СПЛАВЫ МЕДНО-ФОСФОРИСТЫЕ

Методы определения железа

Издание официальное

Предисловие

 РАЗРАБОТАН Межгосударственным техническим комитетом по стандартизации МТК 107, Донецким государственным институтом цветных металлов (ДонИЦМ)

ВНЕСЕН Государственным комитетом Украины по стандартизации, метрологии и сертификации (протокол № 10 от 3 октября 1996 г.)

2 ПРИНЯТ Межгосударственным Советом по стандартизации, метрологии и сертификации (протокол № 10 от 3 октября 1996 г.)

За принятие проголосовали:

Наименование государства	Наименование национального органа по стандартизации
Азербайджанская Республика	Азгосстандарт
Республика Беларусь	Госстандарт Республики Беларусь
Республика Казахстан	Госстандарт Республики Казахстан
Республика Молдова	Молдовастандарт
Российская Федерация	Госстандарт России
Республика Таджикистан	Таджикгосстандарт
Туркменистан	Главгосинспекция «Туркменстандартлары»
Республика Узбекистан	Узгосстандарт
Украина	Госстандарт Украины

³ Постановлением Государственного комитета Российской Федерации по стандартизации и метрологии от 19 декабря 2000 г. № 384-ст межгосударственный стандарт ГОСТ 6674.5—96 введен в действие непосредственно в качестве государственного стандарта Российской Федерации с 1 июля 2001 г.

4 ВВЕДЕН ВПЕРВЫЕ

© ИПК Издательство стандартов, 2001

Настоящий стандарт не может быть полностью или частично воспроизведен, тиражирован и распространен в качестве официального издания на территории Российской Федерации без разрешения Госстандарта России

Содержание

1	Область применения
2	Нормативные ссылки
3	Общие требования
4	Фотометрический метод
	4.1 Сущность метода
	4.2 Аппаратура, реактивы и растворы
	4.3 Проведение анализа
	4.4 Обработка результатов
5	Атомно-абсорбционный метод
	5.1 Сущность метода
	5.2 Аппаратура, реактивы и растворы 3
	5.3 Проведение анализа
	5.4 Обработка результатов

МЕЖГОСУДАРСТВЕННЫЙ СТАНДАРТ

СПЛАВЫ МЕДНО-ФОСФОРИСТЫЕ

Методы определения железа

Copper-phosphorous alloys. Methods for determination of iron

Дата введения 2001-07-01

1 Область применения

Настоящий стандарт устанавливает атомно-абсорбционный при содержании железа от 0,05 % до 0,2 % и фотометрический при содержании железа от 0,01 % до 0,5 % методы определения железа в медно-фосфористых сплавах.

2 Нормативные ссылки

В настоящем стандарте использованы ссылки на следующие стандарты:

ГОСТ 859-78 Медь. Марки

ГОСТ 3118-77 Кислота соляная. Технические условия

ГОСТ 4204-77 Кислота серная. Технические условия

ГОСТ 4461-77 Кислота азотная. Технические условия

ГОСТ 5457—75 Ацетилен растворенный и газообразный технический. Технические условия

ГОСТ 6344-73 Тиомочевина. Технические условия

ГОСТ 6674.0-96 Сплавы медно-фосфористые. Общие требования к методам анализа

ГОСТ 10484—78 Кислота фтористоводородная. Технические условия

ГОСТ 10929-76 Водорода пероксид. Технические условия

ГОСТ 13610-79 Железо карбонильное радиотехническое. Технические условия

3 Общие требования

Общие требования к методам анализа — по ГОСТ 6674.0.

4 Фотометрический метод

4.1 Сущность метода

Метод основан на образовании окрашенного раствора комплекса железа (II) с 1,10-фенантролином при рН 1,6—1,8 в присутствии тиомочевины и измерении оптической плотности раствора.

4.2 Аппаратура, реактивы и растворы

Фотоэлектроколориметр или спектрофотометр.

Кислота азотная по ГОСТ 4461 и разбавленная 1:1, растворы 0,2 моль/дм3 и 1 моль/дм3.

Кислота серная по ГОСТ 4204, разбавленная 1:4, растворы 0,2 моль/дм3 и 1 моль/дм3.

Кислота соляная по ГОСТ 3118.

Кислота фтористоводородная по ГОСТ 10484.

Водорода пероксид по ГОСТ 10929.

Тиомочевина по ГОСТ 6344, раствор 100 г/дм3.

 1,10-фенантролин солянокислый или 1,10-фенантролин сернокислый по действующему нормативному документу, раствор 30 г/дм³.

Железо карбонильное радиотехническое по ГОСТ 13610.

Стандартные растворы железа.

Раствор А: 0,5 г железа растворяют в 20 см³ соляной кислоты с добавлением пероксида водорода, раствор кипятят для разрушения избытка пероксида водорода, охлаждают, переносят в мерную колбу вместимостью 500 см³, доливают водой до метки и перемешивают.

1 см3 раствора A содержит 0,001 г железа.

Раствор Б: 5 см³ раствора А переносят в мерную колбу вместимостью 100 см³, доливают до метки водой, перемешивают, используют свежеприготовленным.

1 см3 стандартного раствора Б содержит 0,00005 г железа.

Раствор В: 2 см³ стандартного раствора А переносят в мерную колбу вместимостью 100 см³, доливают до метки водой, перемешивают, используют свежеприготовленным.

1 см3 раствора В содержит 0,00002 г железа.

Медь металлическая по ГОСТ 859.

Стандартный раствор меди: 1 г металлической меди растворяют в 20 см³ раствора азотной кислоты (1:1), раствор упаривают до состояния влажных солей, добавляют 20 см³ раствора азотной или серной кислоты (1 моль/дм³) (в зависимости от состава анализируемого сплава), охлаждают, переносят в мерную колбу вместимостью 100 см³, доливают до метки водой, перемешивают.

1 см³ раствора содержит 0,01 г мели.

4.3 Проведение анализа

4.3.1 Для сплавов, содержащих менее 0,1 % кремния: навеску сплава в соответствии с таблицей 1 помещают в стакан вместимостью 250 см³ и растворяют при нагревании в 15 см³ соляной кислоты и 2 см³ азотной кислоты.

Таблица 1

Массовая доля железа, %	Масса навески, г	Объем аликвотной части раствора, см ³
От 0.01 до 0.05 включ.	1	10
Св. 0.05 * 0.5 *	0,5	5

Раствор упаривают досуха, к сухому остатку прибавляют 20 см³ раствора азотной кислоты (1 моль/дм³), нагревают до полного растворения остатка, охлаждают, переносят в мерную колбу вместимостью 100 см³, доливают до метки водой и перемешивают.

Аликвотную часть раствора в соответствии с таблицей 1 помещают в мерную колбу вместимостью 50 см³, добавляют 15 см³ воды, 10 см³ раствора тиомочевины, 2 см³ раствора 1,10-фенантролина, через 30 мин доливают до метки водой и измеряют оптическую плотность раствора при длине волны 490 нм. В качестве раствора сравнения используют не содержащий железа раствор, в котором количество меди и всех реактивов соответствует аликвотной части анализируемого раствора.

- 4.3.2 Для сплавов, содержащих более 0,1 % кремния, навеску сплава в соответствии с таблицей 1 помещают в стакан вместимостью 250 см³ и растворяют при нагревании в 15 см³ соляной кислоты, 2 см³ азотной кислоты с добавлением 2—3 капель фтористоводородной кислоты. Добавляют 5 см³ раствора серной кислоты (1:4), упаривают раствор до появления паров серной кислоты, охлаждают, добавляют 20 см³ воды, переносят в мерную колбу вместимостью 100 см³, доливают до метки водой и перемешивают. Далее поступают, как указано в 4.3.1.
- 4.3.3 Для построения градуировочного графика при массовой доле железа от 0,01 % до 0,05 % в мерные колбы вместимостью 50 см³ помещают 10 см³ стандартного раствора меди, приготовленного аналогично анализируемой пробе, 0; 0,5; 1,0; 1,5; 2,0; 3,0 см³ стандартного раствора В железа, добавляют 15 см³ воды, 10 см³ раствора тиомочевины, 2 см³ раствора 1,10-фенантролина. Далее поступают, как указано в 4.3.1.

По полученным значениям оптической плотности и соответствующим им массовым долям железа строят градуировочный график.

4.3.4 Для построения градуировочного графика при массовой доле железа от 0,05 % до 0,5 % в мерные колбы вместимостью 50 см³ помещают 2,5 см³ стандартного раствора меди, приготовленного аналогично анализируемой пробе, 0; 0,25; 0,5; 1,0; 2,0; 3,0 см³ стандартного раствора Б железа, добавляют по 2,5 см³ растворов азотной или серной кислоты концентрацией 0,2 моль/дм³ (в зависимости от состава анализируемого сплава). Далее поступают, как указано в 4.3.1.

По полученным значениям оптической плотности и соответствующим им массовым долям железа строят градуировочный график.

4.4 Обработка результатов

4.4.1 Массовую долю железа Х, %, вычисляют по формуле

$$X = \frac{m_1}{m} 100$$
, (1)

где m₁ — масса железа, найденная по градуировочному графику, г;

т — масса пробы сплава, соответствующая аликвотной части раствора, г.

4.4.2 Расхождения результатов параллельных определений и результатов анализа не должны превышать допускаемых (при доверительной вероятности 0,95) значений, приведенных в таблице 2.

Таблица 2 В процентах

	Абсолютное допускаемое расхождение		
Массовая доля железа	результатов параллельных определений	результатов анализа	
От 0,01 до 0,1 включ. Св. 0,1 » 0,5 »	0,010 0,015	0,020 0,030	

5 Атомно-абсорбционный метод

5.1 Сущность метода

Метод основан на растворении пробы сплава в смеси соляной и азотной кислот и измерении атомной абсорбции железа при длине волны 248,3 нм в пламени воздух-ацетилен.

5.2 Аппаратура, реактивы и растворы

Атомно-абсорбционный спектрофотометр.

Ацетилен по ГОСТ 5457.

Кислота азотная по ГОСТ 4461 и разбавленная 1:1.

Кислота соляная по ГОСТ 3118.

Смесь соляной и азотной кислот готовят следующим образом: один объем азотной кислоты смешивают с тремя объемами соляной кислоты.

Железо карбонильное радиотехническое по ГОСТ 13610.

Стандартные растворы железа.

Раствор А: 1 г железа растворяют в 80 см³ азотной кислоты (1:1), охлаждают, переносят в мерную колбу вместимостью 1 дм³, доводят до метки водой и перемешивают.

1 см³ раствора А содержит 0,001 г железа.

Раствор Б: 25 см³ раствора А помещают в мерную колбу вместимостью 250 см³, доводят объем раствора в колбе до метки водой и перемешивают.

1 см³ раствора Б содержит 0,0001 г железа.

5.3 Проведение анализа

- 5.3.1 Навеску сплава массой 0,25 г растворяют в 20 см³ смеси кислот, кипятят до удаления оксидов азота. Раствор охлаждают, переносят в мерную колбу вместимостью 100 см³, доводят до метки водой и перемешивают.
- 5.3.2 Для построения градуировочного графика в шесть мерных колб вместимостью 100 см³ каждая помещают 0; 1,0; 2,0; 3,0; 4,0 и 5,0 см³ стандартного раствора железа Б, вводят в каждую колбу по 15 см³ смеси кислот, доливают водой и тщательно перемешивают.

Раствор, не содержащий железа, используют для контрольного опыта.

5.3.3 Растворы пробы, контрольного опыта и растворы для построения градуировочного графика распыляют в воздушно-ацетиленовое пламя и измеряют величину атомного поглощения железа при длине волны 248,3 нм.

По полученным данным строят градуировочный график в координатах: «масса железа, г — величина атомного поглощения».

Массу железа в пробе и растворе контрольного опыта определяют по градуировочному графику.

ГОСТ 6674.5-96

5.4 Обработка результатов

5.4.1 Массовую долю железа Х, %, вычисляют по формуле

$$X = \frac{m_1 - m_2}{m} 100,$$
 (2)

где m₁ — масса железа в растворе пробы, найденная по градуировочному графику, г;

- m_2 масса железа в растворе контрольного опыта, найденная по градуировочному графику, г; m масса навески сплава, г.
- 5.4.2 Расхождения результатов параллельных определений и результатов анализа не должны превышать допускаемых (при доверительной вероятности 0,95) значений, приведенных в таблице 2.

УДК 669.35'779:546.72.06:006.354

MKC 77.120.30

B59

ОКСТУ 1709

Ключевые слова: сплавы медно-фосфористые, железо, фотометрический метод, 1,10-фенантролин, атомно-абсорбционный метод, длина волны

Редактор Л.И. Нахимова
Технический редактор Л.А. Гусева
Корректор Р.А. Ментова
Компьютерная верстка О.В. Арсеевой

Изд. лиц. № 02354 от 14.07,2000. Сдано в набор 26.03.2001. Подписано в печать 13.04.2001. Усл. печ. л. 0,93. Уч.-изд.л. 0,53. Тираж экз. С 754. Зак. 418.