МЕЖГОСУДАРСТВЕННЫЙ СОВЕТ ПО СТАНДАРТИЗАЦИИ, МЕТРОЛОГИИ И СЕРТИФИКАЦИИ (МГС)
INTERSTATE COUNCIL FOR STANDARDIZATION, METROLOGY AND CERTIFICATION (ISC)

МЕЖГОСУДАРСТВЕННЫЙ СТАНДАРТ ΓΟCT 11739.14— 99

СПЛАВЫ АЛЮМИНИЕВЫЕ ЛИТЕЙНЫЕ И ДЕФОРМИРУЕМЫЕ

Методы определения мышьяка

Издание официальное

Предисловие

1 РАЗРАБОТАН ОАО «Всероссийский институт легких сплавов» (ОАО ВИЛС), Межгосударственным техническим комитетом по стандартизации МТК 297 «Материалы и полуфабрикаты из легких сплавов»

ВНЕСЕН Госстандартом России

2 ПРИНЯТ Межгосударственным Советом по стандартизации, метрологии и сертификации (протокол № 16—99 от 8 октября 1999 г.)

За принятие проголосовали:

Наименование государства	Наименование национального органа по стандартизации
Азербайджанская Республика	Азгосстандарт
Республика Армения	Армгосстандарт
Республика Беларусь	Госстандарт Беларуси
Республика Казахстан	Госстандарт Республики Казахстан
Киргизская Республика	Киргизстандарт
Республика Молдова	Молдовастандарт
Российская Федерация	Госстандарт России
Республика Таджикистан	Таджикгосстандарт
Туркменистан	Главная государственная инспекция Туркменистан
Украина	Госстандарт Украины

³ Постановлением Государственного комитета Российской Федерации по стандартизации и метрологии от 18 февраля 2000 г. № 41-ст межгосударственный стандарт ГОСТ 11739.14—99 введен в действие непосредственно в качестве государственного стандарта Российской Федерации с 1 сентября 2000 г.

4 B3AMEH FOCT 11739.14-82

5 ПЕРЕИЗДАНИЕ. Август 2002 г.

Настоящий стандарт не может быть полностью или частично воспроизведен, тиражирован и распространен в качестве официального издания на территории Российской Федерации без разрешения Госстандарта России

[©] ИПК Издательство стандартов, 2000

[©] ИПК Издательство стандартов, 2002

МЕЖГОСУДАРСТВЕННЫЙ СТАНДАРТ

СПЛАВЫ АЛЮМИНИЕВЫЕ ЛИТЕЙНЫЕ И ДЕФОРМИРУЕМЫЕ

Методы определения мышьяка

Aluminium casting and wrought alloys. Methods for determination of arsenic

Дата введения — 2000-09-01

1 Область применения

Настоящий стандарт устанавливает фотометрические методы определения мышьяка в алюминиевых литейных и деформируемых сплавах при массовой доле мышьяка соответственно от 0,002 % до 0,02 % и от 0,002 % до 0,04 %.

2 Нормативные ссылки

В настоящем стандарте использованы ссылки на следующие стандарты:

ГОСТ 1973—77 Ангидрид мышьяковистый. Технические условия

ГОСТ 3118-77 Кислота соляная. Технические условия

ГОСТ 3640-94 Цинк. Технические условия

ГОСТ 3760—79 Аммиак водный. Технические условия

ГОСТ 3765—78 Аммоний молибденовокислый. Технические условия

ГОСТ 4159—79 Йод. Технические условия

ГОСТ 4201—79 Натрий углекислый кислый. Технические условия

ГОСТ 4204-77 Кислота серная. Технические условия

ГОСТ 4232—74 Калий йодистый. Технические условия

ГОСТ 4328-77 Натрия гидроокись. Технические условия

ГОСТ 4461—77 Кислота азотная. Технические условия

ГОСТ 5841—74 Реактивы. Гидразин сернокислый

ГОСТ 10484-78 Кислота фтористоводородная. Технические условия

ГОСТ 10929-76 Водорода пероксид. Технические условия

ГОСТ 11683—76 (ИСО 3627—76) Пиросульфит натрия технический. Технические условия

ГОСТ 14261—77 Кислота соляная особой чистоты. Технические условия

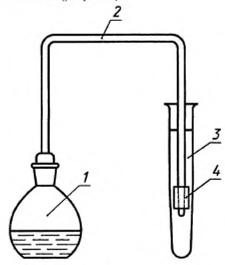
ГОСТ 18300—87 Спирт этиловый ректификованный технический. Технические условия

ГОСТ 20288—74 Углерод четыреххлористый. Технические условия

ГОСТ 25086-87 Цветные металлы и их сплавы. Общие требования к методам анализа

3 Общие требования

- 3.1 Общие требования к методам анализа по ГОСТ 25086 с дополнением.
- 3.1.1 За результат анализа принимают среднее арифметическое результатов двух параллельных определений.


4 Фотометрический метод определения мышьяка (при массовой доле мышьяка от 0,002 % до 0,02 %)

4.1 Сущность метода

Метод основан на растворении пробы в растворе соляной кислоты в присутствии пероксида водорода, отделении мышьяка от других компонентов сплава отгонкой мышьяковистого водорода, образовании мышьяковомолибденовой гетерополикислоты, восстановлении ее до синей формы сернокислым гидразином в растворе серной кислоты 0,12—0,2 моль/дм³ и измерении оптической плотности раствора при длине волны 800 нм.

4.2 Аппаратура, реактивы и растворы

Спектрофотометр или фотоэлектроколориметр. Прибор для дистилляции мышьяка (рисунок 1).

5 -- колба влоскодонная со шлифом вместимостью 50--100 см³, 2 -- трубка П-образная изогнутая диаметром 5 мм с оттянутым в капилляр концом, прикрепленная на шлифе к плоскодонной колбе 1. 3 — сосуд поглотительный — коническая пробирка вместимостью 10 см³; 4 — трубка короткая стеклянная диаметром 6--7 мм

Рисунок 1

Кислота соляная по ГОСТ 3118 плотностью 1,19 г/см3 и раствор 1:1.

Кислота серная по ГОСТ 4204 плотностью 1,84 г/см3 и растворы 1:5 и 1 моль/дм3.

Водорода пероксид по ГОСТ 10929.

Гидразин сернокислый по ГОСТ 5841, раствор 1,5 г/дм3.

Натрий углекислый кислый по ГОСТ 4201, раствор 0,5 моль/дм³: 4,2 г соли растворяют в 50 см³ воды,переводят в мерную колбу вместимостью 100 см³, доливают водой до метки и перемешивают.

Олово двухлористое 2-водное [1] (приложение A), раствор 500 г/дм³: 50 г двухлористого олова растворяют в 65 см³ соляной кислоты, переводят в мерную колбу вместимостью 100 см³, доливают водой до метки и перемешивают.

Калий йодистый по ГОСТ 4232 и раствор 150 г/дм³, Хранят в склянке из темного стекла в защищенном от света месте.

Йод по ГОСТ 4159, раствор 2,5 г/дм³: 0,25 г йода и 0,4 г йодистого калия помещают в мерную колбу с притертой пробкой вместимостью 100 см³, приливают 10 см³ воды, встряхивают до полного растворения йода, доливают водой до метки и перемешивают. Раствор хранят в склянке из темного стекла в защищенном от света месте.

Спирт этиловый ректификованный технический по ГОСТ 18300.

Аммиак водный по ГОСТ 3760.

Аммоний молибденовокислый по ГОСТ 3765 перекристаллизованный, раствор 10 г/дм³: 1 г молибденовокислого аммония растворяют в 10 см³ воды, приливают 90 см³ раствора серной кислоты 1:5 и перемешивают. Раствор хранят в полиэтиленовой посуде.

Для перекристаллизации 250 г молибденовокислого аммония помещают в стакан вместимостью 1 дм3, приливают 400 см3 воды, нагревают до температуры (80±2) °C, растворяют при перемешивании стеклянной палочкой, добавляют аммиак до появления запаха и фильтруют горячий раствор через плотный фильтр («синяя лента») в стакан, содержащий 300 см³ этилового спирта. Раствор охлаждают до температуры (10±2) °С и дают отстояться в течение 1 ч. Выпавшие кристаллы отфильтровывают через воронку Бюхнера, отсасывая маточный раствор через фильтр средней плотности («белая лента»).

Кристаллы промывают три раза этиловым спиртом порциями по 30 см3, после чего их равномерно распределяют на листе фильтровальной бумаги, прикрыв вторым листом бумаги, и высушивают на воз-

духе в течение 8-10 ч.

Смесь реактивов: 10 см³ раствора молибденовокислого аммония помещают в мерную колбу вместимостью 100 см3, приливают 10 см3 раствора сернокислого гидразина, доливают водой до метки и перемешивают. Раствор готовят непосредственно перед применением.

Натрий сернистокислый пиро по ГОСТ 11683, раствор 50 г/дм³ свежеприготовленный.

Натрия гидроокись по FOCT 4328, раствор 100 г/дм³. Готовят и хранят в полиэтиленовой посуде. Цинк по ГОСТ 3640 марки ЦВ00.

Для очистки поверхности гранулы обрабатывают раствором соляной кислоты, промывают водой и хранят в бюксе с водой до момента применения.

Индикатор конго красный: 0.1 г реагента растворяют в 100 см³ воды при слабом нагревании, рас-

твор охлаждают и перемешивают.

Индикаторная бумага конго: фильтры средней плотности («белая лента») пропитывают раствором конго, высушивают в сушильном шкафу при температуре 100—105 °C, нарезают и хранят в бюксе. Бумага пригодна к применению в течение 1 мес.

Ангидрид мышьяковистый по ГОСТ 1973.

Стандартные растворы мышьяка.

Раствор А: 0,1320 г мышьяковистого ангидрида помещают в коническую колбу вместимостью 100 см³ и растворяют в 10 см³ раствора гидроокиси натрия. Приливают раствор соляной кислоты до изменения красной окраски бумаги конго в сиреневую, переносят в мерную колбу вместимостью 500 см3, доливают водой до метки и перемешивают.

1 см³ раствора содержит 0,0002 г мышьяка.

Раствор Б: 25 см³ раствора А переносят в мерную колбу вместимостью 100 см³, доливают водой до метки и перемешивают. Раствор готовят перед применением.

1 см³ раствора содержит 0,00005 г мышьяка.

4.3 Проведение анализа

4.3.1 Навеску пробы массой 0,5 г помещают в колбу вместимостью 50—100 см³ прибора для дистилляции мышьяка, приливают 15 см³ воды, 10 см³ раствора соляной кислоты и сразу закрывают колбу П-образной трубкой, конец которой погружен в поглотительный сосуд, содержащий 5 см³ раствора йода и 0,5 см³ раствора углекислого кислого натрия (поглотительный раствор).

После окончания растворения приливают 9,5 см³ раствора соляной кислоты, 1 см³ пероксида водорода, тщательно перемешивают, приливают 2 см3 раствора йодистого калия, через 5 мин — 1 см3 раствора двухлористого олова и выдерживают при комнатной температуре в течение 30 мин. Затем в колбу быстро опускают девять гранул цинка, немедленно закрывают ее П-образной трубкой и пропуска-

ют выделяющийся водород через поглотительный раствор в течение 1,5 ч.

- 4.3.2 Поглотительный раствор переносят в мерную колбу вместимостью 25 см³, приливают 12,5 см³ смеси реактивов, по каплям раствор сернистокислого натрия до исчезновения окраски йода, перемещивают и нагревают на кипящей водяной бане в течение 15--20 мин. Раствор охлаждают, доливают водой до метки и перемешивают.
- 4.3.3 Раствор контрольного опыта готовят в соответствии с 4.3.1 и 4.3.2 со всеми используемыми в ходе анализа реактивами.
- 4.3.4 Оптическую плотность раствора пробы и раствора контрольного опыта измеряют при длине волны 800 нм в кювете с толщиной слоя 10 мм. Раствором сравнения служит вода.
- 4.3.5 Массу мышьяка определяют по градуировочному графику, вычитая из оптической плотности раствора пробы оптическую плотность раствора контрольного опыта.

4.3.6 Построение градуировочного графика

В семь из восьми мерных колб вместимостью 25 см³ каждая отмеряют 0,2; 0,4; 0,6; 0,8; 1,0; 1,5;

 см³ стандартного раствора Б, что соответствует 0,00001; 0,00002; 0,00003; 0,00004; 0,00005; 0,000075; 0,0001 г мышьяка, приливают 2,5 см³ раствора йода, 0,5 см³ раствора кислого углекислого натрия и далее поступают по 4.3.2 и 4.3.4. Раствором сравнения служит раствор, в который не введен мышьяк.

По полученным значениям оптической плотности растворов и соответствующим им массам мышьяка строят градуировочный график.

4.4 Обработка результатов

4.4.1 Массовую долю мышьяка X, %, вычисляют по формуле

$$X = \frac{m}{m_1} \cdot 100, \qquad (1)$$

где т — масса мышьяка в растворе пробы, найденная по градуировочному графику, г;

т. — масса навески пробы, г.

4.4.2 Расхождения результатов не должны превышать значений, указанных в таблице 1.

Таблица 1 В процентах

	Абсолютное допускаемое расхождение		
Массовая доля мышьяка	результатов параллепьных определений	результатов анализа	
От 0,0020 до 0,0050 включ.	0,0005	0,0007	
Cs. 0,005 » 0,010 »	0,001	0,002	
» 0,010 » 0,020 »	0,003	0,004	

5 Фотометрический метод определения мышьяка (при массовой доле мышьяка от 0,002 % до 0,04 %)

5.1 Сущность метода

Метод основан на растворении пробы в соляной кислоте, экстракции йодида мышьяка III четыреххлористым углеродом из раствора соляной кислоты 9 моль/дм³, реэкстракции мышьяка III водой, окислении мышьяка III до мышьяка V йодом, образовании мышьяково-молибденового комплекса с восстановлением его аскорбиновой кислотой до мышьяково-молибденовой сини в присутствии катализатора — сурьмяновиннокислого калия и измерении оптической плотности раствора при длине волны 800 нм.

5.2 Аппаратура, реактивы и растворы

Спектрофотометр или фотоэлектроколориметр.

Печь муфельная.

Шкаф сушильный с терморегулятором.

Кислота соляная особой чистоты по ГОСТ 14261 плотностью 1,19 г/см3 и растворы 1:1 и 2:1.

Кислота азотная по ГОСТ 4461 плотностью 1,35-1,40 г/см3, раствор 1:1.

Кислота серная по ГОСТ 4204 плотностью 1,84 г/см³, растворы 1:1 и 1 моль/дм³.

Смесь кислот: равные объемы растворов 1:1 серной, азотной и соляной кислот.

Натрия гидроокись по ГОСТ 4328, раствор 100 г/дм³. Готовят и хранят в полиэтиленовой посуде. Калий йодистый по ГОСТ 4232, раствор 1 г/см³: 20 г йодистого калия растворяют в 20 см³ воды.

Йод по ГОСТ 4159, насыщенный раствор: 25 г йодистого калия и 20 г йода помещают в колбу с притертой пробкой вместимостью 250 см³, приливают 70 см³ воды и встряхивают до полного растворения йода, доливают до объема 250 см³ водой, добавляют 1—2 г йода, встряхивают и оставляют на ночь, при этом в растворе должны находиться кристаллы нерастворившегося йода. Раствор хранят в склянке из темного стекла в защищенном от света месте.

Кислота аскорбиновая, раствор 4 г/дм3 свежеприготовленный.

Спирт этиловый ректификованный технический по ГОСТ 18300.

Аммиак водный по ГОСТ 3760.

Кислота фтористоводородная по ГОСТ 10484.

Аммоний молибденовокислый по ГОСТ 3765 перекристаллизованный, раствор 7 г/дм³: 3,5 г молибденовокислого аммония растворяют в 100 см³ раствора серной кислоты 1 моль/дм³, переносят в мерную колбу вместимостью 500 см³, доливают тем же раствором серной кислоты до метки и перемешивают.

Порядок перекристаллизации молибденовокислого аммония — по 4.2.

Калий сурьмяновиннокислый, раствор 1,5 г/дм³ свежеприготовленный.

Углерод четыреххлористый по ГОСТ 20288.

Индикатор конго красный: 0.1 г реагента растворяют в 100 см³ воды при слабом нагревании, раствор охлаждают и перемешивают.

Индикаторная бумага конго: фильтры средней плотности («белая лента») пропитывают раствором конго, высушивают в сушильном шкафу при температуре 100—105 °C, нарезают и хранят в бюксе. Бумага пригодна к применению в течение 1 мес.

Ангидрид мышьяковистый по ГОСТ 1973.

Стандартные растворы мышьяка.

Раствор А: 0.1320 г мышьяковистого ангидрида помещают в коническую колбу вместимостью 100 см³ и растворяют в 10 см³ раствора гидроокиси натрия. Приливают раствор соляной кислоты 1:1 до изменения красной окраски бумаги конго в сиреневую, охлаждают, переносят в мерную колбу вместимостью 1000 см³, доливают водой до метки и перемешивают.

1 см³ раствора содержит 0,0001 г мышьяка.

Раствор Б: 10 см³ раствора А переносят в мерную колбу вместимостью 500 см³, доливают водой до метки и перемешивают.

1 см³ раствора содержит 0,000002 г мышьяка.

Раствор готовят перед применением.

5.3 Проведение анализа

5.3.1 Навеску пробы массой в соответствии Таблица 2 с таблицей 2 помещают в коническую колбу вместимостью 250 см³, приливают небольшими порциями 40 см³ смеси кислот и нагревают до растворения.

После окончания бурной реакции добавляют 5 или 10 см³ раствора серной кислоты 1:1 (в зависимости от массы навески пробы), выпаривают при умеренном нагревании до появления белых паров серной кислоты и влажных солей. Раствор охлаждают

Массовая доля мышьяка	% Масса навески пробы т
От 0,002 до 0,005 вклк	ч. 0,5
Ca. 0,005 » 0,01 x	0,25
» 0,01 » 0,04 »	0,1

до комнатной температуры, обмывают стенки колбы 20—30 см³ воды, перемешивают и вновь выпаривают до выделения паров серной кислоты. К охлажденному остатку влажных солей осторожно, при перемешивании, приливают 20 см³ воды, 40 см³ соляной кислоты и нагревают, не доводя до кипения, для растворения солей.

5.3.2 При массовой доле кремния более 4 % раствор с осадком фильтруют через фильтр средней плотности («белая лента»), промывают фильтр два раза по 10 см³ раствором соляной кислоты 2:1, собирая фильтрат и промывные воды в коническую колбу вместимостью 250 см3 (основной раствор).

Фильтр с осадком помещают в платиновый тигель, высушивают, озоляют, не допуская воспламенения, и прокаливают при температуре 500-600 °C в течение 2-3 мин. После охлаждения в тигель добавляют пять капель серной кислоты, 5 см3 фтористоводородной кислоты и по каплям азотную кислоту (приблизительно 1 см3) до получения прозрачного раствора. Раствор выпаривают досуха, охлаждают, приливают к сухому остатку в тигле 5 см3 раствора соляной кислоты 1:1 и растворяют его при умеренном нагревании. После охлаждения раствор присоединяют к основному раствору в конической колбе.

5.3.3 Охлажденный раствор переводят в делительную воронку № 1 вместимостью 250 см³, обмывают стенки колбы 20 см³ соляной кислоты, приливают 1 см³ раствора йодистого калия и через 10 мин 20 см³ четыреххлористого углерода.

Раствор встряхивают в течение 1 мин, дают отстояться и сливают органическую фазу в делительную воронку № 2 вместимостью 100 см3.

Повторную экстракцию проводят также в делительной воронке № 1 с 20 см³ четыреххлористого углерода в течение 1 мин, сливая органическую фазу в делительную воронку № 2. Водную фазу отбрасывают.

- 5.3.4 К органической фазе в делительной воронке № 2 приливают 20 см³ воды, встряхивают в течение 1 мин и после отстаивания органическую фазу отбрасывают.
- 5.3.5 Водную фазу переводят в мерную колбу вместимостью 50 см³ и приливают по каплям насыщенный раствор йода до получения неисчезающей окраски йода. Через 5 мин приливают по каплям раствор аскорбиновой кислоты при перемешивании до исчезновения окраски йода; если в растворе имеются капли четыреххлористого углерода, окрашенные в розовый цвет, то добавляют еще три капли раствора аскорбиновой кислоты и встряхивают до обесцвечивания; приливают 10 см3 раствора молибденовокислого аммония, 5 см³ раствора аскорбиновой кислоты, 1 см³ раствора сурьмяновиннокислого калия, доливают водой до метки и перемешивают.
- 5.3.6 Раствор контрольного опыта готовят в соответствии с 5.3.1—5.3.5 со всеми используемыми в ходе анализа реактивами.

ГОСТ 11739.14-99

- 5.3.7 Оптическую плотность испытуемого раствора и раствора контрольного опыта измеряют через 40 мин при длине волны 800 нм в кювете с толщиной слоя 50 мм. Раствором сравнения служит вода.
- 5.3.8 Массу мышьяка определяют по градуировочному графику, вычитая из оптической плотности испытуемого раствора оптическую плотность раствора контрольного опыта.

5.3.9 Построение градуировочного графика

В пять из шести мерных колб вместимостью 50 см³ каждая отмеряют 2,0; 5,0; 10,0; 15,0; 20,0 см³ стандартного раствора Б, что соответствует 0,000004; 0,00001; 0,00002; 0,00003; 0,00004 г мышьяка, и далее продолжают по 5.3.5 и 5.3.7. Раствором сравнения служит раствор, в который не введен мышьяк.

По полученным значениям оптической плотности растворов и соответствующим им массам мышьяка строят градуировочный график.

5.4 Обработка результатов

5.4.1 Массовую долю мышьяка X₁, %, вычисляют по формуле

$$X_1 = \frac{m}{m_1} \cdot 100,$$
 (2)

где т — масса мышьяка в растворе пробы, найденная по градуировочному графику, г;

т, — масса навески пробы, г.

5.4.2 Расхождения результатов не должны превышать значений, указанных в таблице 3.

Таблица 3 В процентах

	Абсолютное допускаемое расхождение	
Массовая доля мышьяка	результатов параллепьных определений	результатов анализа
От 0,0020 до 0,0050 включ.	0,0005	0,0007
Св. 0,005 » 0,010 »	0,001	0,002
» 0,010 » 0,020 »	0,003	0,004
» 0,020 » 0,040 »	0,004	0,005

ПРИЛОЖЕНИЕ A (справочное)

Библиография

[1] ТУ 6-09-5384—88 Олово двухлористое 2-водное (Уральский завод химических реактивов, г. Верхняя Пышма Свердловской обл.)

УДК 669.715.001.4:006:354

MKC 77.120.10

B59

ОКСТУ 1709

Ключевые слова: сплавы алюминиевые, методы определения мышьяка, аппаратура, реактивы, растворы, анализ