3142-90



# ГОСУДАРСТВЕННЫЯ СТАНДАРТ СОЮЗА ССР

# СТАНКИ ЗУБОШЛИФОВАЛЬНЫЕ ДЛЯ КОНИЧЕСКИХ КОЛЕС

ОСНОВНЫЕ РАЗМЕРЫ, НОРМЫ ТОЧНОСТИ

ГОСТ 13142-90

Издание официальное

**53** 12-89/1082

20 коп.

ГОСУДАРСТВЕННЫЙ КОМИТЕТ СССР ПО УПРАВЛЕНИЮ КАЧЕСТВОМ ПРОДУКЦИИ И СТАНДАРТАМ Москвя

к ГОСТ 13142—90 Станки зубошлифовальные для конических колес. Основные размеры. Нормы точности

| В каком месте                                               | Напечатано                                                                                          | Должно быть                                                                                |
|-------------------------------------------------------------|-----------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------|
| Табляцы 2, 5, 7, 13, 14,<br>16, 17. Графа «Номер<br>пункта» | 1.1a, 1.16, 1.6a, 1.66, 1.8a,<br>1.86, 1.14a, 1.146, 1.15a,<br>1.156, 1.17a, 1.176, 1.18a,<br>1.186 | 2.3a, 2.36, 2.6a, 2.66, 2.8s, 2.86, 2.14a, 2.146, 2.15a, 2.156, 2.17a, 2.176, 2.18a, 2.186 |
| Таблицы 16, 17. Гра-<br>фа «Допуск»                         | в угловых секундах                                                                                  | в угловых минутах                                                                          |

# ГОСУДАРСТВЕННЫЙ СТАНДАРТ СОЮЗА ССР

# СТАНКИ ЗУБОШЛИФОВАЛЬНЫЕ ДЛЯ КОНИЧЕСКИХ КОЛЕС

Основные размеры, Нормы точности

ГОСТ 13142—90

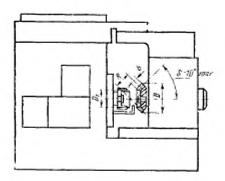
Bevel and hypoid gear grinding machines. Basic dimensions Standards of accuracy

OKIT 38 1569

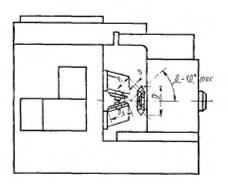
Дата введения

01.01.91

Настоящий стандарт распространяется на зубощлифовальные станки общего назначения классов точности В и А для конических колес с прямыми и круговыми зубьями, работающие методом обката с единичным и групповым делением.


Стандарт устанавливает требования к основным размерам, геометрической точности станка и точности обработки образцов-

изделий.


#### 1. ОСНОВНЫЕ РАЗМЕРЫ

Основные размеры станков должны соответствовать указанным на черт. 1 и в табл, 1.

# Станки для обработки конических колес с круговыми зубьями



## Станки для обработки конических колес с прямыми зубьями



D — наибольший диаметр обрабатываемых зубчатых колес, R —наибольшее среднее конусное расстояние обрабатываемых зубчатых колес, в том числе для колес с круговыми зубьями с углом наклона средней линии зуба  $30^\circ$  ори обработке шляфовальным кругом наибольшего диаметра, b — наибольшая ширина зубчатого вениа обрабатываемых зубчатых колес.

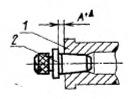
 $D_1$  и  $D_2$  — наибольший диаметр шлифовального круга,  $\delta$  — наименьший угол делительного конуса обрабитываемых зубчатых колес.

Черт. 1

Применание. Чертеж не определяет конструкцию станка.

Таблица 1

### Размеры, им


| D                                                                                                            |                                     | 125  | 200 | 320 | 500 | 800 |
|--------------------------------------------------------------------------------------------------------------|-------------------------------------|------|-----|-----|-----|-----|
| mte*, не менее                                                                                               |                                     | 1,6  | 2,5 | 4   | •   | 10  |
| та*, не менее                                                                                                |                                     | 1.25 | 2   | 3,5 | 5   | 8   |
| R, не менее                                                                                                  |                                     | 35   | 90  | 140 | 220 | 360 |
| <b>Б</b> , не менее                                                                                          |                                     | 8    | 16  | 32  | 50  | 80  |
| Конец шпинделя бабки из<br>17547, не менее                                                                   | эделия по ГОСТ                      | 4    | 6   | 80  | 100 | 153 |
| Цилиудрическое отвер-                                                                                        | диаметр                             | 20   | 32  | 50  | 80  | 125 |
| стие шпинделя бабки<br>изделия, не менее                                                                     | длина от ториа<br>швинделя          | 160  | 250 | 400 | 500 | 630 |
| D <sub>1</sub> , не менее                                                                                    |                                     | 80   | 160 | 250 | 315 | 500 |
| D <sub>2</sub> , не менее                                                                                    |                                     | 160  | 200 | 250 |     | 300 |
| Размеры поседочной пов<br>шлифовального шпинделя<br>рабатывающих зубчатые<br>выми зубьями по ГОСТ з<br>менее | для станков, об-<br>колеса с круго- | 20   | 25  | 32  | 40  | 50  |

т. — наибольший внешний окружной модуль обрабатываемых зубчатых колес, т. — наибольший средний нормальный модуль обрабатываемых колес с круговыми зубьями.

# 2. ГЕОМЕТРИЧЕСКАЯ ТОЧНОСТЬ СТАНКА

- Общие требования к испытаниям станков на точность по ГОСТ 8.
- Нормы точности станков не должны превышать значений, указанных в пп. 2.3—2.18.
- 2.3. Точность базирующей конической поверхности шпинделя бабки изделия:
- а) зазор A+A между торцом фланца калибра и торцом шпинделя;

## б) прилегание конуса калибра не краске.



Черт. 2

Таблица 2

| Наибольний диаметр обра | Номер  | Допуск 4 на завор, мки;<br>прилегание, %, не менее,<br>для станков класса точности |      |  |
|-------------------------|--------|------------------------------------------------------------------------------------|------|--|
| батываемого колеса, им  | пункта | В                                                                                  | A    |  |
| До 125                  | 1.1a   | → 5.5                                                                              | +55  |  |
| до 125                  | 1.16   | 80                                                                                 | . 85 |  |
| Св. 125 до 200          | I.la   | +75                                                                                | 75   |  |
| CB. 120 AO 200          | 1.16   | 80                                                                                 | 85   |  |
| Св. 200 до 500          | 11a    | + 75                                                                               | +75  |  |
| Св. 200 до 500          | 1.16   | 80                                                                                 | 85   |  |
| Св. 500 до 800          | 1.1a   | +100                                                                               | +100 |  |
| CS. 300 A0 600          | 116    | 80                                                                                 | 85   |  |

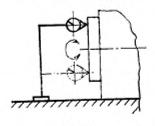
Примечания:

Разрывы окращенных мест по окружности допускаются не более 20% ее дляны. Длины неокращеных мест вдоль образующих — не более 5 мм.

 Наличне неокрашенных мест на длине конуса 10 мм от переднего торца не допускается.

В отверстие шпинделя 1 (черт. 2) бабки изделия вводят калибр 2 с определенным маркированным значением зазора А. Измеряют фактический зазор А между торцом фланца калибра и торцом шпинделя.

Затем калибр вынимают и всю его контрольную поверхность покрывают слоем краски. Толщина слоя краски не должна превышать 5 мкм по ГОСТ 2848. Вновь вводят калибр в отверстие шпинделя, поворачивают его в обе стороны на угол 90° и вынимают. Визуально оценивают плошадь прилегания калибра.


Отклонения равны:

 а) разности между фактическим размером А и его значением; указанным на калибре;

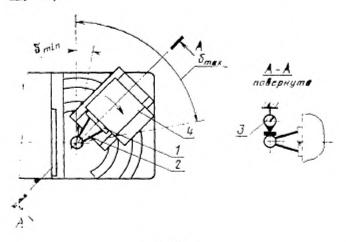
б) отношению площади поверхности прилегания к площади

рабочей поверхности калибра.

2.4. Торцовое биение шпинделя бабки изделия



Черт. 3


Таблица 3

| Нажбельший диаметр обрабаты- | Допуск, му | ом, для станког |
|------------------------------|------------|-----------------|
| ваемого колеса, им           | власс      | и точности      |
| PACEFUL EVICES, REI          | В          | A               |
| До 200                       | 2,5        | 2               |
| 200 > 800                    | 3,5        | 2.5             |

Измерения - по ГОСТ 22267, разд. 18, метод 1 (черт. 3)

Измерительный наконечник показывающего измерительногоприбора должен отстоять от оси вращения на расстоянии не менее 0,4 диаметра торцовой поверхности шпинделя бабки изделия.

# 2.5. Постоянство положения оси шпинделя бабки изделия по высоте при повороте бабки изделия (для станков с углом поворота $\delta_{\rm max}\!\!\gg\!\!30^{\circ}\!\!$ )



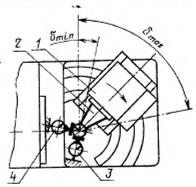
Черт. 4

Таблица 4

| Наибольший диаметр обра- |          | , для ставков<br>точности |
|--------------------------|----------|---------------------------|
| батываемого колеса, мы   | В        | A                         |
| До 200                   | 10       | 8                         |
| 320 × 320<br>320 × 500   | 12<br>16 | 10                        |
| 3 500 3 800              | 20       | 16                        |

В отверстие шпинделя I (черт. 4) бабки изделия 4 вставляют контрольную оправку 2 с шариком. Бабку изделия по измерительному устройству осевой установки устанавливают на маркированный на оправке размер от центра шарика до торца шпинделя бабки изделия. Бабку изделия устанавливают на наименьший угольши и закрепляют винтами. Показывающий измерительный прибор 3 закрепляют неподвижно так, чтобы плоскость его наконечмика касалась шарика сверху и была перпендикулярна оси пово-

рота бабки изделия. Бабку изделия поворачивают на угол от б<sub>шів</sub> до б<sub>шых</sub> и отмечают величину изменения показания измерительного прибора по сравнению с показанием при б<sub>шів</sub> в среднем и крайнем положении бабки изделия при затянутых винтах крепления.


Отклонение равно наибольшему изменению показаний измери-

тельного прибора.

2.6. Пересечение оси поворота бабки изделия с осью шпиндельной головки:

а) в нулевом (исходном) положении шпиндельной головки;

 б) в крайних гипоидных положениях шпиидельной головки (для станков с гипоидным смещением шпиндельной головки)

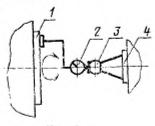


Черт. 5.

Таблица 5

| Нанбольший диаметр            | Номер  | жласса " | , для стинков<br>точности |  |
|-------------------------------|--------|----------|---------------------------|--|
| обрабатываемого колеса,<br>им | пункта | В        | A                         |  |
| До 200                        | 1.6a   | 10       | 8                         |  |
|                               | 1.65   | 12       | 10                        |  |
| Св. 200 до 320                | 1.6a   | 12       | 10                        |  |
|                               | 1.66   | 16       | 12                        |  |
| Св. 320 до 500                | 1.6a   | 16       | 12                        |  |
|                               | 1.66   | 20       | 16                        |  |
| Св. 500 до 800                | 1.6a   | 20       | 16                        |  |
|                               | 1.66   | 25       | 20                        |  |

### C. 8 FOCT 13142-90


Установка рабочих органов станка и оправки 2 (черт. 5) аналогична установке при проверке по п. 2.5. Бабку изделия устанавливают на наименьший угол поворота  $\delta_{\min}$ . Для станков с гипоидным смещением шпиндельную головку I устанавливают в иулевое положение. Показывающие измерительные приборы 3 и 4 устанавливают так, чтобы их плоские измерительные наконечники касались шарика оправки, при этом направление измерения прибора 3 должно совпадать с осью шпинделя бабки изделия, а прибора 4 должно быть перпендикулярно оси шпинделя и оси новорста бабки изделия при установке ее на угол  $\delta_{\min}$ .

Бабку изделия поворачивают на угол от  $\delta_{\min}$  до  $\delta_{\max}$  с предварительной выборкой зазоров. Перемещают бабку изделия в осевом направлении, добиваясь наименьших показаний измерительных приборов и записывают их показания в крайних и среднем фиксированных угловых положениях (при затянутых винтах).

Для станков, имеющих гипоидное смещение, измерение произьодят также в двух крайних положениях шпиндельной головки (при затянутых винтах) без изменения осевой установки бабки взделия.

Отклонение равно наибольшей алгебраической разности показань, каждого измерительного прибора при различных угловых установках бабки изделия.

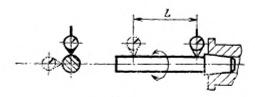
### 27. Осевое биение люльки



Черт. 6

Таблица 6

| Н.: Съльщий драметр обраба-<br>чиваемого колега, ми |            | Допуск, икм.<br>класса | , дан станьов<br>гочности |
|-----------------------------------------------------|------------|------------------------|---------------------------|
|                                                     |            | В                      | Α                         |
| - Military - National -                             | T. Address |                        |                           |
| Jo 125                                              |            | 10                     | 1 5                       |
|                                                     |            | 12                     | 10                        |
| 125 > 200                                           |            |                        |                           |
| 7to 125<br>. 175 = 200<br>270 = 500                 |            | 16                     | 12                        |


В отверстие шпинделя 4 (черт. 6) бабки изделия вставляют контрольную оправку 3 с шариком. Бабку изделия устанавливают так, чтобы ось вращения люльки пересекала центр шарика оправки. Показывающий измерительный прибор 2 укрепляют на торце люльки 1 так, чтобы его плоский измерительный наконечник касался шарика оправки. Направление измерения должно совпадать с осью люльки.

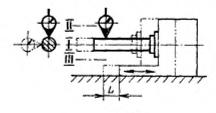
Измерення проводят при медленном повороте в направлении рабочего хода люльки на угол равный приблизительно 50°. На станках для колес с круговыми зубъями измерения проводят в трех положениях на всей рабочей зоне качания люльки, на стан-

ках для колес с прямыми зубьями - в одном положении.

Отклонение равно наибольшей алгебранческой разности показаний измерительного прибора при одном измерении.

- 2.8. Радиальное биение конического отверстия швинделя бабки изделия:
  - а) у торца;
  - б) на расстоянии L




Черт. 7

Табляца 7

| Ненбольший диаметр обра- | Howep L. was | Допуск, мям,<br>станков клас<br>точностя |            |           |
|--------------------------|--------------|------------------------------------------|------------|-----------|
| батываемого колеса, мж   | пункта       | 2, 43                                    | В          | A         |
| До 125                   | 1.8a<br>1.86 | 75                                       | 2,5<br>3,5 | 1,5       |
| Св. 125 до 200           | 1.8a<br>1.86 | 150                                      | 2.5<br>4   | 2<br>2,5x |
| Св. 200 до 500           | 1.8a<br>1.86 | 150                                      | 3,5<br>5   | 3,5       |
| Св. 500 до 800           | 1.8a<br>1.86 | 150                                      | 4 7        | 2,5       |

Измерения - по ГОСТ 22267, разд. 15, метод 2 (черт. 7).

2.9. Параллельность направления перемещения бабки изделия к оси ее шпинделя в плоскостях: проходящей через ось поворота бабки изделия и перпендикулярной ей (станки с гипоидным смещением шпиндельной головки проверяют в нулевом (исходном) I и крайних II и III гипоидных положениях шпиндельной головки)



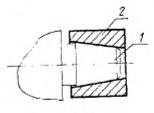

Черт. 8

Таблица 8

| Наибольший диаметр обра-                              |                         | класса 1            | , ДЛЯ СТАНКОВ<br>ТОЧНОСТИ |  |
|-------------------------------------------------------|-------------------------|---------------------|---------------------------|--|
| батываемого колеса, мы                                | L, MM                   |                     | Α -,                      |  |
| До 125<br>Ca. 125 > 200<br>> 200 > 500<br>> 500 > 800 | 75<br>150<br>290<br>300 | 8<br>10<br>12<br>16 | 6<br>8<br>10              |  |

Измерения по ГОСТ 22267, разд. 6, метод 36 (черт. 8). Измерения проводят в каждом положении шпиндельной головки и в каждой плоскости при затянутых винтах крепления.

2.10. Точность базирующей наружной конической поверхности шлифовального шпинделя

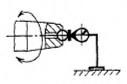


Черт. 9

| Наибольший диаметр обраба-<br>тываемого колеса, им | Допуск, прилегание, %, не межее для станков класса точности |          |  |
|----------------------------------------------------|-------------------------------------------------------------|----------|--|
|                                                    |                                                             | A        |  |
| До 200                                             | 80                                                          | 85<br>85 |  |

Примечания:

 Разрывы окращенных мест по окружности допускаются не более 20% ее дляны. Дляны неокращенных мест вдоль образующих не более 5 мм.


Наличие неокрашенных мест на дляне конуса 5 мм от большего днаметра не допускается.

На конус 1 (черт. 9) шлифовального шпинделя надевают кольпо — калибр 2, конусное отверстие которого предварительно покрывается тонким слоем краски. Толщина слоя краски не должна превышать 5 мкм по ГОСТ 2848.

Калибр поворачивают в обе стороны на угол 90° и снимают. Визуально оценивают площадь поверхности прилегания конусашпинделя.

Отклонение равно отношению площади поверхности прилегания к площади рабочей поверхности конуса шпинделя.

## 2.11. Осевое биение шлифовального шпинделя



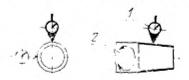

Черт 10

Таблица 19

| Наибольший диаметр обра- | Допуск, мки, для станков<br>класса точности |     |
|--------------------------|---------------------------------------------|-----|
| батыраемого холеса, мы   | 3                                           | A   |
| До 200<br>в. 200 > 500   | 2 25                                        | 1,5 |
| > 500 > 800              | 3                                           | 2   |

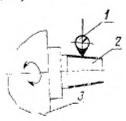
Измерения - по ГОСТ 22267, разд. 17, метод 1 (черт. 10).

# 2.12. Биение базирующей поверхности шлифовального шпимделя в направлении перпендикулярном образующей



Черт. 11

Таблица 11


| Наибольший диаметр обра-    | Допуск, мкл<br>класса | г. для станков<br>точности |
|-----------------------------|-----------------------|----------------------------|
| батываемого колеса, им      | В                     | A                          |
| До 200                      | 2,5                   | 1.5                        |
| Cn 260 > 500<br>> 500 > 800 | 3 4                   | 2,5                        |

На станке укрепляют показывающий измерительный прибор 1 (черт. 11), так чтобы его измерительный наконечник касался наружной базирующей поверхности шлифовального шпинделя 2 и был направлен к оси этой новерхности перпендикулярно образующей. Измерения проводят при вращении шлифовального шпинделя в рабочем направлении.

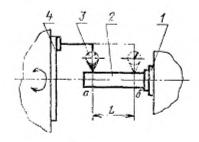
Биение равно наибольшей алгебраической разности показаний

измерительного прибора в каждом его положении.

 2.13. Соосность люльки и шлифовального шпинделя (для станков, шлифующих колеса с круговыми зубьями и меющих возможность поворота люльки на 369° и установки соосно люльки и шлифовального шпинделя)



Черт. 12


| Наибольй ий диаметр обра-<br>базываемого колеса им    |                      | для станков          |
|-------------------------------------------------------|----------------------|----------------------|
| VIII-18184V II-1818                                   | В                    | ٨                    |
| До 208<br>Cs. 200 × 320<br>> 320 × 500<br>> 500 × 800 | 25<br>32<br>40<br>50 | 20<br>25<br>32<br>40 |

Показывающий измерительный прибор 1 (черт. 12) укрепляют так, чтобы его измерительный наконечник касался перпендикулярно образующей базирующей поверхности шлифовального шпинделя 2 или цилиндрической поверхности на эксцентрике (салазках) соосной со шлифовальным шпинделем.

Шлифовальный шпиндель 2 устанавливают в соосное с люлькой 3 положение так, чтобы алгебранческая разность показаний измерительного прибора при повороте люльки на 360° была наименьшей.

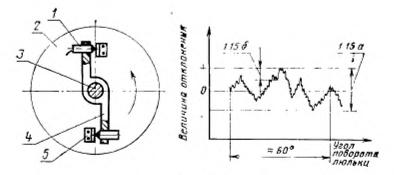
Отклонение равно половине алгебраической разности показаний измерительного прибора.

- 2.14. Соссность люльки и шпинделя бабки изделия (для станков с установкой бабки изделия на угол 90°);
  - а) в плоскости, проходящей через центр станка;
  - б) на расстоянии L от центра станка



15. p. 15

| Напбольший диаметр обра- | Номер<br>жункта | L, ww | Допуск, мкм. для став<br>ком класса точности |          |
|--------------------------|-----------------|-------|----------------------------------------------|----------|
| батываемого колеса, мы   |                 |       | В                                            | A        |
| До 125                   | 1.14a<br>1.146  |       | 4 5                                          | 2,5<br>4 |
| Св. 125 до 200           | 1.14a<br>1.146  | 150   | 5<br>8                                       | 3<br>5   |
| Св. 200 до 500           | 1.14a<br>1.146  | 150   | 6<br>10                                      | 6        |
| Св. 500 до 800           | 1 14a<br>1.146  | 150   | 8<br>12                                      | 5<br>8   |


В отверстие шпинделя I (черт. 13) бабки изделия вставляют контрольную оправку 2. Бабку изделия устанавливают на угол  $90^\circ$ . На станках, имеющих гипоидное смещение, шпиндельную головку устанавливают в нулевое положение. На торце люльки 4 укрепляют показывающий измерительный прибор 3 так, чтобы его измерительный наконечник касался цилиндрической поверхности оправки последовательно в положении a (в плоскости, проходящей через центр станка) и в положение 6 (на расстоянии L от центра станка). Перемещение измерительного наконечника должно происходить перпендикулярно поверхности оправки. Люльку вместе с измерительным прибором медленно поворачивают вручную на угол около  $50^\circ$ . Бабку изделия выставляют так, чтобы показания измерительного прибора были наименьшими.

Измерения проводят в направлении рабочего хода люльки: на станках для колес с круговыми зубьями в трех положениях на всей рабочей зоне качания; на станках для колес с прямыми зубьями —

в одном положении.

Отклонение равно наибольшей алгебранческой разности показаний измерительного прибора в каждом положении.

- 2.15. Точность связанных поворотов люльки и шпинделя бабки чаделия (для станков, имеющих возможность соосной установки люльки и шпинделя бабки изделия и настройки синхронного врашения шпинделя бабки изделия и люльки):
  - а) за один рабочий цикл;
  - б) местная



Черт. 14

Таблица 14

| Наибольший диаметр обра-<br>батываемого колоса, им | Номер          | Допуск, угловые секунды, для<br>станков класса точности |    |  |
|----------------------------------------------------|----------------|---------------------------------------------------------|----|--|
|                                                    | пункта         | В                                                       | A  |  |
| До 125                                             | 1 15a          | 40                                                      | 28 |  |
|                                                    | 1.156          | 16                                                      | 10 |  |
| Св. 125 до 200                                     | 1.15a          | 32                                                      | 20 |  |
|                                                    | 1.156          | 12                                                      | 8  |  |
| <b>Св. 200</b> до 320                              | 1.15a          | 28                                                      | 18 |  |
|                                                    | 1.156          | 10                                                      | 6  |  |
| Св 320 до 500                                      | 1,15a          | 20                                                      | 14 |  |
|                                                    | 1.156          | 8                                                       | 5  |  |
| Св. 500 до 800                                     | 1.t5a<br>1.156 | 18                                                      | 10 |  |

Устанавливают: возможно точную соосность шпинделя 3 (черт. 14) бабки изделия и люльки 2; сменные зубчатые колеса деления для числа шлифуемых зубьев колеса 35...45; сменные

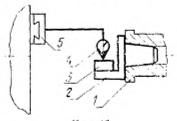
зубчатые қолеса обката, обеспечивающие расчетное синхроняое

вращение шпинделя бабки изделия и люльки,

На шпинделе бабки изделия закрепляют коромысло 4, в котором на равных расстояниях от оси шпинделя бабки изделия установлены два датчика перемещения I так, чтобы их измерительные наконечники касались упоров 5 и были перпендикулярны им. Рабочие плоскости упоров, прикрепленных к люльке, должны лежать в одной диаметральной плоскости. Измерительное устройство должно обеспечивать алгебранческое суммирование измерений обоих датчиков перемещений и графическую запись результата в масштабе. Люльку поворачивают на наименьшей рабочей скорости на угол около 60°.

Измерения проводят в направлении рабочего хода люльки: на станках для колес с круговыми зубьями в трех положениях на всей рабочей зоне качания; на станках для колес с прямыми зубьями — в одном положении.

Отклонения равны:


- а) наибольшему изменению относительного углового положения люльки и шпинделя бабки изделия, выраженному в масштабе записи расстоянием между крайними точками графика в направлении оси «величина отклонения»;
- б) наибольшему единичному изменению углового положения люльки и шпинделя бабки изделия, выраженному в масштабе записи наибольшим расстоянием между двумя сосединии точками изменения направления линии графика, отсчитанными в направлении оси «величина отклонения» при угле поворота не более 6°.

примечания:

1. Допускается проведение измерения одним дотчиком перемещения с иск-

лючением влияния несоосности люльки и шпинделя бабки изделия.

- При отсчете по оси «величина отклонения» в случае измерения двумя датчиками одновременно фактическое отклонение будет в два раза меньше зафиксированного графиком.
- Прямолинейность перемещения ползунов (для станков, шлифующих колеса с прямыми зубьями, шлифовальными кругами, движущимися вдоль зуба поступательно)



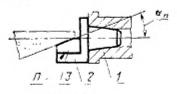
Черт, 15

| Наибольшая дляна перемещения ползунов, мм | Домусн, мкм, для станков<br>клясса точности |       |
|-------------------------------------------|---------------------------------------------|-------|
|                                           | В                                           | A     |
| До 40<br>Св. 10 » 60                      | 3                                           | 2 2.5 |
| » 60 » 100<br>» 100 » 160                 | 5 7                                         | 3     |

Цепь обката и механизм бочкообразования (при его наличии) отключают. Бабку изделия по измерительному устройству станка устанавливают на угол 90°. В отверстие шпинделя 1 (черт. 15) бабки изделия вставляют контрольную оправку 2 со ступенчатым фланцем, на котором укрепляют поверочную линейку 3 так, чтобы рабочая поверхность линейки была примерно параллельна плоскости направляющих поворота бабки изделия. На ползуне 5 люльки укрепляют показывающий измерительный прибор 4 так, чтобы его измерительный наконечник касался и был перпендикулярен рабочей поверхности линейки.

Люльку или шенидель бабки изделия поворачивают до тех пор, пока при перемещении ползуна на наибольшую длину хода, показания измерительного прибора станут одинаковыми в начале

и конце хода.


Измерения проводят, вновь перемещая ползуны на наиболь-

шую длину хода.

Отклонение для каждого ползуна равно наибольшей алгебраической разности показаний измерительного прибора на всей длине перемещения ползуна.

Примечание. Поверочная линейка может быть установлена не на оправке, вставленной в шпинделе бабки изделия, а на любой части станка, неподвижной в процессе измерения и имеющей достаточную жесткость.

- 2.17. Точность профиля контрольной планки, прошлифованной на станке (для станков, шлифующих колеса с прямыми зубьями):
  - а) по углу α<sub>n</sub>;
  - б) по прямолинейности



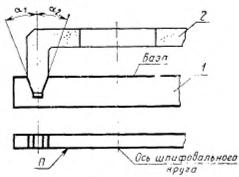
Черт. 16

| Наибольший дивметр обра-<br>батываемого колеса, им | Номер<br>вункта | Допуск (угла в<br>угловых секундах;<br>прямолинейности<br>в мкм) для стап-<br>ков классов<br>точности В. А |  |
|----------------------------------------------------|-----------------|------------------------------------------------------------------------------------------------------------|--|
| До 500                                             | 1.17a<br>1.176  | 3                                                                                                          |  |
| Св. 580 до 800                                     | 1.17a           |                                                                                                            |  |
|                                                    | 1.176           | 4                                                                                                          |  |

В отверстие шпинделя I (черт. 16) бабки изделия вставляют контрольную оправку 2 со ступенчатым фланцем, на котором прижлеплена контрольная планка 3. Бабку изделия устанавливают на угол  $90^\circ$ . Рабочие органы станка устанавливают так, чтобы направление перемещения ползуна шлифовального суппорта стало нараллельно плоскости  $\Pi$  оправки. Правят шлифовальный круг методом врезания без обката шлифуют контрольную планку.

Угол профиля измеряют универсальными средствами. Прямолинейность профиля проверяют на длине равной 1,2  $m_{te}$ , где  $m_{te}$  наибольший внешний окружной модуль обрабатываемых зубчатых колес. Показания измерительного прибора в начале и конце длины измерения должны быть одинаковыми.

Номинальное значение α<sub>п</sub> указывается в технических условиях


на конкретную модель станка.

Отклонения равны:

а) разности между фактическим и номинальным углами профиля;

 б) наибольшей алгебранческой разности показаний измерительного прибора.

- 2.18. Точность профиля контрольной планки, прошлифованной на станке (для станков, шлифующих колеса с круговыми зубьями):
  - а) по углу α;
  - б) по прямолинейности



Черт. 17

Таблица 17

| Наибольший диаметр обра-<br>батываемого колеса, мы | Номер          | Допуск (угла в<br>угловых секундах;<br>прямолинейности,<br>ики) для станков<br>клюсов точности<br>В, А |
|----------------------------------------------------|----------------|--------------------------------------------------------------------------------------------------------|
| До 320                                             | 1.18a<br>1.186 | 6                                                                                                      |
| Св. 320 до 800                                     | I.18a<br>1.186 | 8                                                                                                      |

Контрольную планку I (черт. 17) закрепляют неподвижно. База контрольной планки должна быть перпендикулярна оси люльки. Контрольная плоскость  $\Pi$  планки должна быть совмещена с осью шлифовального круга. Допускаемое отклонение — 0,005  $D_{min}$  где  $D_{min}$  — номинальный диаметр шлифовального круга. Толщина контрольной планки 0,02 . . . 0,05  $D_{min}$ 

Паз планки шлифуют методом врезания без обката. Допускается раздельное шлифование наружной и внутренней конической поверхностью шлифовального круга.

Номинальные значения  $\alpha_1$  и  $\alpha_2$  указываются в технических ус-

ловиях на конкретную модель станка.

Измерения проводят в контрольной плоскости П. Углы профиля измеряют уклаереальными средствами. Прямолинейность профиля проверяют на длине равной  $1,2~m_{te}$ , где  $m_{te}$  — наибольший внешний окружной модуль обрабатываемых зубчатых колес. Показания измерительного прибора в начале и конце длины измерения должны быть одинаковыми.

Допускается устанавливать контрольную планку на шпинделе бабки изделия.

Отклонения равны:

- а) разности между фактическими и номинальными углами профиля;
  - б) наибольшей разности показаний измерительного прибора.

### 3. ТОЧНОСТЬ СТАНКА В РАБОТЕ

11а станке шлифуют на чистовых режимах боковые поверхности зубьев образца — стального конического колеса. Твердость шлифуемых поверхностей 47...61 HRC<sub>2</sub>.

Размеры образца-изделия:

 $d_{ae} = (0,5...0,75)$  D; b = (0,12...0,18)  $d_{ae};$   $m_n = (0,6...0,75)$   $m_n$  max;  $\delta = 55^{\circ}...75^{\circ};$   $\beta_n = 35^{\circ}$  (для конических колес с круговыми зубьями),

где D — наибольший диаметр обрабатываемых зубчатых колес;  $d_{a\sigma}$  — внешний делительный диаметр;

та — наибольший средний нормальный модуль;

тах — наибольший нормальный средний модуль обрабатываемых на станке зубчатых колес;

наибольшая ширина зубчатого венца;

наименьший угол делительного конуса;

Въ — средний угол наклона линии зуба.

Число зубьев образца-изделия не должно быть кратным передаточному числу делительной передачи бабки изделия.

Если измерительный прибор дает показания в линейных величинах, то пересчет в угловые величины проводится для внешнего делительного диаметра.

3.1. Точность положения профилей соседних зубьев. Разность соседних окружных шагов

Таблица 18

| Наябольший диаметр обра-<br>батываемого колеса, им | Долуск, угловые секунды, для<br>станков класса точности |    |
|----------------------------------------------------|---------------------------------------------------------|----|
|                                                    | В                                                       | A  |
| До 125                                             | 32                                                      | 20 |
| Da. 125 > 200                                      | 24                                                      | 10 |
| > 200 > 320                                        | 18                                                      | 12 |
| > 320 → 500                                        | 14                                                      | 8  |
| > 500 > 800                                        | l ié                                                    | 6  |

Измерения проводят по обеим сторонам префиля зубьев соответствующим измерительным прибором.

Погрешность равна наибольшей разности между соседними ок-

# З.2. Точность положений профилей зубьев на всей окружности. Накопленная погрешность окружного шага

Таблипа 19

| Наибольший диаметр обра-<br>батываемого колеса, мм | Долуск, угловые секунды, для<br>станков класса точности |                      |
|----------------------------------------------------|---------------------------------------------------------|----------------------|
|                                                    | A                                                       | В                    |
| До 125                                             | 80                                                      | 50                   |
| Cs. 125 > 200                                      | 60<br>45                                                | 50<br>36<br>28<br>20 |
| > 200 > 320                                        | 45                                                      | 28                   |
| > 320 > 500                                        | 34<br>25                                                | 20                   |
| > 500 > 800                                        | 25                                                      | 16                   |

Измерения проводят по обенм сторонам профиля зубьев измерительным прибором, определяющим точность положения профилей непосредственно или с последующим пересчетом.

Погрешность равна наибольшей алгебраической разности накопленных погрешностей окружных шагов одноименных сторон профилей зубьев по всей окружности колеса.

# 3.3. Шероховатость обработанной поверхности

Наибольшее значение параметра шероховатости по ГОСТ 2789 при наибольшем диаметре обрабатываемого зубчатого колеса до 800 мм для станков класса точности  $B-R_a$  1,0 мкм, класса точности  $A-R_a$  0,63 мкм.

Проверку параметра шероховатости обработанной поверхности проводят по обеим сторонам профиля зубьев при помощи универсальных средств измерения шероховатости.

# ИНФОРМАЦИОННЫЕ ДАННЫЕ

РАЗРАБОТАН И ВВЕДЕН Министерством станкостроительной и инструментальной промышленности СССР

### РАЗРАБОТЧИКИ

- А. Н. Байков, Ю. А. Архипов, Н. Ф. Хлебалин, Л. А. Орман, Н. С. Ермакова
- УТВЕРЖДЕН И ВВЕДЕН В ДЕИСТВИЕ Постановлением Государственного комитета СССР по управлению качеством продукции и стандартам от 02.02.90 № 138
- 3. Срок проверки 1999 г., периодичность проверки 10 лет
- 4. ВЗАМЕН ГОСТ 16471-79 и ГОСТ 13142-83
- ССЫЛОЧНЫЕ НОРМАТИВНО-ТЕХНИЧЕСКИЕ ДОКУМЕНТЫ

| Обозначение НГД, на который<br>двиа ссылка | Номер пункта    |  |
|--------------------------------------------|-----------------|--|
| FOCT 8—82                                  | 2               |  |
| TOCT 232376                                | 1               |  |
| ΓΟCT 2789- 73                              | 3.3             |  |
| FOCT 2848-75                               | 2 3. 2 10       |  |
| FOCT 1754780                               | 1               |  |
| FOCT 2226776                               | 24, 28, 29, 211 |  |

Редактор А. Л. Владимиров Технический редактор В. Н. Прусакова Жорректор А. М. Трофимова

Сдано в паб. 10.02.90 Подп. в печ 21.05.90 1,5 усл. веч. л 1,5 усл. вр. отт. 1,09 ут. изд. л. Тир. 10000