

ГОСУДАРСТВЕННЫЕ СТАНДАРТЫ СОЮЗА ССР

МЕДЬ

методы спектрального анализа ГОСТ 9717.1-82—ГОСТ 9717.3-82

Издание официальное

B3 10-96

ГОСУДАРСТВЕННЫЙ СТАНДАРТ СОЮЗА ССР

МЕДЬ

Метод спектрального анализа по металлическим стандартным образцам с фотоэлектрической регистрацией спектра

ГОСТ 9717.1—82

Copper. Method of spectral analysis of metal standart specimens with photoelectrical registration of spectrum

ОКСТУ 1709

Дата введения 01.07.83

Настоящий стандарт устанавливает метод спектрального анализа по металлическим стандартным образцам (СО) с фотоэлектрической регистрацией спектра в меди марок М0к, М1к, М0б, М1, М1ф, М2р, М3р, М2 и М3 по ГОСТ 859.

Метод основан на возбуждении спектра дуговым разрядом переменного тока с последующей регистрацией его оптическим квантометром.

Метод позволяет определять содержание примесей в интервале массовых долей:

Определяемый элемент	Массовая доля, %		
Сурьма	0.001 -0.06		
Мышьяк	0.001 -0.07		
Магний	0,0003-0,007		
Олово	0.001 -0.07		
Кремний	0,001 -0,007		
Висмут	0,0001-0,01		
Серебро	0,002 0,005		

Издание официальное

Перепечатка воспрещена

© Издательство стандартов, 1982 © ИПК Издательство стандартов, 1997 Переиздание с Изменениями

C. 2 FOCT 9717.1-82

Никель	0,001 -0,3
Железо	0,001 -0,08
Марганец	0,0003-0,01
Свинец	0,0005-0,06
Хром	0,002 -0,05
Шинк	0,0008-0,06
Фосфор	0,001 -0.06

Метод характеризуется относительным стандартным отклонением S₂ единичного измерения, приведенным в табл. 1.

Таблица 1

		Значения S_p дл τ	я интервалов ма	ссовых долей, %	
Определяемый элемент	0,0001-0,003	0,003-0,01	0,01-0,03	0,03-0,1	свыше 0,
Сурьма	0,12	0,10	0,08	0,07	
Мышьяк	0,12	0,10	0,08	0,06	-
Магний	0.15	0,12	0.10	0,08	-
Олово	0.10	0,08	0,06	0,05	
Кремний	0.25	0.20	0.18	0,10	-
Висмут	0.15	0,10	_		
Серебро	0,07	0,07	-	-	-
Никель	0,10	0,10	0,08	0,07	0,07
Железо	0,12	0,11	0,11	0,09	-
Марганси	0,15	0,12	-	-	-
Свинец	0,14	0,12	0,12	0,10	
Хром	0,20	0,15	0,14	0,12	-
Цинк	0,25	0,20	0,12	0,10	-
Фосфор	0.12	0,10	0.08	0,06	1 .

(Измененная редакция, Изм. № 1).

1. ОБЩИЕ ТРЕБОВАНИЯ

- Общие требования к методу анализа по ГОСТ 25086.
 Отбор проб для анализа по ГОСТ 546 или ГОСТ 193.
- (Измененная редакция, Изм. № 1).
- 1.2 Массовую долю элементов определяют из двух параллельных определений.
- Требования безопасности при выполнении анализов по ГОСТ 27981.0.
 - 1.2, 1.3. (Введены дополнительно, Изм. № 1).

2. АППАРАТУРА И МАТЕРИАЛЫ

Фотоэлектрическая установка (квантометр) типа ДФС-10М, ДФС-36 или ДФС-56, или МФС-8 или другого типа.

Генераторы типа ГЭУ-1, УГЭ-4 и др.

Для регистрации излучения линии мышьяка (234,98 нм) и линий сравнения (фон 228,3 нм) применяют фотоумножители типа ФЭУ-5, которые устанавливают без зеркал. Для линий остальных элементов и других линий сравнения используют фотоумножители типа ФЭУ-4 и фотоэлементы Ф-1.

Электроды из меди марок М06 или М1 — по ГОСТ 859 диаметром 7—8 мм, заточенные на полусферу или усеченный конус, с площадкой диаметром 1,5—1,7 мм.

Электроды из угля марки ОСЧ диаметром 6 мм, заточенные на полусферу или усеченный конус.

Электроды из меди марки M06 или M1 или из угля марки ОСЧ в виде прутков диаметром 6—7 мм, заточенные на полусферу или усеченный конус с площадкой диаметром 1,5—1,7 мм.

Приспособление для заточки угольных или медных электродов, например, станок модели КП-35.

Токарный станок для заточки CO и анализируемых проб на плоскость типа ТВ-16.

Стандартные образцы состава меди для спектрального анализа.

При проведении анализа применяются СО, внесенные в Государственный реестр (ГСО), а также отраслевые СО (ОСО) или стандартные образцы предприятия (СОП), утвержденные в установленном порядке. Допускается использовать стандартные образцы, сумма массовых долей аттестованных компонентов в которых не отличается от суммы массовых долей компонентов в анализируемой пробе более чем в два раза.

Изготовленные на предприятии СОП по физико-механическим свойствам (способу литья, обработке) должны соответствовать анализируемым образцам.

Допускается применение другой аппаратуры, оборудования и материалов при условии обеспечения метрологических характеристик анализов, не хуже предусмотренных настоящим стандартом.

Тигли графитовые.

Электропечь муфельная с терморегулятором.

C. 4 FOCT 9717.1-82

Спирт этиловый ректификованный технический по ГОСТ 18300. Расход спирта на одно определение 10 г. Кислота азотная по ГОСТ 4461, разбавленная 1:10. Вода дистиллированная по ГОСТ 6709. (Измененная редакция, Изм. № 1).

3. ПОДГОТОВКА К АНАЛИЗУ

 Подготовка проб и СО к анализу должна быть однотипной для каждой серии измерений. Для проб, отобранных в виде монолитного куска массой более 50 г, применяют соответствующие по массе монолитные СО. Масса навесок пробы и СО должна различаться между собой не более чем в два раза.

Подготовку пробы или СО проводят зачисткой одной из его гра-

ней на плоскость напильником или металлорежущим инструментом (станком) без охлаждающей жидкости и смазки. Зачищенная поверхность должна представлять собой плоскую площадку диамет-ром не менее 10 мм без раковин, царапин, трещин и шлаковых включений. Загрязнение поверхности не допускается.

Для проб, отобранных в виде стержней диаметром от 6 до 10 мм, применяют СО в виде стержней диаметром 7—8 мм.

Допускается получать стержни из стружки, порошка, проволоки, тонкого листа, гранул и т. п. с массой не более 50 г сплавлением при температуре(1225±25) С в тиглях с внутренним диаметром не менее 7 мм и не более 15 мм, изготовленных из спектрально-чистого графита. Сплав выдерживают в расплавленном состоянии не более 1 мин и охлаждают в тигле.

Пробы и CO (в виде стержней) затачивают на станке на усечен-ный конус с площадкой диаметром 1,5—1,7 мм или на полусферу, или на плоскость.

Пробы и СО очищают от поверхностных загрязнений травлени-ем их в азотной кислоте (1:1), ополаскивают дистиллированной водой, протирают спиртом и сущат. (Измененная редакция, Изм. №1).

4. ПРОВЕДЕНИЕ АНАЛИЗА

4.1. Пробу или СО в виде монолитного куска зажимают в нижнем зажиме штатива и подводят под медный или угольный электрод таким образом, чтобы расстояние от обыскриваемого участка до края образца было не меньше пятна обыскривания (2-5 мм). Допускается использование проб или СО в виде парных стержней диаметром 7-8 мм.

Между концами электродов, раздвинутыми на (1,50±0,02) мм, зажигают дугу переменного тока силой 6—8 А, питаемую с помощью стандартного генератора ГЭУ-1 к квантометру ДФС-10М от сети (220±5) В. Метод управления фазовый с фазой поджига 90°. Время предварительного обжига 10—35 с, время экспозиции не более120 с. Ширина входной щели 0,02—0,07 мм. Входную щель освещают с помощью растрового конденсора. От каждого СО и пробы получают не менее двух-трех измерений.

Длины волн аналитических линий и линий сравнения приведены в табл 2 и 3.

Таблица 2

Определяемый элемент	Длино волим линии определяемого элемента, нм	Длина волны люни сравнения, им
Сурьма	206,838	Фон 228,3
Мышьяк	234,984	Фон 228,3
Магний	279,553	Мель 316,5
Олово	283,999	» 316,5
Кремний	288,158	* 316,5
Висмут	306,772	* 316,5
Серебро	338,289	» 316,5
Никель	341,476	* 316,5
Железо	371,994	» 316,5
Марганец	403,075	» 316,5
Свинец	405,782	» 316,5
Хром	425,434	» 316,5
Цинк	472,222	» 316,5

Таблица :

Определяемый элемент	Длина волны линии элемента, определяемого и приборе, им		
	ДФС-36	МФС-8	
Висмут	306,772	306,772	
Железо	302,064	259,940	
Кремний	288,158	251,611	
Магний	279,553	280,270	
Марганец	403,076	293,344	

Определяемый элемент	Длина волны линии элемента, определяемого приборе, нм		
	ДФС-36	мФС-8	
Мышьяк	234,984	234,984	
Никель	341,477	341,477	
Олово	317,505	317,505	
Свинец	405,782	283,307	
Серебро	338,289	338,289	
Сурьма	259,809	217,588	
Фосфор	253,339	253,399	
Хром	425,434	267,799	
Цинк	472,216	334,505	

Примечание. Линией сравнения является фон 228,3 нм.

Допускается применение других аналитических линий и линий сравнения при условии, что они обеспечивают метрологические характеристики анализа и нижние границы определяемых концентраций, отвечающие требованиям настоящего стандарта.

(Измененная редакция, Изм. № 1).

5. ОБРАБОТКА РЕЗУЛЬТАТОВ

- Градуировочные графики сгроят в координатах n—lg C или n—C,
 где C массовая доля определяемого элемента в CO;
 - п показания выходного измерительного прибора, пропорциональные логарифму относительной интенсивности линий определяемого элемента и линии сравнения (фон или медь).

Основной метод для построения графиков — метод «трех эталонов». Допускается применение других методов построения графика, например, метод твердого градуировочного графика, метод контрольного эталона или по уравнению этих графиков при обработке на ЭВМ.

- 5.2. Массовую долю определяемых элементов в пробе находят по градуировочному графику по значению n, вычисленному по двум (трем) измерениям n.
- 5.3. За результат анализа принимают среднее арифметическое результатов двух параллельных определений, если расхождение

между ними при доверительной вероятности P=0,95 не превышает величины, рассчитанной по формуле

$$d_n = 2,77\overline{X} \cdot S_r,$$

где \overline{X} — среднее арифметическое двух параллельных определений, %;

 S_r — относительное стандартное отклонение.

Если расхождение превышает d_{π} , анализ повторяют из новых навесок той же пробы. В случае повторного расхождения анализируют новую пробу.

5.4. Воспроизводимость результатов первичного и повторного анализов считают удовлетворительной, если расхождение результатов двух анализов не превыщает величины, рассчитанной по формуле

 $D = 1,41d_n$

5.5. Контроль точности результатов анализа — по ГОСТ 25086 по стандартным образцам состава меди периодически не реже одного раза в квартал.

Разд.5. (Измененная редакция, Изм. № 1).

C. 8 FOCT 9717.1-82

ИНФОРМАЦИОННЫЕ ДАННЫЕ

 РАЗРАБОТАН И ВНЕСЕН Министерством цветной металлургии СССР

РАЗРАБОТЧИКИ

- А. М. Рытиков, А. А. Немодрук, М. Б. Таубкин, М. П. Бурмистров, И. А. Воробьева
- УТВЕРЖДЕН И ВВЕДЕН В ДЕЙСТВИЕ Постановлением Государственного комитета СССР по стандартам от 24 марта 1982 г. № 1199
- 3. B3AMEH FOCT 9717.1--75
- 4. ССЫЛОЧНЫЕ НОРМАТИВНО-ТЕХНИЧЕСКИЕ ДОКУМЕНТЫ

Наименование НТД, на который дана есылка	Номер пункта
FOCT 193-79	1.1
ΓΟCT 546—88	1.1
FOCT 859-78	Разд.2
ГОСТ 446177	Разд. 2
FOCT 6709-72	Разл.2
ΓΟCT 18300-87	Разп.2
ΓOCT 25086—87	1.1, 5.5
ГОСТ 27981.0—88	1.3

- Ограничение срока действия снято Постановлением Госстандарта от 03.11.92 № 1481
- ПЕРЕИЗДАНИЕ (май 1997 г.) с Изменением № 1, утвержденным в ноябре 1992 г. (ИУС 2—93)