ДРЕВЕСИНА

МЕТОД ОПРЕДЕЛЕНИЯ РАЗБУХАНИЯ

Издание официальное

межгосударственный стандарт

ДРЕВЕСИНА

Метод определения разбухания

ГОСТ 16483.35—88

Wood. Method for determination of swelling

OKCTY 5309

Дата введения 01.01.90

Настоящий стандарт распространяется на древесину и устанавливает метод определения показателей линейного и объемного разбухания.

1. ОТБОР ОБРАЗЦОВ

- 1.1. Образцы должны иметь форму прямоугольной призмы с основанием 20 × 20 мм и высотой вдоль волокон от 10 до 30 мм. Углы наклона годичных слоев по отношению к двум противоположным боковым граням образца не должны быть более 10*.
 - Количество, метод отбора и изготовление образцов по ГОСТ 16483.0.

2. АППАРАТУРА

- 2.1. Скоба индикаторная по ГОСТ 11098 с индикатором часового типа по ГОСТ 577 или микрометр типа МК по ГОСТ 6507 с погрешностью измерения размеров не более 0,01 мм.
 - 2.2. Шкаф сушильный, обеспечивающий высушивание древесины при температуре (103±2) °С.
 - 2.3. Сосуд с дистиллированной водой.
 - Эксикатор по ГОСТ 25336 с гигроскопическим веществом.

3. ПРОВЕДЕНИЕ ИСПЫТАНИЙ

- 3.1. Образцы высушивают до постоянных размеров при температуре (103±2) °С, не допуская образования трещин. Изменение размеров двух-трех контрольных образцов проверяют повторными измерениями в соответствующих направлениях каждые 2 ч после 6 ч от начала высушивания. Сушку прекращают, когда разница между двумя последовательными измерениями будет не более 0,02 мм. Допускается контролировать сушку образцов, используя метод последовательного взвешивания по ГОСТ 16483.7.
- Образцы охлаждают до температуры окружающей среды в эксикаторах с гигроскопическим веществом.
- 3.3. По середине радиальной и тангентальной поверхности измеряют размеры поперечного сечения каждого образца $L_{r \min}$ в радиальном и $L_{r \min}$ в тангентальном направлениях, а также $L_{o \min}$ в направлении вдоль волокон с погрешностью не более 0,01 мм.

Издание официальное

Перепечатка воспрещена

*

© Издательство стандартов, 1989
 © ИПК Издательство стандартов, 1999

- 3.4. При необходимости образцы кондиционируют, не допуская образования трещин, до нормализованной влажности по ГОСТ 16483.0. Изменение размеров двух-трех контрольных образцов проверяют повторными измерениями по п. 3.3 не менее чем через каждые 6 ч после стабилизации режима кондиционирования. Кондиционирование образцов прекращают, когда разница между двумя последовательными измерениями будет не более 0,02 мм. Допускается контролировать кондиционирование образцов, используя метод последовательного взвешивания по ГОСТ 16483.7.
 - 3.5. Образцы, растрескавшиеся в процессе испытаний, в дальнейшем не используют.

3.6. Размеры поперечного сечения каждого образца L_r в радиальном и L_r в тангентальном направлениях, а также L_a в направлении вдоль волокон измеряют по п. 3.3.

- 3.7. Образцы вымачивают в дистиплированной воде при температуре (20±5) °С до прекращения изменения размеров. Изменение размеров образцов проверяют повторными измерениями двух-трех контрольных образцов в соответствующих направлениях через каждые трое суток. Вымачивание прекращают, когда разница между последовательными измерениями будет не более 0,02 мм.
- 3.8. Размеры поперечного сечения каждого образца L_{r} $_{\max}$ в радиальном и L_{r} $_{\max}$ в тангентальном направлениях, а также L_{r} $_{\max}$ в направлении вдоль волокон измеряют по п. 3.3.

4. ОБРАБОТКА РЕЗУЛЬТАТОВ

$$\alpha_{r \max} \simeq \frac{L_{r \max} - L_{r \min}}{L_{r \max}} \cdot 100; \tag{1}$$

для тангентального направления

$$\alpha_{t \text{ max}} = \frac{L_{\text{rmin}} - L_{t \text{min}}}{L_{t \text{min}}} \cdot 100; \qquad (2)$$

по объему

$$\alpha_{Y \max} = \frac{L_{r \max} \cdot L_{r \max} \cdot L_{a \max} - L_{r \min} \cdot L_{r \min} \cdot L_{a \min}}{L_{r \min} \cdot L_{r \min} \cdot L_{a \min}} \cdot 100,$$
(3)

где $L_{r,\max}$, $L_{r,\max}$, $L_{o,\max}$ — размеры образца при влажности, равной или выше предела насышения клеточных стенок в направлениях соответственно радиальном, тангентальном и вдоль волокон, мм;

 $L_{e \, \min}$, $L_{e \, \min}$ — размеры образца в абсолютно сухом состоянии в направлениях соответственно радиальном, тангентальном и вдоль волокон, мм.

Результат округляют с точностью до первого десятичного знака.

4.2. Разбухание при увеличении влажности до нормализованной (α) в процентах вычисляют по формулам:

для радиального направления

$$\alpha_r = \frac{L_r - L_{r \min}}{L_{e \min}} \cdot 100; \qquad (4)$$

для тангентального направления

$$\alpha_r = \frac{L_r - L_{r \min}}{L_{r \min}} \cdot 100; \qquad (5)$$

по объему

$$\alpha_V = \frac{L_r L_i L_a - L_{r \min} \cdot L_{r \min} \cdot L_{a \min}}{L_{r \min} \cdot L_{r \min} \cdot L_{p \min}} \cdot 100;$$
(6)

где L_r , L_a — размеры образца при нормализованной влажности в направлениях соответственно радиальном, тангентальном и вдоль волокон, мм.

4.3. Коэффициент разбухания (K_a) в процентах на 1 % влажности вычисляют по формулам: для радиального направления

$$K_{\alpha r} = \frac{\alpha_{ranx}}{W_u}$$
; (7)

для тангентального направления

$$K_{\alpha,f} = \frac{\alpha_{r \max}}{W_{\alpha}};$$
 (8)

по объему

$$K_{\alpha V} = \frac{\alpha_{V \text{max}}}{W_{\alpha}}$$
, (9)

где $W_{\rm H}$ — предел насыщения клеточных стенок древесины, %, принимаемый равным 30 %. Результат округляют с точностью до второго десятичного знака на 1 % влажности.

- 4.4. Статистическую обработку опытных данных выполняют по ГОСТ 16483.0, приводят также сведения об отборе образцов.
 - 4.5. Результаты испытаний и расчетов заносят в протокол согласно приложению.

ПРОТОКОЛ определения разбухания

			Размер	образ	ца, мм						Разбу	ханне						
		онтогооо иннеотооо		при ядажности, разной или выше предела насыщения клеточных стенок древесины			при нормализованной влажности			максимальное			при увеличении влажности до нормализованной			Коэффициент разбухания		
Тангентальное направление $L_{\rm true}$	Радиальное направление Lymm	Направление влоль волокон L _{о пля}	Тантентальное направление <i>L</i> zmas	Радикльное направление $L_{r, max}$	Направление вдоль волокон $L_{\rm gmax}$	Тантентальное направление L_{τ}	Размальное направление L_r	Направление влоль волокон <i>L</i> o	Тангентальное направление « леах	Радиальное направление α+max	По объему стр вах	Тантентальное направление « ,	Радиальное направление од "	По объему α μ	Тангентальное направление Кал	$K_{\sigma,\epsilon}$		

«____» __________. Расшифровка подписи______

ИНФОРМАЦИОННЫЕ ДАННЫЕ

1. РАЗРАБОТАН И ВНЕСЕН Минлеспромом СССР

РАЗРАБОТЧИКИ

А.М. Боровиков, канд. техн. наук; Г.А. Чибисова, канд. техн. наук; Н.И. Евдокимова

- 2. УТВЕРЖДЕН И ВВЕДЕН В ДЕЙСТВИЕ Постановлением Государственного комитета СССР по стандартам от 19.12.88 № 4214
- 3. B3AMEH FOCT 16483.35-80, FOCT 16483.36-80
- Стандарт полностью соответствует СТ СЭВ 6010—87, ИСО 4859—82; в стандарт введен ИСО 4860— 82
- 5. ССЫЛОЧНЫЕ НОРМАТИВНО-ТЕХНИЧЕСКИЕ ДОКУМЕНТЫ

Обозначение НТД, на который дана ссылка	Номер пункта				
ГОСТ 577—68	2.1				
ГОСТ 6507-90	2.1				
ΓΟCT 11098-75	2.1				
ΓΟCT 16483.0—89	1.2, 3.4, 4.4				
ΓΟCT 16483.7—71	3.1, 3.4				
ΓOCT 25336-82	2.4				

- Ограничение срока действия снято по протоколу № 4—93 Межгосударственного Совета по стандартизации, метрологии и сертификации (ИУС 4—94)
- 7. ПЕРЕИЗДАНИЕ. Июнь 1999 г.

Редактор В.Н. Колысов Технический редактор О.Н. Власова Корректор Н.Л. Шнайдер Компьютерная верстка Е.Н. Мартемыновой

Изд. лиц. № 021007 от 10:08:95. Сдано в набор 03:07:99. Подписано в печать 12:08:99. Усл. печ. л. 0,93: Уч.-изд. л. 0,42. Тираж 130 экз. С3497. Зак. 657.

ИПК Издательство стандартов, 107076, Москва, Колодезный пер., 14. Набрано в Издательстве на ПЭВМ Филиал ИПК Издательство стандартов — тип. "Московский печатник", Москва, Лялин пер., 6. Плр № 080102