ГОСУДАРСТВЕННЫЙ СТАНДАРТ СОЮЗА ССЕ

ПОЧВЫ

Определение подвижной серы по методу ЦИНАО

Soils. Determination of mobile sulfur by CINAO method ГОСТ 26490—85

Постановлением Государственного комитета СССР по стандартам от 26 марта 1985 г. № 821 срок действия установлен с 01.07.86

до 01.07.96

Несоблюдение стандарта преследуется по закону

Настоящий стандарт устанавливает метод определения подвижной серы в почвах, вскрышных и вмещающих породах при проведении почвенного, агрохимического, мелиоративного обследований угодий, контроля за состоянием почв и других изыскательских и исследовательских работ.

Суммарная относительная погрешность метода составляет 25% при массовой доле серы в почве до 2,5 млн⁻¹; 10% — св. 2,5 до

5 млн⁻¹; 7,5% — св. 5 млн⁻¹.

Сущность метода заключается в извлечении подвижной серы из почвы раствором хлористого калия, осаждении сульфатов хлористым барием и последующем турбидиметрическом определении их в виде сульфата бария по оптической плотности взвеси. В качестве стабилизатора взвеси используется растворимый крахмал.

1. МЕТОД ОТБОРА ПРОБ

Отбор проб — по ГОСТ 26483—85.

2. АППАРАТУРА, МАТЕРИАЛЫ И РЕАКТИВЫ

Для проведения анализа применяют:

фотоэлектроколориметр;

баню водяную;

весы лабораторные 2-го класса точности с наибольшим пределом взвешивания 200 г и 4-го класса точности с наибольшим пределом взвешивания 500 г по ГОСТ 24104—80;

дозаторы с погрешностью дозирования не более 1% или пипетки и бюретки 2-го класса точности по ГОСТ 20292—74;

посуду мерную лабораторную 2-го класса точности по ГОСТ

1770—74;

пробирки стеклянные вместимостью 50 см³ по ГОСТ 10515 -75; кислоту соляную по ГОСТ 3118—77, х.ч., раствор концентрации с (HCl) = 1 моль/дм³ (1 н.);

калий хлористый по ГОСТ 4234-77, х.ч., раствор концентра-

цин c (KCl) = 1 моль/дм³ (1 н.);

натрия гидроокись по ГОСТ 4328—77, х.ч., или ч.д.а., раствор массовой концентрации 5 г/дм³;

натрий сернокислый безводный по ГОСТ 4166-76, х.ч.;

барий хлористый 2-водный по ГОСТ 4108—72, х.ч. или ч.д.а.;

крахмал растворимый;

соль динатриевую этилендиамин-N,N,N',N'-тетрауксусной кислоты 2-водную (трилон Б) по ГОСТ 10652—73, х. ч. или ч.д.а.; воду дистиллированную по ГОСТ 6709—72; бумагу фильтровальную по ГОСТ 12026—76.

3. ПОДГОТОВКА К АНАЛИЗУ

3.1. Приготовление осаждающего раствора

20 г двуводного хлористого бария, взвешенного с погрешностью не более 0,1 г, помещают в стакан из термостойкого стекла вместимостью 1000 см³, приливают примерно 800 см³ дистиллированной воды и 60 см³ раствора соляной кислоты концентрации 1 моль/дм³. Стакан помещают на кипящую водяную баню. В горячий раствор добавляют 5 г растворимого крахмала, взвешенного с погрешностью не более 0,1 г и предварительно разведенного небольшим количеством дистиллированной воды. Смесь нагревают на водяной бане при непрерывном помешивании до получения прозрачного раствора. Затем раствор охлаждают, переносят в мерную колбу вместимостью 1000 см³, доводят дистиллированной водой объем раствора до метки и тщательно перемешивают.

Раствор хранят в склянке с притертой пробкой в холодильнике не более недели. Перед использованием раствор фильтруют через

бумажный фильтр.

3,2. Приготовление раствора серы массовой концентрации 0,1 мг/см³

0,443 г сернокислого натрия, высушенного до постоянной массы при температуре 100—105°С, взвешивают с погрешностью не более 0,001 г, помещают в мерную колбу вместимостью 1000 см³, растворяют в растворе хлористого калия концентрации 1 моль/дм³, доводя объем раствора до метки, и тщательно перемешивают.

Раствор хранят в склянке с притертой пробкой в холодильни-

ке не более 3 мес.

3.3. Приготовление растворов сравнения

В мерные колбы вместимостью 250 см3 помещают указанные в таблице объемы раствора, приготовленного по п. 3.2. Объемы растворов доводят до метки раствором хлористого калия концентрации 1 моль/дм3 и тщательно перемешивают.

Характеристика раствора	Номер раствора сравнения							
	1	2	3	4	5	6	7	8
Объем раствора, приготовлен- ного по п. 3.2, см ³ Концентрация серы:	0	2	4	8	12	16	20	24
в растворе сравнения, мг/дм3	0	0,8	1,6	3,2	4,8	6,4	8,0	9,6
в пересчете на массовую долю в почве, млн ⁻¹	0	2	4	8	12	16	20	24

Растворы хранят в склянках с притертыми пробками не более I Mec.

Растворы сравнения используют для градуировки фотоэлектроколориметра в день проведения анализа.

3.4. Приготовление моющего раствора

5 г трилона Б, взвешенного с погрешностью не более 0,1 г, растворяют в 1000 см³ раствора гидроокиси натрия массовой концентрации 5 г/дм3.

4. ПРОВЕДЕНИЕ АНАЛИЗА

4.1. Приготовление вытяжки из почвы

Для анализа используют фильтраты вытяжек, приготовленных по ГОСТ 26483-85.

4.2. Определение серы

В пробирки отбирают по 15 см3 фильтратов и растворов сравнения. К пробам приливают по 15 см³ осаждающего раствора и тщательно перемешивают.

Взвеси не ранее чем через 10 мин после прибавления осаждающего раствора фотометрируют в кювете с толщиной просвечиваемого слоя 5 см относительно раствора сравнения № 1 при длине волны 520 нм или используя светофильтр с максимумом пропускания в области 500-540 нм. Перед помещением в кювету фотоэлектроколориметра взвесь необходимо перемешать. Взвесь оптически устойчива в течение 7 ч.

Допускается пропорциональное изменение объемов проб анализируемых вытяжек, растворов сравнения и осаждающего раствора при погрешности дозирования не более 1%.

Кюветы фотоэлектроколориметра и пробирки после работы по-

мещают в моющий раствор на 1 ч.

5. ОБРАБОТКА РЕЗУЛЬТАТОВ

5.1. По результатам фотометрирования растворов сравнения строят градуировочный график. По оси абсцисс откладывают концентрации серы в растворах сравнения в пересчете на массовую долю в почве (млн⁻¹), а по оси ординат — соответствующие им показания фотоэлектроколориметра.

Массовую долю серы в анализируемой почве определяют непосредственно по градуировочному графику и вычитают из него

результат холостого опыта.

Если результат анализа выходит за пределы градуировочного графика, определение повторяют, предварительно разбавив фильтрат раствором хлористого калия концентрации 1 моль/дм³. Результат, найденный по графику, увеличивают во столько раз, во сколько был разбавлен фильтрат.

При проведении массовых анализов вместо построения градуировочного графика допускается градуирование шкалы прибора по растворам сравнения в день проведения анализа.

За результат анализа принимают значение единичного опре-

деления серы.

Результаты анализа выражают в миллионных долях с округ-

лением до первого десятичного знака.

5.2. Допускаемые относительные отклонения от среднего арифметического результатов повторных анализов при выборочном статистическом контроле при доверительной вероятности $P\!=\!0.95$ составляют 35% при массовой доле серы в почве до 2,5 млн⁻¹, 15% — св. 2,5 до 5 млн⁻¹, 10% — св. 5 млн⁻¹.