йодистого калия, тщательно перемешивают и выдерживают в темноте в течение 10 мин, после чего обмывают пробку и стенки колбы небольшим объемом воды и титруют из бюретки раствором 5-водного серноватистокислого натрия до перехода окраски раствора в соломенно-желтую. Затем прибавляют 2 см3 раствора крахмала и продолжают титрование медленно при тщательном перемешивании до обеспвечивания раствора.

При необходимости в результат определения вносят поправку, устанавливаемую контрольным опытом.

2.6.4. Приготовление раствора точной молярной концентрации

16,4624 г перекристаллизованного железосинеродистого калия растворяют в воде в мерной колбе вместимостью 1 дм³ и доводят объем раствора водой до метки.

2.7. Калий йодноватокислый, растворы молярных концентраций

 $c(KJO_1) = 0.1 моль/дм^3$,

 $c(^{1}/_{6} \text{ KJO}_{3}) = 0,1 \text{ моль/дм}^{3},$

 $c(^{4}/_{5} \text{ KJO}_{3}) = 0.1 \text{ моль/дм}^{3}.$

Формула КЈО3.

Относительная молекулярная масса — 214,00.

Молярная масса эквивалента соответственно 21,40: 3,57: 4,28 г/моль.

2.5.3—2.7. (Измененная редакция, Изм. № 1).

2.7.1. Реактивы и растворы

Калий йодноватокислый по ГОСТ 4202 перекристаллизованный из воды и высушенный при 120-150 °С до постоянной массы.

2.7.2. Приготовление раствора точной молярной концентрации

В воде в мерной колбе вместимостью 1 дм3 растворяют следующие массы перекристаллизованного йодноватокислого калия:

для раствора молярной концентрации c (KJO₃)= 0,1 моль/дм³ — 21,4000 г;

для раствора молярной концентрации c ($^1/_6$ KJO $_3$) = 0,1 моль/дм 3 — 3,5667 г; для раствора молярной концентрации c ($^1/_5$ KJO $_3$) = 0,1 моль/дм 3 — 4,2800 г.

Объемы растворов доводят водой до метки.

2.8. Калий марганцовокислый, раствор молярной концентрации $c(^1/_5 \text{ KMnO}_4) = 0.1 \text{ моль/дм}^3$ (0,1 н.)

Формула КМпО,.

Относительная молекулярная масса — 158,03.

Молярная масса эквивалента — 31,60 г/моль.

2.8.1. Реактивы, растворы и посуда

Калий йодистый по ГОСТ 4232, раствор с массовой долей 30 %, свежеприготовленный.

Калий марганцовокислый по ГОСТ 20490.

Кислота серная по ГОСТ 4204, концентрированная и раствор с массовой долей 20 %.

Крахмал растворимый по ГОСТ 10163, раствор с массовой долей 0.5 %.

Натрий серноватистокислый (натрия тиосульфат) 5-водный по ГОСТ 27068, раствор молярной концентрации c (Na₂S₂O₃·5H₂O) = 0,1 моль/дм³ (0,1 н.), приготовленный по п. 2.11.

Натрий щавелевокислый по ГОСТ 5839, высущенный при 100-105 °C до постоянной массы. Воронка типа ВФ-1 (2) ПОР10 или ВФ-1(2) ПОР16 по ГОСТ 25336.

2.8.2 Приготовление раствора

3.25 г марганцовокислого калия растворяют в воде, доводят объем раствора до 1 дм³ и выдерживают в течение 20 сут. Затем раствор фильтруют через стеклянную воронку.

Допускается более быстрый способ приготовления раствора: 3,25 г марганцовокислого калия

растворяют в 900 см³ воды в колбе вместимостью 1 дм³. Раствор нагревают приблизительно до 80 °C, накрыв колбу, выдерживают при этой температуре в течение 2 ч, а затем выдерживают в течение сут при комнатной температуре, после этого раствор фильтруют через стеклянную воронку.

Раствор хранят длительное время в склянке из темного стекла. Следует избегать соприкосновения раствора марганцовокислого калия с резиновыми трубками или пробками; при титровании необходимо пользоваться бюретками со стеклянными кранами.

2.7.2—2.8.2. (Измененная редакция, Изм. № 1).

2.8.3. Определение коэффициента поправки

2.8.3.1. Определение коэффициента поправки по шавелевокислому натрию

Формула $Na_2C_2O_4$.

Относительная молекулярная масса — 134,00.

Молярная масса эквивалента — 67,00 г/моль.

0,1500—0,2500 г шавелевокислого натрия помещают в коническую колбу вместимостью 250 см³, растворяют в 50 см³ воды, прибавляют 8 см³ серной кислоты, нагревают до 70—80 °С и титруют из бюретки раствором марганцовокислого калия. При этом титрование сначала проводят очень медленно, не прибавляя последующей капли, пока предыдущая полностью не обесцветится. В конце титрования титруют быстрее до появления не исчезающей в течение 1 мин розовой окраски раствора.

Температура раствора в конце титрования должна быть не менее 60 °C.

При необходимости в результат определения вносят поправку, устанавливаемую контрольным опытом.

 2.8.3.2. Определение коэффициента поправки по раствору 5-водного серноватистокислого натрия

30—40 см³ раствора марганцовокислого калия, отмеренные бюреткой, помещают в коническую колбу вместимостью 500 см³ с пришлифованной пробкой, прибавляют 10 см³ раствора йодистого калия, 20 см³ раствора серной кислоты с массовой долей 20 %, сразу закрывают колбу пробкой, смоченной раствором йодистого калия, затем перемешивают и выдерживают в темноте в течение 10 мин, после чего обмывают пробку и стенки колбы водой, прибавляют 200 см³ воды и выделившийся йод титруют из бюретки раствором 5-водного серноватистокислого натрия до перехода окраски раствора в соломенно-желтую, затем прибавляют 2 см³ раствора крахмала и продолжают титрование при тщательном перемешивании до обесцвечивания раствора.

При необходимости в результат определения вносят поправку, устанавливаемую контрольным опытом.

2.8.3.1, 2.8.3.2. (Измененная редакция, Изм. № 1).

2.8.3.3. (Исключен, Изм. № 1).

2.9. Кислота щавелевая, раствор молярной концентрации $c \left({}^{1}/_{2} \right. H_{2}C_{2}O_{4} \cdot 2H_{2}O) = 0,1$ моль/дм³ (0,1 н.)

Формула H₂C₂O₄·2H₂O.

Относительная молекулярная масеа — 126,07.

Молярная масса эквивалента — 63,03 г/моль.

2.9.1. Реактивы и растворы

Кислота серная по ГОСТ 4204.

Кислота шавелевая по ГОСТ 22180.

Калий марганцовокислый по ГОСТ 20490, раствор молярной концентрации c ($^1/_5$ KMnO $_4$) = 0,1 моль/дм 3 (0,1 н.), приготовленный по п. 2.8.

2.9.2. Приготовление раствора

6,30 г щавелевой кислоты растворяют в воде и объем раствора доводят водой до 1 дм³. Раствор хранят в склянке из темного стекла.

2.9.3. Определение коэффициента поправки

25—40 см³ раствора щавелевой кислоты, отмеренные бюреткой, помещают в коническую колбу вместимостью 250 см³, прибавляют 30 см³ воды, 8 см³ серной кислоты, нагревают до 70—80 °С и титруют из бюретки раствором марганцовокислого калия (как указано в п. 2.8.3.1).

При необходимости в результат определения вносят поправку, устанавливаемую контрольным опытом.

2.10. Мышьяк (III) окись, раствор молярной концентрации c ($^{1}/_{4}$ As $_{2}O_{3}$) = 0,1 моль/дм 3 (0,1 н.)

Формула As_2O_3 .

Относительная молекулярная масса — 197,84.

Молярная масса эквивалента — 49,46 г/моль.

2.10.1. Реактивы и растворы

Йод по ГОСТ 4159, раствор молярной концентрации $c(^{1}/_{2}J_{2})=0,1$ моль/дм³ (0,1 н.), приготовленный по п. 2.3.

Кислота серная по ГОСТ 4204, раствор молярной концентрации $c(^{1}/_{2} \text{ H}_{2}\text{SO}_{4}) = 1 \text{ моль/дм}^{3}$ (1 н.).

Кислота соляная по ГОСТ 3118, раствор с массовой долей 25 %.

Крахмал растворимый по ГОСТ 10163, раствор с массовой долей 0,5 %.

Мышьяка (III) окись, аморфная или кристаллическая.

Мышьяка (III) окись, перекристаллизованная и высушенная при 105-110 °C в течение 1-2 ч. Натрия гидроокись по ГОСТ 4328, раствор молярной концентрации c (NaOH) = 1 моль/дм³ (1 н.) и раствор с массовой долей 10 %.

Натрий углекислый кислый по ГОСТ 4201.

Спирт этиловый ректификованный технический по ГОСТ 18300 высшего сорта.

Фенолфталеин (индикатор) по ТУ 6-09-5360, спиртовой раствор с массовой долей 1 %.

2.10.2. Приготовление раствора

- 4,95 г окиси мышьяка (III) аморфной или кристаллической растворяют в небольшом объеме раствора гидроокиси натрия с массовой долей 10 %. Полученный раствор разбавляют водой, нейтрализуют раствором серной кислоты в присутствии раствора фенолфталеина, после чего прибавляют раствор 20 г кислого углекиелого натрия в 500 см³ воды. Если при этом появляется розовая окраска, добавляют по каплям раствор серной кислоты до обесцвечивания раствора, после чего объем раствора доводят водой до 1 дм³.
 - 2.10.3. Определение коэффициента поправки
- 30—40 см³ раствора йода, отмеренные бюреткой, помещают в коническую колбу вместимостью 500 см³, содержащую 200 см³ воды, прибавляют 2 см³ раствора соляной кислоты, затем 2 г кислого углекислого натрия. После его растворения прибавляют 3 см³ раствора крахмала и при тщательном перемешивании титруют из бюретки раствором окиси мышьяка (III) до обесцвечивания раствора.
 - 2.10.4. Приготовление раствора точной молярной концентрации
- 4,9460 г перекристаллизованной окиси мышьяка (III) помещают в коническую колбу (или стакан) вместимостью 250 см³, содержащую отмеренные бюреткой 40 см³ раствора гидроокиси натрия молярной концентрации 1 моль/дм³, и растворяют при нагревании на водяной бане. После охлаждения раствор переносят в мерную колбу вместимостью 1 дм³ и добавляют бюреткой 40—41 см³ раствора серной кислоты. Точный необходимый объем серной кислоты вычисляют с учетом коэффициентов поправок растворов гидроокиси натрия и серной кислоты, так как необходимо обеспечить избыток серной кислоты 0,2 см³, и доводят объем раствора водой до метки.
- 2.11. Натрий серноватистокислый, раствор молярной концентрации c (Na₂S₂O₃·5H₂O) = =0,1 моль/дм³ (0,1 н.)

Формула Na,S,O, 5H,O.

Относительная молекулярная масса — 248,17.

Молярная масса эквивалента — 248,17 г/моль.

2.11.1. Реактивы и растворы

Калий двухромовокислый по ГОСТ 4220, дважды перекристаллизованный и высушенный по п. 2.5.1.

Калий йодистый по ГОСТ 4232, раствор с массовой долей 30 %, свежеприготовленный.

Кислота серная по ГОСТ 4204, раствор с массовой долей 20 %.

Крахмал растворимый по ГОСТ 10163, раствор с массовой долей 0,5 %.

Натрий серноватистокислый (натрия тиосульфат) 5-водный по ГОСТ 27068.

Спирт изобутиловый по ГОСТ 6016.

2.11.2. Приготовление раствора

25,00 г 5-водного серноватистокислого натрия растворяют в 400 см³ воды, прибавляют 10 см³ изобутилового спирта, тщательно перемешивают, доводят водой объем до 1 дм³. Раствор годен к применению через 10—14 сут. Раствор хранят в склянке из темного стекла.

2.11.3. Определение коэффициента поправки

0,1500—0,2000 г двухромовокислого калия помещают в коническую колбу вместимостью 500 см³ с пришлифованной пробкой, растворяют в 50 см³ воды, к раствору прибавляют 10 см³ раствора йодистого калия, 20 см³ раствора серной кислоты, сразу закрывают колбу пробкой, смоченной раствором йодистого калия, перемещивают и выдерживают в темноте в течение 10 мин, после чего пробку и стенки колбы обмывают водой, добавляют 200 см³ воды и выделившийся йод титруют из бюретки приготовленным раствором 5-водного серноватистокислого натрия до перехода окраски раствора в желтую, затем прибавляют 2 см³ раствора крахмала и продолжают титрование при тщательном перемещивании до перехода синей окраски раствора в светло-зеленую.

При необходимости в результат определения вносят поправку, устанавливаемую контрольным опытом.

2.9-2.11.3. (Измененная редакция, Изм. № 1).

2.11.4. (Исключен, Изм. № 1).

2.12. Церий (IV) сульфат, растворы молярных концентраций c (Ce(SO₄)₂·4H₂O) = = 0.05 моль/дм³ (0.05 н.), c (Ce(SO₄)₂·4H₂O) = 0.1 моль/дм³ (0.1 н.)

Формула Се (SO₄), 4H,O

Относительная молекулярная масса — 404,29.

Молярная масса эквивалента — 404,29 г/моль.

2.12.1. Реактивы, растворы и посуда

Калий йодистый по ГОСТ 4232, раствор с массовой долей 30 %, свежеприготовленный.

Кислота серная по ГОСТ 4204, концентрированная и раствор с массовой долей 20 %.

Крахмал растворимый по ГОСТ 10163, раствор с массовой долей 0,5 %.

Натрий серноватистокислый (натрия тиосульфат) 5-водный по ГОСТ 27068, раствор молярной концентрации c (Na₂S₂O₃-5H₂O) = 0,05 моль/дм³ (0,05 н.), приготовленный по п. 2.11 (из навески массой 12.50 г).

Натрий углекислый по ГОСТ 83.

Соль закиси железа и аммония двойная сернокислая (соль Мора) по ГОСТ 4208, раствор молярной концентрации $c [(NH_4)_2SO_4 \cdot FeSO_4 \cdot 6H_2O] = 0.05 \text{ моль/дм}^3 (0.05 \text{ н.}), приготовленный по п. 2.2 (из навески массой 20.00 г).$

Ферроин (индикатор), раствор. Раствор хранится длительное время.

Церий (IV) сульфат 4-водный (церий (IV)) сернокислый по ТУ 6-09-1646.

Воронка типа ВФ-1(2) ПОР10 или ВФ-1 (2) ПОР16 по ГОСТ 25336.

2.12.2. Приготовление растворов

20,20 г 4-водного сульфата церия (IV) для раствора 0,05 моль/дм³ или 40,40 г для раствора 0,1 моль/дм³ растворяют в 1 дм³ воды, содержащем 30 см³ концентрированной серной кислоты. После охлаждения, если раствор мутный, его фильтруют через стеклянную воронку типа ВФ-1 (2) ПОР10 или ВФ-1 (2) ПОР16 (ГОСТ 25336—82) и доводят объем раствора водой до 1 дм³.

Допускается применять также церий (IV) по ТУ 6—09—04—177, сульфат безводный и аммоний церий (IV) сульфат (4:1) 2-водный с изменением навески в соответствии с молекулярной массой.

- 2.12-2.11.2. (Измененная редакция, Изм. № 1).
- 2.12.3 Определение коэффициента поправки
- 2.12.3.1. Определение коэффициента поправки по раствору 5-водного серноватистокислого натрия
- 30—40 см³ раствора 4-водного сульфата церия (IV), отмеренные бюреткой, помещают в коническую колбу вместимостью 500 см³ с пришлифованной пробкой, прибавляют 10 см³ раствора серной кислоты с массовой долей 20 %, 0,5 г углекислого натрия, 10 см³ раствора йодистого калия, сразу закрывают колбу пробкой, смоченной раствором йодистого калия, перемешивают и выдерживают в темноте в течение 10 мин, после чего пробку и стенки колбы обмывают водой и выделившийся йод титруют из бюретки раствором 5-водного серноватистокислого натрия до перехода окраски в соломенно-желтую, затем прибавляют 2 см³ раствора крахмала и продолжают медленное титрование при тщательном перемешивании до обесцвечивания раствора.
- 2.12.3.2. 30—40 см³ раствора соли Мора, отмеренные бюреткой, помещают в коническую колбу вместимостью 250 см³, прибавляют 1—2 капли раствора ферроина и титруют из бюретки раствором 4-водного сульфата церия (IV) до перехода оранжевой окраски раствора в зеленоватую.
- 2.12.3.3. Для определения коэффициента поправки допускается использовать растворы 5-водного серноватистокислого натрия и соли Мора 0,1 моль/дм³, при этом в формуле, как указано в п. 1.7 ГОСТ 25794.1, вместо V должно быть 2V, а раствор соли Мора при определении по п. 2.12.3.2 должен быть объемом 15-20 см³.
 - 2.12.3.1—2.12.3.3. (Измененная редакция, Изм. № 1).
 - 2.12.3.4. (Исключен, Изм. № 1).

ИНФОРМАЦИОННЫЕ ДАННЫЕ

- 1. РАЗРАБОТАН И ВНЕСЕН Министерством химической промышленности СССР
- УТВЕРЖДЕН И ВВЕДЕН В ДЕЙСТВИЕ Постановлением Государственного комитета СССР по стандартам от 23.05.83 № 2303
- 3. Стандарт соответствует СТ СЭВ 3675-82
- 4. ВВЕДЕН ВПЕРВЫЕ
- 5. ССЫЛОЧНЫЕ НОРМАТИВНО-ТЕХНИЧЕСКИЕ ДОКУМЕНТЫ

Обозначение НТД, на который дана ссызка	Номер пункта
ГОСТ 83-79	2.12.1
FOCT 3118-77	2.10.1
FOCT 4159-79	2.3.1, 2.10.1
ΓOCT 4160—74	2.4.1
ΓΟCT 4174—77	2.6.1
ΓΟCT 4201—79	2.10.1
ΓΟCT 4202—75	2.7.1
ΓΟCT 420477	2.1.1, 2.2.1, 2.3.1, 2.4.1, 2.5.1, 2.8.1, 2.9.1, 2.10, 2.11.1, 2.12.1
ΓOCT 4206—75	2.6.1
ΓΟCT 420872	2.1.1, 2.2.1, 2.12.1
ΓΟCT 4220—75	2.2.1, 2.5.1, 2.11.1
ΓOCT 4232—74	2.3.1, 2.4.1, 2.5.1, 2.6.1, 2.8.1, 2.11.1, 2.12.1
ΓOCT 4328—77	2.10.1
ΓOCT 4457—74	2.4.1
ΓOCT 5839—77	2.8.1
ΓΟCT 6016—77	2.11.1
ΓOCT 6552—80	2.1.1, 2.2.1
ГОСТ 9336—75	2.1.1
ΓΟCT 10163—76	2.3.1, 2.4.1, 2.5.1, 2.6.1, 2.8.1, 2.10.1, 2.11.1, 2.12.1
ΓΟCT 18300—87	2,10,1
ΓΟCT 20490—75	2.1.1, 2.8.1, 2.9.1
ΓOCT 22180—76	2.9.1
ΓOCT 25336—82	2,8.2, 2.12.2
ΓOCT 27068—86	2.3.1, 2.4.1, 2.5.1, 2.6.1
ГУ 6-09-5467-90	2.8.1, 2.11.1, 2.12.1
ГУ 6-09-1646-77	2.12.1
TY 6-09-3592-86	2.1.1
TY 6-09-5360-87	2.10.1
ТУ 6-09-04-177-84	2.12,2

- Ограничение срока действия снято по протоколу № 7—95 Межгосударственного совета по стандартизации, метрологии и сертификации (ИУС 11—95)
- 7. ИЗДАНИЕ (май 2008 г.) с Изменением № 1, утвержденным в декабре 1990 г. (ИУС 4-91)