ГОСУДАРСТВЕННЫЯ СТАНДАРТ СОЮЗА ССР

СТАЛЬ УГЛЕРОДИСТАЯ И ЧУГУН НЕЛЕГИРОВАННЫЯ

Методы определения хрома

Carbon steel and unalloyed cast iron. Methods for determination of chromium ΓΟCT 22536.7—88

ОКСТУ 0809

Срок действия с 01.01.90

до 01.07.95

Несоблюдение стандарта преследуется по закону

Настоящий стандарт устанавливает фотометрический (при массовой доле хрома от 0,01 до 0,50 %), титриметрический (при массовой доле хрома от 0,10 до 0,50 %) и атомно-абсорбционный (при массовой доле хрома от 0,01 до 0,50 %) методы определения хрома.

1. ОБЩИЕ ТРЕБОВАНИЯ

 1.1. Общие требования к методам анализа — по ГОСТ 22536.0—87.

 Погрешность результата анализа (при доверительной вероятности 0,95) не превышает предела Δ, приведенного в таблице, при выполнении условий:

расхождение между результатов двух (трех) параллельных измерений не должно превышать (при доверительной вероятности P = 0.95) значения d_2 (d_3), приведенного в таблице;

воспроизведенное в стандартном образце значение массовой доли хрома не должно отличаться от аттестованного более чем на допускаемое (при доверительной вероятности P = 0.85) значение

о, приведенное в таблице.

При невыполнении одного из вышеуказанных условий проводят повторные измерения массовой доли хрома. Если и при повторных измерениях требования к точности результатов не выполняются, результаты анализа признают неверными, измерения прекращают до выявления и устранения причин, вызвавших нарушение нормального хода анализа.

Издание официальное

Перепечатка воспрещена

Расхождение двух средних результатов анализа, выполненных в различных условиях (например, при внутрилабораторном контроле воспроизводимости), не должно превышать (при доверительной вероятности 0,95) значения д, приведенного в таблице.

Массовая доли хроча, %	١, ٩	Допускаемые расхождения, ъ			
		ø _K	ď1	d,	ð, 16
От 0,01 до 0,02 включ. Св. 0.02 » 0.05 »	0,0028	0,0036	0,0030	0,0036 0.006	0,0018
> 0,05 > 0,10 »	0,007	0,008	0,007	0,008	0,004
> 0,10 > 0,2 > 0,2 > 0,5 >	0,011	0,014	0,011	0,014	0,007

2. ФОТОМЕТРИЧЕСКИЯ МЕТОД ОПРЕДЕЛЕНИЯ ХРОМА

2.1. Метод основан на окислении дифенилкарбазида хромом (VI) в сернокислой среде до окращенного в красно-фиолетовый цвет соединения и измерении оптической плотности окращенного раствора при длине волны 546 нм.

Влияние Fe (III) устраняют прибавлением фосфорной кислоты. При определении хрома в стали и чугуне с массовой долей марганца более 1 % и при определении хрома менее 0.1 % железо. марганец и другие элементы, мешающие анализу, отделяют осаждением углекислым натрием.

2.2. Аппаратура и реактивы

Фотоэлектроколориметр или спектрофотометр.

Кислота серная по ГОСТ 4204-77, разбавленная 1:4.

Смесь кислот: 150 см³ серной кислоты осторожно вливают 700 см³ воды, после охлаждения приливают 150 см³ фосфорной кислоты.

Кислота уксусная по ГОСТ 61-75.

Кислота азотная по ГОСТ 4461-77 или по ГОСТ 11125-84.

Серебро азотнокислое по ГОСТ 1277-75, раствор с массовой концентрацией 2 г/дм⁸: хранить в посуде из темного стекла.

Спирт этиловый ректификованный по ГОСТ 5962-67 или ГОСТ

18300—87.

Аммоний надсернокислый по ГОСТ 20478-75, раствор с мас-

совой концентрацией 200 г/дм3.

 1,5 — Дифенилкарбазид по ГОСТ 5859—78, раствор с массовой концентрацией 1 г/дм3: 0,1 г растворяют в 10 см3 уксусной кислоты, приливают 50 см³ этилового спирта и доливают до 100 см³ водой.

Железо карбонильное радиотехническое по ГОСТ 13610-79.

Натрий углекислый по ГОСТ 83—79, раствор с массовой концентрацией 300 г/дм³.

Калий марганцовокислый по ГОСТ 20490-75, раствор с массо-

вой концентрацией 10 г/дм3.

Калий двухромовокислый по ГОСТ 4220-75.

Стандартные растворы хрома.

Раствор А: 0,2829 г высушенного при 140 °C до постоянной массы двухромовокислого калия растворяют в 250 см³ воды в мерной колбе вместимостью 1 дм³, доливают до метки водой и тщательно перемешивают.

I см3 раствора А содержит 0,0001 г хрома. Срок хранения раст-

вора 3 месяца.

Раствор Б: 50 см³ раствора А помещают в мерную колбу вместимостью 100 см³, доливают до метки водой и перемешивают.

1 см³ раствора Б содержит 0,00005 г хрома; (готовят непосред-

ственно перед применением).

Раствор В: 10 см³ раствора Б помещают в мерную колбу вместимостью 100 см³, доливают до метки водой и перемешивают,

1 см3 раствора В содержит 0,000005 г хрома.

2.3. Проведение анализа

2.3.1. Без отделения углекислым натрием (при массовой доле

хрома от 0,1 до 0,5 %).

2.3.1.1. Навеску стали или чугуна массой 0,1 г помещают в коническую колбу вместимостью 100 см³, приливают 20 см³ смеси кислот, накрывают часовым стеклом и растворяют при умеренном нагревании. Затем обмывают стекло над колбой небольшим количеством воды, приливают по каплям азотную кислоту до прекращения вспенивания раствора, кипятят до удаления окислов азота и охлаждают.

Если есть осадок (графит, кремниевая кислота), раствор отфильтровывают через фильтр «белая лента» и промывают 5—6 раз горячей водой, собирая фильтрат и промывные воды. Фильтр с осадком отбрасывают, а фильтрат выпаривают до объема 50—60 см³. В охлажденный раствор приливают 5 см³ раствора азотнокислого серебра и 10 см³ раствора надсернокислого аммония, постепенно нагревают до появления розовой окраски и кипятят до полного разрушения надсернокислого аммония. Затем раствор охлаждают, переводят в мерную колбу вместимостью 100 см³ доливают до метки водой и перемешивают.

В мерную колбу вместимостью 100 см³ помещают аликвотную часть раствора 10 см³, приливают 2 см³ фосфорной кислоты (1:2), 15 см³ воды и 5 см³ раствора дифенилкарбазида, доливают до метки водой, перемешивают и немедленно измеряют оптическую плотность окрашенного раствора на спектрофотометре при длине волны 546 нм или фотоэлектроколориметре со светофильтром, имеющим максимум пропускания в янтервале 530—550 нм. Если

в пробе содержится ванадий, величину оптической плотности измеряют через 10—15 мин. Вследствие малой устойчивости комилекса одновременно приготавливают 4—5 проб. Для приготовления раствора сравнения в мерную колбу вместимостью 100 см³ помещают 20 см³ воды, 2 см³ смеси кислот, 5 см³ раствора дифенили карбазида, доливают до метки водой и перемешивают. Из значений оптической плотности анализируемых растворов вычитают значения оптической плотности раствора контрольного опыта.

Результаты анализа вычисляют по градуировочному графику или методом сравнения со стандартным образцом, близким по составу к анализируемой пробе и проведенным через все стадии

анализа.

2.3.1.2. Построение градуировочного графика

В шесть конических колб вместимостью 100 см³ помещают по 0,1 г карбонильного железа. В пять из них добавляют последовательно 1, 2, 5, 10, 12 см³ стандартного раствора Б, что соответствует 0,0005; 0,00010; 0,00025; 0,00050; 0,00060 г хрома. Шестая навеска служит для проведения контрольного опыта. Во все колбы приливают по 20 см³ смеси кислот и далее поступают как приведено в п. 2.3.1.1.

По найденным значениям оптической плотности и соответствующим им значениям массы хрома строят градуировочный гра-

фик.

 Допускается построение градуировочного графика в координатах; оптическая плотность — массовая доля хрома.

2.3.1.3. Обработка результатов

Массовую долю хрома (X) в процентах вычисляют по формуле

$$X - \frac{m_1 \cdot 100}{m}$$
,

тде m_1 — масса хрома, найденная по градунровочному графику, г:

т - масса навески пробы, г.

2.3.2. С отделением углекислым натрием (при массовой доле

хрома от 0,01 до 0,50 %).

2.3.2.1. Навеску стали или чугуна массой 0,2 г (при массовой доле хрома 0,01—0,10 %) или 0,1 г (при массовой доле хрома выше 0,10 %) помещают в стакан вместимостью 200 см³, приливают 20 см³ серной кислоты (1:4), растворяют при умеренном нагревании. Затем приливают по каплям азотную кислоту до прекращения вспенивания раствора и избыток 1—2 см³. Раствор кипятят до удаления окислов азота и выпаривают до появления паров серной кислоты. После охлаждения раствора приливают 25—30 см³ воды и нагревают до растворения солей. В горячий раствор приливают 2 см³ раствора марганцовокислого калия, ки-

пятят до полного выпадения осадка двуоксида марганца и приливают 15 см³ воды. Затем осторожно, небольшими порциями, при перемешивании приливают 30 см³ раствора углекислого натрия и выдерживают на теплой плите 20—30 мин.

Раствор с осадком охлаждают, переносят в мерную колбу вместимостью 100 см³, доливают до метки водой и перемещивают. Часть раствора отфильтровывают через сухой фильтр «белая лента» в сухую колбу, отбрасывая первые порции фильтрата.

Аликвотную часть раствора 50 см³ (при массовой доле хрома 0,01—0,03 %), 20 см³ (при массовой доле хрома 0,03—0,10 %) и 10 см³ (при массовой доле хрома свыше 0,10 %) помещают в мерную колбу вместимостью 100 см³, приливают 3 см³ серной кислоты (1:4), раствор охлаждают, приливают 5 см³ раствора дифенилкарбазила, перемешивают, доливают водой до метки и вновь перемешивают.

Через 5 мин измеряют величину оптической плотности раствора на спектрофотометре при длине волны 546 нм или на фотоэлектроколориметре со светофильтром, имеющим максимум пропускания в интервале длин волн 530—550 нм. Если в пробе содержится ванадий, величину оптической плотности измеряют через 10—15 мин одновременно по 3—4 пробы. В качестве раствора сравнения применяют воду,

Из значений оптической плотности анализируемых растворов вычитают значение оптической плотности раствора контрольного опыта.

Результаты анализа вычисляют по градуировочному графику или методом сравнения со стандартным образцом, близким по составу к анализируемой пробе и проведенным через все стадии анализа.

2.3.2.2. Построение градуировочного графика

В семь мерных колб вместимостью 100 см³ приливают последовательно 1, 2, 4, 6, 8, 10, 12 см³ стандартного раствора В, что соответствует 0,000005; 0,000010; 0,000020; 0,000030; 0,000040; 0,000050; 0,000060 г хрома. В каждую колбу приливают 3 см³ серной кислоты (1:4), 5 см³ раствора дифенилкарбазида, перемешивают, доливают до метки водой и вновь перемешивают. Через 5 мин измеряют оптическую плотность раствора на спектрофотометре при длине волны 546 нм или на фотоэлектроколориметре сосветофильтром, имеющим максимум пропускания в интервале длин волн 530—550 нм.

Для приготовления раствора сравнения в мерную колбу вместимостью 100 см³ приливают 25—30 см³ воды, 3 см³ серной кислоты (1:4) и 5 см³ дифенилкарбазида, перемешивая раствор после прибавления каждого реактива. Раствор доливают водой до метки и перемешивают.

По найденным величинам оптической плотности и соответст-

вующим им значениям массы хрома строят градуировочный график.

Допускается построение градуировочного графика в координатах: оптическая плотность - массовая доля хрома.

2.4. Обработка результатов 2.4.1. Массовую долю хрома (X_1) в процентах вычисляют по формуле

$$X_1 = \frac{m_1}{m} \cdot 100$$
,

где

 m_1 — масса хрома, найденная по градуировочному графику, Т:

т — масса навески пробы, соответствующая аликвотной части раствора, г.

2.4.2. Нормы точности и нормативы контроля точности определения массовой доли хрома приведены в таблице.

3. ТИТРИМЕТРИЧЕСКИЙ МЕТОД

3.1. Метод основан на окислении хрома (III) надсернокислым аммонием до хрома (VI) в сернокислой среде в присутствии азотновислого серебра. Хромовую кислоту восстанавливают раствором соли железа (II) и устанавливают конечную точку титрования потенциометрически или визуально. В последнем случае избыток Fe (II) оттитровывают раствором марганцовокислого калия.

3.2. Аппаратура и реактивы

Установка для потенциометрического титрования: два электрода — индикаторный (платиновый) и электрод сравнения (кало-мельный, хлорсеребряный или вольфрамовый); магнитная или механическая мешалка; милливольтметр постоянного тока или рН-метр, позволяющие четко фиксировать скачок потенциала в конечной точке при титровании с выбранной парой электродов. При необходимости к прибору последовательно подключают переменное сопротивление, которое позволяет проводить измерения в пределах шкалы прибора.

Кислота серная по ГОСТ 4204—77 и разбавленная 5:95 и 1:1. Кислота ортофосфорная по ГОСТ 6552—80.

Смесь кислот: 160 см³ серной кислоты вливают осторожно в 760 см³ воды, охлаждают и приливают 80 см³ ортофосфорной кислоты.

Кислота азотная по ГОСТ 4461-77 или ГОСТ 11125-84.

Серебро азотнокислое по ГОСТ 1277-75, раствор с массовой концентрацией 2 г/дм³; хранят в посуде из темного стекла. Аммоний надсернокислый по ГОСТ 20478—75, раствор с мас-

совой концентрацией 100 г/дм3, свежеприготовленный.

Натрий хлористый по ГОСТ 4233—77, раствор с массовой концентрацией 50 г/дм3.

Натрий щавелевокислый безводный по ГОСТ 5839—77.

Марганец (II) сернокислый 5-водный по ГОСТ 435-77, раствор с массовой концентрацией 5 г/дм3.

Мочевина по ГОСТ 6691-77; свежеприготовленный раствор с

массовой концентрацией 100 г/дм3.

Натрий азотнокислый по ГОСТ 4197- 74, раствор с массовой концентрацией 20 г/дм3.

Калий двухромовокислый по ГОСТ 4220 -- 75.

Соль закиси железа и аммония двойная сернокислая (соль Мора) по ГОСТ 4208-72, раствор с массовой концентрацией эквивалента 0,02 моль/дм3:7,84 г соли Мора растворяют в 1 дм3 серной кислоты (5:95).

Массовую концентрацию раствора соли Мора (Т) устанавливают по стандартному раствору хрома (VI) или по навеске безводного двухромовокислого калия, высушенного при 150 °C до постоянной массы. Навеску двухромовокислого калия массой 0,1000 г растворяют в 150 дм³ воды в мерной колбе вместимостью 250 см³ и доливают до метки водой. Аликвотную часть 20 см³ помещают в стакан вместимостью 400 см, приливают 20 см³ серной кислоты 1:1,5 см3 фосфорной кислоты и перемешивают. В стакан с раствором погружают электроды, включают мешалку и быстро приливают раствор соли Мора до получения слабо-желтой окраски. Затем раствор соли Мора прибавляют медленно по каплям, записывая объем раствора в бюретке и показания прибора после прибавления каждой капли раствора. Объем раствора в бюретке, соответствующий максимальному изменению показаний прибора, принимают за объем, израсходованный на титрование.

Массовую концентрацию раствора соли Мора (Т), выраженную

в граммах хрома на 1 см³ раствора, вычисляют по формуле

$$T = \frac{m \cdot 0,3535}{V}$$
 ,

где m — масса навески двухромовокислого калия, соответствующая аликвотной части, г;

0,3535 — коэффициент пересчета двухромовокислого калия на XDOM:

 V — объем раствора соли Мора, израсходованный на титрование, см3.

Калий марганцовокислый по ГОСТ 20490-75, стандартный раствор с массовой концентрацией эквивалента 0,02 моль/дм²: 0,63 г марганцовокислого калия растворяют в 1 дм³ воды, раствор переносят в склянку из темного стекла, закрывают притертой пробкой. тщательно перемешивают и оставляют на 7-10 суток.

Раствор фильтруют через прокаленный асбест или воронку с

пористой пластинкой или осторожно сливают сифоном в сосуд изтемного стекла. Раствор хранят в этом сосуде, снабженном сифонной трубкой, которую непосредственно соединяют с бюреткой,

Массовую концентрацию раствора (Т) устанавливают по безводному щавелевокислому натрию, высушенному до постоянной массы

при 110 °С.

Навеску щавелевокислого натрия массой 0,1 г растворяют при нагревании в 50 см³ воды, прибавляют 15 см³ серной кислоты (1:1), нагревают до 70-80°C и титруют раствором марганцовокислогокалия до появления устойчивой розовой окраски.

Массовую концентрацию раствора марганцовокислого калия, выраженную в г хрома на 1 см3 раствора, вычисляют по формуле

$$T \sim \frac{0.259 \cdot m}{V}$$
,

где 0,259 — коэффициент пересчета щавелевокислого натрия на XPOM;

т — масса навески щавелевокислого натрия, г;

V — объем раствора марганцовокислого калия, израсходо-

ванный на титрование, см3.

Устанавливают соотношение (К) объемов растворов соли Мора и марганцовокислого калия: в коническую колбу вместимостью 500 см3, приливают из бюретки 25 см3 раствора соли Мора, прибавляют 250 см3 воды, 60 см3 смеси кислот и титруют раствором маргандовокислого калия до устойчивой в течение 2-3 мин слабо-розовой окраски.

Соотношение вычисляют по формуле

$$K=\frac{V_1}{V_2}$$
,

где V₁ — объем раствора марганцовокислого калия, израсходованный на титрование раствора соли Мора, см3;

V₂ — объем раствора соли Мора, взятый для титрования, см³. Соотношение устанавливают три раза и берут среднее значение.

3.3. Проведение анализа

 З.3.1. Навеску стали или чугуна массой 2 г (при массовой доле хрома от 0,1 до 0,3 %) и 1 г (при массовой доле хрома от 0,3 до 0.5 %) помещают в коническую колбу или стакан вместимостью 500—600 см³ и растворяют в 60 см³ смеси кислот. После полного растворения прибавляют по каплям азотную кислоту до прекращения вспенивания и кипятят до полного разрушения карбидов и удаления окислов азота. При анализе чугуна графит и частично выпавшую кремниевую кислоту отфильтровывают и промывают фильтр с осадком 5-6 раз горячей водой, собирая фильтрат и промывные воды в колбу или стакан вместимостью 500-600 см3.

При анализе стали или чугуна с массовой долей марганца менее 0,1 % к раствору прибавляют 1 см³ раствора сернокислого марганна.

Раствор разбавляют горячей водой до объема 200—250 см³, приливают 10 см³ раствора азотнокислого серебра, 20 см³ раствора надсернокислого аммония и нагревают до кипения. Появление малиновой окраски образующейся марганцовой кислоты свидетельствует о полном окислении хрома до шестивалентного. Раствор кипятят до разрушения надсернокислого аммония, приливают 5 см³ раствора хлористого натрия и продолжают кипячение до исчезновения малиновой и появления желтой окраски. Если раствор осадком приобретает бурый цвет, необходимо добавить 1—2 см³ раствора хлористого натрия и продолжать кипячение до получения чистой желтой окраски. Раствор охлаждают в проточной воде до комнатной температуры, перемешивают и титруют (см. пп. 3.3.2 и 3.3.3).

3.3.2. Визуальное титрование

К раствору прибавляют из бюретки при непрерывном перемешивании раствор соли Мора до перехода окраски из желтой в зеленую и избыток 7—10 см³. Избыток раствора соли Мора сразу же оттитровывают раствором марганцовокислого калия до появления устойчивой (в течение 2—3 мин) розовой окраски.

3.3.3. Потенциометрическое титрование

В стакан с испытуемым раствором погружают электроды, включают мешалку и приливают раствор соли Мора вначале быстро до получения слабо-желтой окраски, затем медленно по каплям до

получения скачка потенциала.

В присутствии ванадия вначале оттитровывают сумму хрома и ванадия, затем прибавляют по каплям раствор марганцовокислого калия с массовой концентрацией 20 г/дм³ до появления розовой окраски, устойчивой в течение 2 мин. Избыток марганцовокислого калия восстанавливают 1—2 каплями раствора азотистокислого натрия до исчезновения розовой окраски, прибавляют 20 см³ раствора мочевины, 25 см³ серной кислоты (1:1) (при этом стрелка милливольтметра возвращается в исходное положение) и титруют раствором соли Мора, прибавляя по каплям как приведено выше. Разность в объемах раствора в бюретке между первым и вторым титрованием принимают за объем, израсходованный на титрование хрома.

- 3.4. Обработка результатов
- З.4.1. При визуальном титровании массовую долю хрома (X₂) в процентах вычисляют по формуле

$$X_2 = \frac{T(V \cdot K - V_1) \cdot 100}{m} ,$$

где T — массовая концентрация марганцовокислого калия, выраженная в г хрома на 1 см³ раствора;

V — объем раствора соли Мора, взятый для титрования, см³;

 К — соотношение между растворами соли Мора и марганцовокислого калия;

 V₁ — объем раствора марганцовокислого калия, израсходованный на титрование, см³;

т - масса навески пробы, г.

3.4.2. При потенциометрическом титровании массовую долю хрома (X_3) в процентах вычисляют по формуле:

$$X_8 = \frac{T \cdot V \cdot 100}{m}$$
,

где T — массоная концентрация раствора соли Мора, выраженная в г хрома на 1 см³ раствора;

V — объем раствора соли Мора, израсходованный на титрование, см³;

т — масса навески пробы, г.

Массовую долю хрома (X_4) в процентах в стале и чугуне, содержащих ванадий, вычисляют по формуле

$$X_4 = \frac{(V-V_1) \cdot T \cdot 100}{m}$$
,

где V — объем раствора соли Мора, израсходованный на титрование хрома и ванадия, см³;

V₁ — объем раствора соли Мора, израсходованный на титрование ванадия, см³:

Т — массовая концентрация соли Мора, выраженная в г хрома;

т — масса навески пробы, г.

З.4.3. Нормы точности и нормативы контроля точности определения массовой доли хрома приведены в таблице.

Метод применяют при разногласиях в оценке качества углеродистой стали и нелегированного чугуна.

4. АТОМНО-АБСОРБЦИОННЫЙ МЕТОД ОПРЕДЕЛЕНИЯ ХРОМА

4.1. Сущность метода

Метод основан на измерении степени поглощения резонансного излучения свободными атомами хрома, образующимися в результате распыления анализируемого раствора в пламени воздух ацетилен или закись азота — ацетилен.

4.2. Аппаратура и реактивы

Атомно-абсорбционный пламенный спектрофотометр.

Лампа с полым катодом для определения хрома.

Ацетилен по ГОСТ 5457-75.

Закись азота.

Компрессор, обеспечивающий подачу сжатого воздуха, или баллон со сжатым воздухом.

Кислота соляная по ГОСТ 3118—77 или по ГОСТ 14261—77, разбавленная 1:1, и раствор с массовой концентрацией 50 г/дм³.

Кислота азотная по ГОСТ 4461-77 или по ГОСТ 11125-84.

Калий двухромовокислый по ГОСТ 4220—75.

Хром металлический марки Х99А, Х99Б, Х98,5, Х99А(Ч), Х98Б(Ч), Х98.5 (Ч) по ГОСТ 5905—79.

Стандартные растворы хрома.

Раствор A: 2,8290 г высущенного при 140 °C до постоянной массы двухромовокислого калия растворяют в 250 см³ раствора соляной кислоты (50 г/дм³) в мерной колбе вместимостью 1 дм³, доливают до метки раствором соляной кислоты и перемешивают. Раствор А можно приготовить из металлического хрома. 1 г металлического хрома растворяют при нагревании в 20 см³ соляной кислолоты, осторожно по каплям прибавляют 1—2 см³ азотной кислоты и кипятят до удаления окислов азота. Раствор охлаждают, переносят в мерную колбу вместимостью 1 дм³, доливают до метки водой и перемешивают. 1 см³ раствора А содержит 0,001 г хрома.

Раствор Б: 50 см³ раствора А помещают в мерную колбу вместимостью 1 дм³, доливают до метки водой и перемешивают. 1 см³

раствора Б содержит 0,00005 г хрома.

Аммоний хлористый по ГОСТ 3773-72, раствор с массовой кон-

щентрацией 50 г/дм^з.

Железо карбонильное радиотехническое по ГОСТ 13610—79 и раствор с массовой концентрацией 50 г/дм³: 50 г карбонильного железа растворяют в 400 см³ соляной кислоты (1:1), затем прибавляют по каплям азотную кислоту до окончания вспенивания, упаривают до влажных солей, прибавляют 40—50 см³ соляной кислоты и снова упаривают до влажных солей. Эту операцию повторяют еще раз. Соли растворяют в 100 см³ соляной кислоты (1:1), охлаждают, переводят в мерную колбу вместимостью 1 дм³, доводят до метки водой, перемешивают и фильтруют раствор через фильтр средней плотности.

4.3. Подготовка прибора

Подготовку прибора к анализу проводят в соответствии с прилагаемой к нему инструкцией. Настраивают спектрофотометр на резонансную линию 357,9 нм. После включения подачи газа и зажигания горелки распыляют воду в пламени и устанавливают нулевое показание прибора.

4.4. Проведение анализа

4.4.1. Навеску стали или чугуна массой 1 г (при массовой доле хрома от 0,01 до 0,10 %) или 0,5 г (при массовой доле хрома от 0,1 до 0,2 %), или 0,2 г (при массовой доле хрома от 0,2 до 0,5 %) помещают в стакан вместимостью 100 см³ и растворяют при нагревании в 15 см³ соляной кислоты и 5 см³ азотной кислоты. Раствор выпаривают досуха, охлаждают, приливают 5 см³ соляной кислоты, 30 см³ воды и нагревают до растворения солей. Охлажденный раствор переводят в мерную колбу вместимостью 100 см³, приливают 10 см³ раствора хлористого аммония, доливают до метки водой и перемешивают. Раствор фильтруют через сухой фильтр «белая лента», отбрасывая первые две порции фильтрата.

Для приготовления раствора контрольного опыта в мерную колбу вместимостью 100 см³ приливают все реактивы, используемые в анализе. Распыляют в пламени раствор контрольного опыта, а затем анализируемые растворы в порядке увеличения массовой доли хрома до получения стабильных показаний для каждого раст-

вора.

Перед введением в пламя каждого анализируемого раствора распыляют воду для промывания системы и проверки нулевой точки.

Из среднего значения абсорбции каждого из анализируемых растворов вычитают среднее значение абсорбции контрольного опыта.

Массу хрома находят по градуировочному графику.

4.4.2. Построение градуировочного графика

В семь мерных колб вместимостью 100 см³ помещают по 20, или 10 или 4 см³ раствора карбонильного железа (в зависимости от навески стали или чугуна), приливают в шесть из них последовательно 1,0; 3,0; 5,0; 10,0; 15,0; 25,0 см³ стандартного раствора Б, что соответствует 0,00005, 0,00015; 0,00025; 0,00050; 0,00075; 0,00125 г хрома, приливают 10 см³ раствора хлористого аммония, доливают водой до метки и перемешивают. Дальнейший ход анализа проводят как приведено в п. 4.4.1. Седьмая колба служит для проведения контрольного опыта.

По найденным значениям абсорбции растворов и соответствующим им значениям массы хрома строят градуировочный график.

4.5. Обработка результатов

 4.5.1. Массовую долю хрома (X₅) в процентах вычисляют по формуле

$$X_{\mathbf{5}} = \frac{m_{\mathbf{1}} \cdot 100}{m}$$
,

где m₁ — масса хрома, найденная по градуировочному графику, г; т — масса навески пробы, г.

4.5.2. Нормы точности и нормативы контроля точности определения массовой доли хрома приведены в таблице.

ИНФОРМАЦИОННЫЕ ДАННЫЕ

 РАЗРАБОТАН И ВНЕСЕН Министерством черной металлургии СССР

исполнители

Д. К. Нестеров, канд. техн. наук; С. И. Рудюк, канд. техн. наук; С. В. Спирина, канд. хим. наук (руководитель темы); В. Ф. Коваленко, канд. техн. наук; Н. Н. Гриценко, канд. хим. наук; Л. И. Березовая; О. М. Киржнер

- УТВЕРЖДЕН И ВВЕДЕН В ДЕЙСТВИЕ Постановлением Государственного комитета СССР по стандартам от 25.08.88 № 3018
- 3. B3AMEH FOCT 22536.7-77
- 4. ССЫЛОЧНЫЕ НОРМАТИВНО-ТЕХНИЧЕСКИЕ ДОКУМЕН-ТЫ

Обозначение НТД, на который дана ссылка	Номер пункта, подвунита	Обозначение НТД, на который дяна ссылка	Номер пункта подпункта	
FOCT 61-75	22, 32	ГОСТ 5839—77	3.2	
ΓOCT 83—79	2.2	FOCT 5859-78	2.2	
ΓOCT 435—77	3.2	FOCT 5905-79	4.2	
FOCT 127775	2.2, 3.2	ГОСТ 5962—67	2.2	
FOCT 3118 -77	4.2	FOCT 6552-80	3.2	
ГОСТ 3773—72	4.2	FOCT 6691-77	3.2	
OCT 4197-74	3.2	ГОСТ 11125-84	2.2, 3.2, 4.2	
ГОСТ 4204—77	22, 3.2	ГОСТ 13610-79	2.2, 4.2	
FOCT 4208-72	3.2	ГОСТ 14261-77	4.2	
ГОСТ 4220—75	2.2. 3.2. 4.2	FOCT 18300-87	2.2	
FOCT 4233-77	3.2	ГОСТ 20478-75	2.2. 3.2	
FOCT 4461-77	2.2, 3.2, 4.2	FOCT 20490-75	2.2	
FOCT 5457—75	4.2	ΓOCT 22536.0-87	1.1	