

ГОСУДАРСТВЕННЫЙ СТАНДАРТ СОЮЗА ССР

МЕТИЛЕН ХЛОРИСТЫЙ ТЕХНИЧЕСКИЙ

ТЕХНИЧЕСКИЕ УСЛОВИЯ

ΓΟCT 9968-86

Издание официальное

634-9

ИЗДАТЕЛЬСТВО СТАНДАРТОВ Москва

МЕТИЛЕН ХЛОРИСТЫЙ ТЕХНИЧЕСКИЙ Технические условия

ГОСТ 9968—86*

Technical methylene dichloride. Specifications Взамен ГОСТ 9968—73

OKIT 24 1212

Постановлением Государственного комитета СССР по стандартам от 19.12.86 № 4123 срок действия установлен

c 01.01.88

Постановлением Госстандарта СССР от 29.06.92 № 589 снято ограничение срока действия

Настоящий стандарт распространяется на технический хлористый метилен (дихлорметан), применяемый в производстве химических волокон, кинофотопленок, пластмасс и в других отраслях народного хозяйства.

Формула СН2СІ2.

Относительная молекулярная масса (по международным относительным атомным массам 1987 г.) — 84,93.

(Измененная редакция, Изм. № 1).

1. ТЕХНИЧЕСКИЕ ТРЕБОВАНИЯ

- 1.1. Технический хлористый метилен должен быть изготовлен в соответствии с требованиями настоящего стандарта по технологическому регламенту, утвержденному в установленном порядке.
- 1.2. По физико-химическим показателям технический хлористый метилен должен соответствовать требованиям и нормам, указанным в табл. 1.

Издание официальное

Перепечатка воспрещена

*

 Переиздание (июнь 1994 г.) с Изменением № 1, итвержденным в июне 1992 г. (ИУС 9—92).

С Издательство стандартов, 1986

С Издательство стандартов 1994

Наименование показателя	Норма		
	Высший сорт СКП 24 1212 0120	Первый сорт ОКП 24 1212 0130	Метод анализа
1. Внешний вид	Бесцветная прозрачная жидкость без механичес- ких примесей		По п. 4.2
 Плотность при 20 °С, г/см³ 	1,326—1,328	1,324-1,329	По ГОСТ 18995.1—73
 Массовая доля воды, %, не более Массовая доля остатка после выпа- 	0,01	0,04	По п. 4.3 По п. 4.4
ривания, %, не более	0,0005	8000,0	
 Массовая доля железа, %, не более Массовая доля кислот в пересчете на 	0,0001	0,0003	По п. 4.5
НСІ, %, не более	0,0004	0,0008	
7. Массовая доля хлорорганических примесей, %, не более	0,23	1,10	По п. 4.7
в том числе массовая доля хлорофор- ма, %, не более	0,2	0,8	
 Массовая доля хлористого метилена, не менее 	99,7	98,8	По п. 4.8

(Измененная редакция, Изм. № 1).

1.3. По согласованию с потребителем хлористый метилен может быть стабилизирован не более 0,5% (по объему) метанолом по ГОСТ 2222—78 или этиловым ректификованным спиртом по ГОСТ 18300—87 с массовой долей основного вещества не менее 96,2%.

При этом плотность стабилизированного продукта может бытьснижена до 1,321 г/см³ и массовая доля воды увеличена до 0,05 % для обоих сортов.

2. ТРЕБОВАНИЯ БЕЗОПАСНОСТИ

Хлористый метилен — трудногорючее вещество.

Температура вспышки в закрытом тигле — минус 14 °С, температура самовоспламенения — 580 °С, концентрационные пределы распространения пламени; нижний (ϕ_m) — 16,2 % об., верхний (ϕ_n) — 19,1 % об.

Температура самовоспламенения хлористого метилена, стабилизированного метанолом, — 535 °C, этиловым спиртом — 570 °C.

Показатели пожаровзрывоопасности определяют по ГОСТ 12.1.044—89.

При загорании хлористого метилена образуется хлористый водород и фосген.

В условиях пожара следует применять противогаз марки

КИП-8 или АСВ-2.

Для тушения огня применяют воздушно-механическую пену,

двуокись углерода, сухие порошки.

2.2. Хлористный метилен обладает наркотическим действием, раздражает слизистые оболочки глаз и дыхательные пути, длительном воздействии поражает печень, почки, нервную и сердечно-сосудистую системы.

Предельно допустимая концентрация (ПДК) хлористого метилена в воздухе рабочей зоны — 50 мг/м3, четвертый класс опасно-

сти по ГОСТ 12.1.005-88.

2.3. Производственные помещения должны быть оборудованы приточно-вытяжной вентиляцией. Оборудование должно быть герметичным.

Производственный персонал должен быть обеспечен средствами индивидуальной защиты (специальная одежда, перчатки, защитные

очки, противогаз марки А или БКФ по ГОСТ 12.4.121-83).

При производстве и применении хлористого метилена следует соблюдать требования по обеспечению пожарной безопасности по ГОСТ 12.1.004--91.

Пролитый хлористый метилен убирают с помощью песка. Заг-

рязненный песок вывозят в отвал.

Разд. 2. (Измененная редакция, Изм. № 1).

3. ПРАВИЛА ПРИЕМКИ

3.1. Технический хлористый метилен принимают партиями. Партней считают любое количество продукта, однородного по показателям качества, сопровождаемое одним документом о качестве.

При транспортировании хлористого метилена в железнодорож-

ных цистернах каждую цистерну принимают за партию.

Документ о качестве должен содержать:

товарный знак или наименование предприятия-изготовителя;

наименование и сорт продукта; классификационный шифр 6113 по ГОСТ 19433—88;

номер партии и дату изготовления;

номер цистерны;

количество упаковочных единиц продукции в партии;

массы брутто и нетто;

результаты проведенных анализов и (или) подтверждение соответствия качества продукта требованиям настоящего стандарта; обозначение настоящего стандарта.

 3.2. Объем выборки для проверки качества хлористого метилена
 10% упаковочных единиц продукции, но не менее трех упаковочных единиц.

3.3. При получении неудовлетворительных результатов анализа хотя бы по одному показателю проводят повторный анализ пробы, отобранной от удвоенной выборки той же партии или вновь отобранной пробы из цистерны.

3.1-3.3. (Измененная редакция, Изм. № 1).

4. МЕТОДЫ АНАЛИЗА

Общие указания по проведению анализа — по ГОСТ 27025—86. Допускается применение других средств измерений с метроло-гическими характеристиками и оборудования с техническими характеристиками не хуже, а также реактивов по качеству не ниже указанных в настоящем стандарте.

Для приготовления градуировочных смесей допускается применение веществ с массовой долей основного вещества не менее 95%.

Результаты анализа округляют до того десятичного знака, который указан в табл. 1.

4.1. Отбор проб

4.1.1. Точечные пробы продукта из бочек и цистери отбирают в соответствии с ГОСТ 2517—85. При этом из цистерны отбирают три точечные пробы с трех уровней (верхнего, среднего и ниж-него), используя металлический переносной пробоотборник или бутылку в металлическом каркасе (ГОСТ 2517—85, черт. 5 и 6). Для отбора пробы из бочки используют пробоотборную трубку (ГОСТ 2517—85, черт. 8), стеклянную или металлическую трубку диаметром 15-20 мм с оттянутым концом.

Точечные пробы (равные по объему) соединяют, перемешивают

и отбирают среднюю пробу объемом не менее 1 дм³. Среднюю пробу помещают в чистую сухую склянку с пришлифованной пробкой или завинчивающейся крышкой, на склянку накленвают этикетку с указанием наименования предприятия-изготовителя, наименования и сорта продукта, номера партии, даты отбора пробы, фамилии лица, отобравшего пробу.

Разд. 4. (Измененная редакция, Изм. № 1). 4.1.2, 4.1.3. (Исключены, Изм. № 1).

4.2. Определение внешнего вида

Внешний вид хлористого метилена определяют просмотром в

проходящем свете столба жидкости, налитой в цилиндр I (3) —100 —2 по ГОСТ 1770—74 до отметки 100 см³, на белом фоне листа бумаги.

4.3. Определение массовой доли воды

Массовую долю воды определяют по ГОСТ 14870—77 с реак-тивом Фишера или по ГОСТ 24614—81.

При разногласиях в оценке массовой доли воды определение проводят по ГОСТ 14870—77 электрометрическим титрованием.

4.4. Определение массовой доли остатка после

выпаривания

Массовую долю остатка после выпаривания определяют по ГОСТ 27026—86. При этом анализируемую пробу объемом 600 см³ отмеривают цилиндром вместимостью 1000 см³ (ГОСТ 1770—74) и упаривают частями в платиновой чашке (ГОСТ 6563—75) или кварцевой чаше (ГОСТ 19908—90) на горячей водяной бане.
Массовую долю остатка после выпаривания (X) в процентах

вычисляют по формуле

$$X = \frac{m \cdot 100}{V \cdot p}$$
,

где m — масса остатка после выпаривания, г;

Объем анализируемой пробы, см³.

плотность продукта при температуре 20 °C, г/см⁸.

За результат анализа принимают среднее арифметическое реза результат анализа принимают среднее арифметическое результатов двух параллельных определений, абсолютное расхождение между которыми не превышает допускаемое расхождение, равное 0,00006 % для продукта высшего и первого сортов.

Допускаемая абсолютная суммарная погрешность результата определения ±0,0001 % при доверительной вероятности P=0.95.

Допускается проводить определение при объеме продукта 150-

—160 см³.

За результат анализа принимают среднее арифметическое результатов двух параллельных определений, абсолютное расхождение между которыми не превышает допускаемое расхождение равное 0,00015% для продукта высшего сорта и 0,00025% для продукта первого сорта.

Допускаемая абсолютная суммарная погрешность результата определения $\pm 0,0004\%$ при доверительной вероятности P=0.95.

При разногласиях в оценке массовой доли остатка после выпаривания определение проводят при испарении 600 см³ продукта. Остаток сохраняют для определения массовой доли железа.

4.2-4.4. (Измененная редакция, Изм. **№** 1).

4.4.1— 4.4.4. (Исключены, Изм. № 1).

4.5. Определение массовой доли железа

Массовую долю железа определяют по ГОСТ 10555—75 сульфосалициловым методом. При этом к сухому остатку, полученному в п. 4.4, приливают 5 см³ концентрированной соляной кислоты, 1—2 капли серной кислоты (ГОСТ 4204—77) и нагревают до полного его растворения.

После охлаждения раствор переносят в мерную колбу вместимостью 250 см³, доводят объем водой до метки и перемешивают

(раствор А).

Анализируемую пробу готовят следующим образом:

если раствор А приготовлен из остатка после выпаривания пробы объемом 600 см³, при приготовлении анализируемой пробы отбирают 10 см³ раствора А для продукта высшего сорта или 2,5 см³ для продукта первого сорта, помещают в мерную колбу вместимостью 50 см³ и доводят объем раствора водой до 20 см³.

если раствор А приготовлен из остатка после выпаривания пробы объемом 150—160 см³, при приготовлении анализируемой пробы отбирают соответственно 25 и 8 см³ раствора А.

Массовую долю железа (Х1) в процентах вычисляют по фор-

муле

$$X_1 = \frac{m \cdot 10^{-3} \cdot 250 \cdot 100}{600 \cdot p \cdot V_1}$$
 ,

где m — масса железа, найденная по градуировочному графику,

плотность хлористого метилена, г/см³;

V₁ — объем раствора А, взятый для анализа, см³.

За результат анализа принимают среднее арифметическое результатов двух параллельных определений, абсолютное расхождение между которыми не превышает допускаемое расхождение, равное 0,00002 % для продукта высшего сорта и 0,00005 % для продукта первого сорта.

Допускаемая абсолютная суммарная погрешность результата определения ±0,00001% для продукта высшего сорта и ±0,00003% для продукта первого сорта при доверительной вероятности

 $\hat{P} = 0.95$.

(Измененная редакция, Изм. № 1).

4.5.1—4.5.3 (Исключены, Изм. № 1). 4.5.4 Обработка результатов

. Массовую долю железа (X_1) в процентах вычисляют по формуле

$$X_1 = \frac{m \cdot 10^{-6} \cdot 250 \cdot 100}{150 \cdot \rho \cdot 20} ,$$

где т — масса железа, найденная по градунровочному графику, мкг;

р — плотность хлористого метилена, г/см³.

За результат анализа принимают среднее арифметическое результатов двух параллельных определений, допускаемые расхождения между которыми не должны превышать $0.1 \cdot 10^{-4}\%$ для диапазона измерений $(0.3-7.0) \cdot 10^{-4}\%$ при доверительной вероятности P=0.95.

Допускаемые расхождения между результатами анализа, полученными в двух лабораториях, не должны превышать $1\cdot10^{-5}$ % для диапазона $(0.3-1.0)\cdot10^{-4}$ % и $3\cdot10^{-5}$ % для диапазона (1.0- $-7.0)\cdot10^{-4}$ % при доверительной вероятности P=0.95.

Результаты округляют с точностью до пятого десятичного

знака.

 Определение массовой доли кислот в пересчете на НСІ

4.6.1. Аппаратура, реактивы, растворы

Бюретка вместимостью 2,5 и 10 см³ с ценой деления 0,05 см³.

Цилиндр по ГОСТ 1770—74 вместимостью 50 см³.

Посуда лабораторная стеклянная по ГОСТ 25336—82.

Вода дистиллированная по ГОСТ 6709—72 нейтрализованная по смешанному индикатору (к 100 см³ воды добавляют 1 см³ раствора смешанного индикатора).

Натрия гидроокись по ГОСТ 4328—77, х. ч., раствор концентрации c (NaOH) = 0.01 моль/дм³ готовят и устанавливают коэффи-

циент поправки по ГОСТ 25794.1-83.

Смешанный индикатор (бромкрезоловый зеленый, метиловый красный), готовят по ГОСТ 4919.1—77

Спирт этиловый ректификованный технический по ГОСТ 18300—87 высшего сорта.

4.6.2. Проведение анализа

50 см³ анализируемого продукта помещают в делительную воронку, добавляют 50 см³ воды, встряхивают (2,0±0,5) мин и дают отстояться. Водный слой переносят в коническую колбу, прибавляют 4—5 капель смешанного индикатора и титруют раствором гидроокиси натрия до перехода розовой окраски раствора в зеленую.

4.6.3. Обработка результатов

Массовую долю кислот в пересчете на HCl (X_2) в процентах вычисляют по формуле

$$X_2 = \frac{X \cdot 0,000365 \cdot 100}{50 \cdot \rho}$$
.

где V — объем раствора гидроокиси натрия концентрации точно 0,01 моль/дм³, израсходованный на титрование анализируемой пробы, см³:

0,000365 — масса соляной кислоты, соответствующая 1 см³ раствора гидроокиси натрия концентрации точно 0,01 моль/дм³, г;

50 — объем хлористого метилена, взятый на анализ, см³;

плотность хлористого метилена, г/см³.

За результат анализа принимают среднее арифметическое результатов двух параллельных определений, абсолютное расхождение между которыми не превышает допускаемое расхождение, равное 3-10-5 %.

Допускаемая абсолютная суммарная погрешность результата

определения $\pm 4 \cdot 10^{-6}$ при доверительной вероятности P = 0.95.

4.6-4.6.3. (Измененная редакция, Изм. Ma 1).

4.7. Определение массовой доли хлороргани-

ческих примесей

Метод основан на прямом газохроматографическом определении примесей хлористого метила, хлористого этила, винилиденхлорида, хлористого аллила, транс- и цис-дихлорэтилена, четыреххлористого углерода и хлороформа в техническом хлористом метилене.

Количественное определение проводят методом «внутреннего эталона» с учетом градуировочных коэффициентов.

4.7.1. Приборы и реактивы

Хроматограф серии «Цвет-100» с пламенно-ионизационным детектором или другой хроматограф, обеспечивающий необходимую чувствительность определения.

Колонка хроматографическая стальная длиной 3 м, внутрен-

ним диаметром 3 мм.

Весы лабораторные 2-го класса точности с наибольшим пределом взвешивания 200 г по ГОСТ 24104—88.

Термометр лабораторный с пределами измерения от 0 до 150° С.

Чашка выпарительная по ГОСТ 9147-80.

Посуда лабораторная стеклянная по ГОСТ 25336-82.

Пипетка градуированная вместимостью 5 см3.

Колба мерная 2-50-2 по ГОСТ 1770-74.

Микрошприц типа МШ-10.

Линейка измерительная по ГОСТ 427-75.

Лупа измерительная по ГОСТ 25706-83.

Интегратор электронный.

Секундомер.

Зажимное устройство, показанное на черт. 1, или другой конструкции.

Газ-носитель — азот газообразный по ГОСТ 9293-74 или ге-

лий газообразный марки А по ТУ 51-940-80.

Водород по ГОСТ 3022-80 марки А или Б или водород электролизный от генератора водорода СГС-2.

Воздух сжатый для питания контрольно-измерительных прибо-

DOB.

Цветохром ЗК ДМДХС, модифицированный носитель для хроматографии, или другой носитель с частицами размером 0.25-0.315 мм.

Трифенилфосфат или трикрезилфосфат (неподвижная фаза для хроматографии).

Ацетон технический по ГОСТ 2768-84.

Вода дистиллированная по ГОСТ 6709-72 или вода эквивалентной чистоты.

Хлористый метилен для хроматографии. В случае отсутствия этого продукта технический хлористый метилен очищают ректификацией. Чистоту проверяют хроматографированием в условиях проведения анализа при объеме пробы 3 мм3. На хроматограмме должны отсутствовать пики примесей.

Метил хлористый по ГОСТ 12794-80.

Этил хлористый по ГОСТ 2769-78.

Винилиденхлорид технический по ТУ 6-01-19-90.

Аллил хлористый по ТУ 6-09-3827-74.

Транс-дихлорэтилен, транс- и цис-дихлорэтилен можно выделить при разгонке на ректификационной колонне двухлористого ацетилена (смеси цис- и транс- форм).

Хлороформ по ГОСТ 20015—88, высший сорт.

Углерод четырехклористый по ГОСТ 4-84, высший сорт.

Трихлорэтилен технический по ГОСТ 9976-83.

Поглотитель химический известковый ХП-И по ГОСТ 6755-88.

4.7.2. Условия проведения анализа

Температура термостата колонок — (55±3) °С.

Температура испарителя — (100±10) °С. Длина хроматографической колонки — 3 м.

Объемный расход газа-носителя азота — (15±3) см3/мин.

Объемный расход водорода — (25±5) см³/мин.

Объемный расход воздуха — (250±50) см³/мин.

Скорость движения диаграммной ленты - 50-60 мм/ч.

Предел измерения ионизационного тока — 50·10⁻¹² A.

Продолжительность хроматографирования (50±5) мин.

Объем вводимой пробы — 0,2—3,0 мм³.

C. 10 FOCT 9968-86

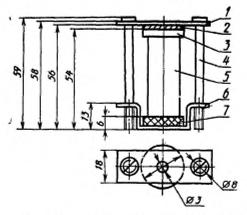
Хроматограф выводят на рабочий режим по инструкции, при-

лагаемой к прибору.

При появлении дрейфа нулевого сигнала и флуктуационных шумов нулевого сигнала, превышающих указанные в техническом описании на хроматограф, детектор следует промыть спиртом.

При ухудшении разделительной способности колонки сорбент

следует заменить свежеприготовленным.


4.7.-4.7.2. (Измененная редакция, Изм. № 1).

4.7.3. Подготовка к анализу

4.7.3.1. Приготовление сорбента

15—20 г цветохрома ЗД ДМДХС обрабатывают в фарфоровой чашке раствором трифенилфосфата (20% от массы цветохрома) в ацетоне. Чашку со смесью подогревают на водяной бане, непрерывно помешивая ее содержимое, испаряют ацетон досуха. Испарение ведут в вытяжном шкафу.

Зажимное устройство для пенициллинового флакона

1 — металляческая властника; 2 — резиновая прокладка;
 3 — полютиленовая прокладка;
 4 — стяжные болты;
 5 — металлическая прокладка;
 7 — полютиленовая прокладка;

4.7.3.2. Подготовка и заполнение колонки

Колонку перед заполнением промывают ацетоном, высушивают и заполняют приготовленным сорбентом под вакуумом, уплот-

няя сорбент вибратором или легким постукиванием.

Заполненную колонку устанавливают в термостате хроматографа и, не присоединяя к детектору, продувают газом-носителем в течение 3—4 ч при температуре 120 °C. После этого колонку присоединяют к детектору.

4.7.3.3. Градуировка хроматографа

Исходные вещества, являющиеся примесями, предварительно проверяют на чистоту по описываемой методике и считают удовлетворяющими требованиям, если на хроматограмме основной пик выходит на всю шкалу, а пики примесей отсутствуют. При необходимости очищают перегонкой на ректификационной колонке.

Для определения градуировочных коэффициентов готовят несколько искусственных смесей, состоящих из хлористого метилена и следующих примесей: хлористого метила, хлористого этнла, винилиденхлорида, хлористого аллила, транс-дихлорэтилена, цисдихлорэтилена, четыреххлористого углерода с массовыми долями 0,005—0,100%, хлороформа с массовой долей 0,01—1,00% с добавлением трихлорэтилена (внутреннего эталона) с массовой долей 0,001—0,1%.

Для этого 8—10 г хлористого метилена взвешивают в пенициллиновом флаконе и в него микрошприцем через резиновую мембрану и полиэтиленовую прокладку поочередно добавляют примеси и трихлорэтилен, взвешивая смесь после каждого добавления (результат взвешивания записывают с точностью до четвертого десятичного знака). Для закрепления мембраны и прокладки применяют зажимное устройство.

Хлористый метил предварительно сжижают в ловушке, а микрошприц, используемый для введения хлористого метила и хлористого этила в смесь, охлаждают, помещая его в емкость с сухим льдом так, чтобы игла была снаружи. Смеси с массовыми долями примесей менее 0,1% готовят разбавлением хлористым метиленом приготовленной смеси.

Относительня погрешность приготовления градуировочных смесей не должна превышать $\pm 2,5\%$. 0.2-3 мм³ смеси отбирают микрошприцем, вводят в испаритель прибора, хроматографируют и градуировочные коэффициенты каждой примеси (K_i) вычисляют по формуле

$$K_i = \frac{S_{s_2} \cdot m_1}{S_i \cdot m_{s_2}}$$

где S_{эт} — площадь пика «внутреннего эталона», мм²;

mar - масса «внутреннего эталона», г:

 S_i — площадь пика определяемой примеси, мм²;

т. — масса примеси в искусственной смеси, г.

Площадь пиков вычисляют как произведение высоты пика на его ширину, измеренную на середине высоты. Допускается определять площадь пика с помощью электронного интегратора.

Коэффициент вычисляют как среднее арифметическое результатов анализа 4—5 смесей, каждую из которых хроматографируют не менее 5 раз.

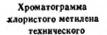
Относительная суммарная погрешность определения градуировочных коэффициентов не должна превышать ±3,5%.

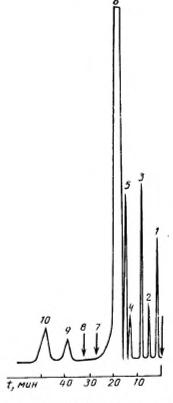
Градуировочные коэффициенты определяют после каждой смены сорбента в колонке.

Относительное время удерживания примесей приведено в табл. 3.

Тблица 3*

Наименование примесей	Относительное время удерживания		
Метил хлористый	0.04		
Этил хлористый	0.09		
Винилиденхлорид	0,17		
Аллил хлористый	0,26		
Транс-дихлорэтилен	0,30		
Углерод четыреххлористый	0,56		
Цис-дихлорэтилен	0,65		
Хлороформ	0,80		
Трихлорэтилен	1.00		


Табл. 2. (Исключена, Изм. № 1).


Хроматограмма приведена на черт. 2.

4.7.4. Проведение анализа

При использовании в качестве стабилизатора этилового спирта перед проведением анализа пробу необходимо отмыть от стабилизатора.

Для этого 25 см³ хлористого метилена и 15 см³ дистиллированной воды помещают в делительную воронку вместимостью 50 см³ и встряхивают на механической мешалке в течение 10 мин. Затем смеси дают отстояться в течение 3—5 мин и отделяют хлористый метилен от воды. Операцию отмывки повторяют 2—3 раза, а затем хлористый метилен высушивают над химическим известковым поглотителем ХП-И или хлористым кальцием.

I — хлористый метил; 2 — хлористый этил; 3 — винилиденхлорил; 4 — хлористый эллин; 5 — тристыхлоритилен 6 — хлористый метилен; 7 — четырехлористый углерой; 8 — дис-дихлор этилен; 9 — хлорофом; 10 — трихлор этилен

7—10 г анализнруемого хлористого метилена взвешивают в пенициллиновом флаконе (результат взвешивания записывают с точностью до второго десятичного знака) и добавляют 0,010—0,020 г трихлорэтилена. 1—5 см³ полученной смеси отбирают пипеткой, переносят в мерную колбу вместимостью 50 см³ и разбавляют до метки анализируемым продуктом. 0,2—3 мм³ разбавленной смеси вводят микрошприцем в испаритель хроматографа и затем снимают хроматограмму при условиях, описанных выше.

4.7.5. Обработка результатов

Массовую долю каждой примеси (X) в процентах вычисляют по формуле

$$X = \frac{K_i \cdot S_i \cdot m_{\pi \tau} \cdot V_1}{S_{\pi \tau} \cdot m_{\pi \rho} \cdot V_2} \cdot 100,$$

где K_i — градуировочный коэффициент определяемой примеси; S_i , $S_{a\tau}$ — площадь пика определяемой примеси и внутреннего эталона соответственно, мм²;

 $m_{\rm PT}$ — масса введенного в пробу внутреннего эталона, г;

 m_{np} — масса анализируемого продукта, г;

 V_1 — объем смеси, взятый для разбавления, см³;

V₂ — конечный объем разбавленной смеси (объем мерной колбы), см³.

Массовую долю суммы хлорорганических примесей (X_4) в процентах рассчитывают, суммируя измеренные массовые доли каждой примеси:

 $X_4 = \Sigma X_{\ell}$.

За результат анализа принимают среднее арифметическое результатов двух параллельных определений, абсолютное расхождение между которыми не превышает допускаемое расхождение, равное 0,004% при определении хлороформа и 0,005% при определении суммы хлорорганических примесей для продуктов высшего и первого сортов.

Допускаемая абсолютная суммарная погрешность результата анализа при определения хлороформа ±0,01 % и ±0,04 %, суммы хлорофорганических примесей ±0,03 и ±0,18 %, метиленхлорида ±0,04 и 0,20 % для продукта высшего и первого сортов со-

ответственно при доверительной вероятности Р=0,95.

4.8. Определение массовой доли хлористого метилена

Массовую долю хлористого метилена (X_3) в процентах вычисляют по формуле

 $X_3 = 100 - (X_a + \Sigma X_i),$

где Х. — массовая доля воды, %, найденная по п. 4.3.

- ΣX_I сумма массовых долей примесей, определенных хроматографически, %, найденный по п. 4.7.5.
- 4.7.3.3-4.8. (Измененная редакция, Изм. № 1).

4.9-4.10.2. (Исключены, Изм. № 1).

5. УПАКОВКА, МАРКИРОВКА, ТРАНСПОРТИРОВАНИЕ И ХРАНЕНИЕ

5.1. Технический хлористый метилен заливают в специально выделенные железнодорожные цистерны с верхним сливом, в стальные сварные толстостенные бочки по ГОСТ 17366—80 типа I вместимостью 110 и 275 дм,3 изготовленные из стали толщиной 3 мм.

Упаковка технического хлористого метилена должна соответст-

вовать ГОСТ 26319-84.

(Измененная редакция, Изм. № 1).

5.2. Уровень заполнения цистерн и степень заполнения бочек вычисляют с учетом полной вместимости цистерн и бочек и объемного расширения продукта при возможном перепаде температур в пути следования.

5.3. Наливные люки цистери и горловины бочек должны быть герметизированы прокладками из фторопласта по ГОСТ 10007—80, полиэтилена по ГОСТ 16337—77 или другими прокладками, стой-

кими к хлористому метилену.

Перед заполнением бочки должны быть тщательно промыты и высушены.

5.5. Транспортная маркировка - по ГОСТ 14192-77 с нанесе-

нием манипуляционного знака «Беречь от влаги».

Маркировка, характеризующая транспортную опасность груза, по ГОСТ 19433—88 (класс 6, подкласс 6.1, черт. 66, классификационный шифр 6113), серийный номер ООН 1593.

5.6. Маркировка, характеризующая упакованную продукцию,

должна содержать следующие данные:

товарный знак и наименование предприятия-изготовителя;

наименование продукта и его сорт;

номер партин и дату изготовления;

массу брутто и нетто;

обозначение настоящего стандарта.

Маркировку наносят непосредственно на каждую упаковочную

единицу или на транспортный пакет.

5.7. Технический хлористый метилен транспортируют в крытых транспортных средствах железнодорожным, водным, автомобильным транспортом в соответствии с правилами перевозки опасных грузов, действующими на данном виде транспорта.

C. 16 FOCT 9988-86

Железнодорожным транспортом хлористый метилен (дихлорметан) транспортируют на условиях трихлорэтилена (классификационный шифр 6113) повагонными отправками, а также наливом в железнодорожных цистернах, принадлежащих грузоотправителю (грузополучателю) в соответствии с правилами перевозок грузов.

Бочки с продуктом транспортируют на плоских деревянных поддонах по ГОСТ 9557—87 в соответствии с требованиями ГОСТ

26663-85, FOCT 21140-88.

Крепление груза на поддоне должно осуществляться стальной или капроновой лентой по ГОСТ 21650—76. Масса груза в пакете не должна превышать грузоподъемности поддона.

5.5—5.7. (Измененная редакция, Изм. № 1).

5.8. Технический хлористый метилен хранят в стальных герметичных резервуарах, а в бочках — в неотапливаемых складских помещениях или под навесом, в бочках вместимостью 275 дм³ — не более чем в два яруса, а вместимостью 110 дм³ — не более чем в 3 яруса.

6. ГАРАНТИИ ИЗГОТОВИТЕЛЯ

 Изготовитель гарантирует соответствие хлористого метилена требованиям настоящего стандарта при соблюдении условий транспортирования и хранения.

6.2. Гарантийный срок хранения стабилизированного хлористо-

го метилена — 3 мес со дня изготовления.

Редактор Л. И. Нахамова Технический редактор В. Н. Прусакова Корректор Е. Ю. Гебрук

Уч.-иэд. л. 1,07. Тир. 411 экв. С 1677. Сдано в набор 29.08.94. Подл. в неч. 04.10.94. Усл. неч. л. 1,16. Усл. кр.-отт 1,16.

Ордена «Знак Почета» Издательство стандартов, 167076, Мосива, Колодезный пер., 14. Калужская тирография стандартов, ул. Московская, 256.