Посуда лабораторная стеклянная

ШЛИФЫ КОНИЧЕСКИЕ ВЗАИМОЗАМЕНЯЕМЫЕ

Издание официальное

Предисловие

1 РАЗРАБОТАН Госстандартом России

ВНЕСЕН Техническим секретариатом Межгосударственного совета по стандартизации, метрологии и сертификации

2 ПРИНЯТ Межгосударственным советом по стандартизации, метрологии и сертификации 21 октября 1993 г.

За принятие проголосовали:

Наименование государства	Наименование национального органа по стандартизации				
Республика Беларусь	Белстандарт				
Республика Кыргызстан	Кыргызстандарт				
Республика Молдова	Молдовастандарт				
Российская Федерация	Госстандарт России				
Республика Таджикистан	Таджикстандарт				
Туркменистан	Туркменглавгосинспекция				
Украина	Госстандарт Украины				

- 3 Постановлением Комитета Российской Федерации по стандартизации, метрологии и сертификации от 2 июня 1994 г. № 160 межгосударственный стандарт ГОСТ 8682—93 введен в действие непосредственно в качестве государственного стандарта Российской Федерации с 1 января 1995 г.
 - 4 B3AMEH ΓΟCT 8682—70
 - 5 ПЕРЕИЗДАНИЕ. Март 2011 г.

© Издательство стандартов, 1993 © СТАНДАРТИНФОРМ, 2011

Настоящий стандарт не может быть полностью или частично воспроизведен, тиражирован и распространен в качестве официального издания на территории Российской Федерации без разрешения Федерального агентства по техническому регулированию и метрологии УДК 542.26:006.354 Групна П66

МЕЖГОСУДАРСТВЕННЫЙ СТАНДАРТ

Посуда лабораторная стеклянная

ГОСТ 8682—93

ШЛИФЫ КОНИЧЕСКИЕ ВЗАИМОЗАМЕНЯЕМЫЕ

Laboratory glassware. Interchangeable conical ground V-joints (MCO 383-76)

MKC 71.040.20 OKΠ 43.2500

Дата введения 1995-01-01

0 Введение

Настоящий стандарт распространяется на конические стеклянные шлифы и обеспечивает взаимозаменяемость между ними независимо от места их изготовления.

Для достижения взаимозаменяемости необходимо, чтобы каждое из следующих требований было выполнено, включая соответствующие допуски:

- а) конусность;
- b) наибольший диаметр шлифа;
- с) длина пришлифованного участка;
- d) чистота обработки поверхности.

Номинальные размеры, указанные ниже, выбраны из рядов соединений, широко использующихся во многих странах; ряд наибольших диаметров шлифов представляет собой наиболее приемлемое приближение к R 40/3 рядам номеров (5, 7. . . , 100), установленных ГОСТ 8032.

С практической точки зрения, в связи с трудностью измерения отшлифованных участков обработанных соединений, желательно применять систему калибров для проверки основных размеров.

Определение этих размеров в соответствии с разделом 6 является существенной частью настоящего стандарта, но система калибров, приведенная в приложении А, признанная на практике вполне удовлетворительной, не является единственной для применения в этом случае.

Испытание на герметичность, приведенное в приложении В, обычно применяют при испытании шлифов, его включение в настоящий стандарт не исключает применения других испытаний, которые могут быть более приемлемыми для особых целей.

Особое внимание уделяют методу пневматической калибровки.

1 Назначение и область применения

Настоящий стандарт определяет основные геометрические требования к взаимозаменяемости в отношении четырех рядов конических стеклянных шлифов лабораторного применения.

Требования настоящего стандарта являются обязательными.

2 Нормативные ссылки

В настоящем стандарте использованы ссылки на следующие стандарты:

ГОСТ 2789—73 Шероховатость поверхности. Параметры, характеристики и обозначения

ГОСТ 8032-84 Предпочтительные числа и ряды предпочтительных чисел

3 Конусность

Конус шлифов должен быть таким, чтобы приращение диаметра соответствовало десяти приращениям осевой длины с допуском ±0,006 на приращение диаметра, т. е. конус (1,00±0,006)/10.

П р и м е ч а н и е — Современное производство в основном использует более жесткие допуски, чем указанные выше, но из-за отсутствия экспериментальных данных невозможно уменьшить установленную величину.

4 Наибольший диаметр шлифа

Наибольший диаметр шлифа выбирают из ряда: 5,0; 7,5; 10,0; 12,5; 14,5; 18,8; 21,5; 24,0; 29,2; 34,5; 40,0; 45,0; 50,0; 60,0; 71,0; 85,0; 100,0 мм.

5 Длина пришлифованного участка

Длину пришлифованного участка (1) в миллиметрах рассчитывают по формуле

$$l = K \sqrt{d}$$

где К - константа (постоянная величина):

d — наибольший диаметр шлифа, мм.

Вычисленную длину округляют до целого числа.

Четыре ряда шлифов, внесенных в таблицу 1, получены при использовании значений 2, 4, 6, 8 константы K.

Ряд K_6 является предпочтительным.

Таблица I — Ряды шлифов

В миллиметрах

Наибодьший диаметр шлифа	Длина пришлифованноя зоны / для рядов							
	K,2	K4	K 6	K &				
5,0	_	9	13	18				
7,0	-	-11	16	22				
10,0	-	13	19	25				
12,5	_	14	21	28				
14,5	8*	15	23	30				
18,8	9	17	26	35				
21,5	-	19	28	37				
24.0	10	20	29	39				
29,2	11	22	32	43				
34,5	12	23	35	47				
40,0	13		38	_				
45,0	13	-	40	_				
50,0	14	_	42	_				
60,0	15*	-	46	_				
71.0	-	-	51	-				
85.0	18*	_	55	_				
100,0	_	_	60	_				

^{*} Размеры для шлифов, используемых для потребностей народного хозяйства.

6 Допуски на диаметр и длину

Диаметр и длина пришлифованной зоны должны быть такими, чтобы при наложении ее на плоскость размерной формы, показанной на рисунке 1, верхние и нижние границы пришлифованной поверхности совпадали с участками высоты h1 и h2 соответственно; значения d, l, h1 и h2 для каждого отдельного соединения берут из таблицы 2. В особых случаях пришлифованная поверхность может превышать эти значения при условии, что длина І всегда входит в эту пришлифованную часть.

Рисунок 1

Система калибров для определения соответствия шлифов данным пределам приведена в приложении А.

Таблида 2 — Размеры и допуски (см. раздел 6 и рисунок 1)

Номинальный лизметр шлифа	d	Ряд К2		Ряд К₄		Ряд К		Ряд К≤					
		1*	h1**	h ₂ ***	r*	h ₁ **	h2**	1*	h ₁ **	b2**	ı*	h ₁ **	h2**
5,0	5,1±0,008	_	_		8	2	2	12	2	2	17	2,5	2,0
7,5	7.6±0.008	-	-	-	10	2	2	15	2	2	21	2,5	2,0
10,0	10,1±0,008	-	- 1	-	12	2	2	18	2	2	24	2.5	2,0
12,5	12,6±0,010	-	-	-	13	2	2	20	2	2	27	2.5	2,0
14,5	14,6±0,010	7***	2,0***	2,0***	14	2	2	22	2	2	29	2.5	2,0
18,8	18.9±0.015	.8	2,5	2,0	16	2	2	25	2	2	34	2.5	2,0
21,5	21,6±0.015	_	_	_	18	2	2	27	2	2	36	2,5	2,0
24,0	24,1±0,015	9	2,5	2,0	19	2	2	28	2	2	38	2,5	2,0
29.2	29,3±0,015	10	2,5	2,0	21	2	2	31	2	2	40	2,5	3,5
34,5	34,6±0,015	11	2,5	2,0	22	2	2	34	2	2	43	2.5	3,5
40,0	40,1±0,015	11	2,5	2,5	_	-	_	37	2	2	-	_	_
45,0	45,1±0,015	11	2,5	2,5	-	-	-	39	2	2	_	_	_
50,0	50,1±0,015	12	2,5	2,5	-	-	-	41	2	3	_		-
60,0	60,1±0,015	12***	2.5***	2,5***	-	-	-	45	2	3	-	-	-
71,0	71,1±0,020	-	_	-	-	-	-	50	2	3	-	-	_
85,0	85,1±0,020	13***	2,5***	2,5***	-	-	_	54	2	3	-	-	-
0,001	100,0±0,020	-	_	-	_	_	_	59	2	3	_	_	-

Допуск на 1 — в пределах ±0,015 мм.

39

^{**} Допуск на h_1 и h_2 — в пределах ± 0.010 мм. *** Размеры для калибров, используемых для потребностей народного хозяйства.

7 Окончательная обработка поверхности

Параметр шероховатости Ra по ГОСТ 2789 шлифованной поверхности не должен превышать 1 мкм и предпочтительно должен быть менее 0,5 мкм.

8 Обозначение

Для удобства при ссылках на шлифы, отвечающие требованиям настоящего стандарта на герметичность, рекомендуется пользоваться обозначением, состоящим из следующих размеров, выраженных в миллиметрах:

наибольший диаметр шлифа: 7,5; 12,5; 14,5; 18,8; 21,5; 29,2; 34,5; округляют до 7; 12; 14; 19; 21; 29; 34 соответственно, и

значение пришлифованного участка отделяют наклонной или горизонтальной чертой.

Пример: 19/26 или $\frac{19}{26}$.

Пример условного обозначения шлифа конического (КШ) диаметром 18,8 мм и высотой 9 мм для потребностей народного хозяйства:

Шлиф КШ 19/9 ГОСТ 8682-93

4

ПРИЛОЖЕНИЕ А (рекомендуемое)

Система калибров для диаметра и длины конических шлифов

Предлагаемые калибры изготовляют из закаленной стали или другого соответствующего материала. Калибрами для муфт являются конические пробки со ступенькой на каждом конце, а калибрами для кернов служат конические кольца со ступенькой на каждом конце (см. рисунки 2 и 3).

Калибры для муфт

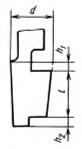


Рисунок 2

Калибры для кернов

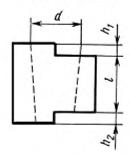
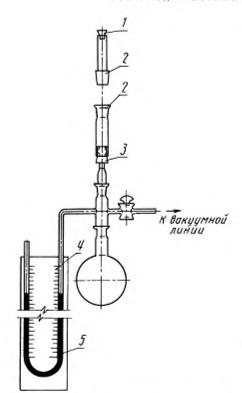


Рисунок 3

Конический полуугол каждого калибра равен $2^{\circ}51^{\circ}45^{\circ}\pm15^{\circ}$ (синус соответствующего угла равен 0,04994 \pm 0,00007).

Для каждого размера керна или муфты требуется отдельный калибр. Размеры калибров даны в таблице 2 настоящего стандарта. Когда муфта или керн подогнан под соответствующий калибр, они должны находиться в таком положении, чтобы верхние и нижние концы пришлифованного участка полностью лежали в пределах ступенек с высотой h_1 и h_2 соответственно.

В особых случаях пришлифованная поверхность может превышать внешний предел ступеньки на меньшем конце при условии, что она тоже доходит до внутреннего предела ступеньки на большом конце.


ПРИЛОЖЕНИЕ В (обязательное)

Испытание на герметичность конических шлифов

Испытание на герметичность проводят на сухих шлифах, наблюдая за скоростью повышения давления в предварительно разреженной системе, связанной с атмосферой через дающее утечку соединение.

Принципиальная схема установки общей емкостью системы приблизительно 1,5 дм³ показана на рисунке 4.

Установка для испытания конических шлифов на герметичность

I — резиновая пробка; 2 — испытуемый шлиф; 3 — резиновая пробка или трубка по размеру испытуемого соединения; 4 — шкала с диапазоном измерения давления приблизительно от 350 до 760 мм рт.ст. (45—100 кПа), с ценой деления І мм (0.133 кПа); 5 — ртутная U-образиая манометрическая трубка

Рисунок 4

Важно, чтобы все соединения в испытательной установке не давали утечки, и сама установка была проверена перед присоединением к испытуемому соединению. Утечка, обнаруженная во время проверки, должна быть незначительной по сравнению с утечкой, наблюдаемой во время испытания.

Степень чистоты пришлифованной поверхности — важный фактор, влияющий на скорость утечки. Составные элементы сначала протирают тканью, пропитанной соответствующим растворителем, например циклогексаном, затем опускают в этот растворитель и сушат. Частички, прилипшие к поверхности, удаляют щеткой из верблюжьего волоса.

Затем составные элементы помещают по очереди в установку, в разреженную систему, в вертикальном положении.

На соединение влияет только атмосферное давление. При показании ртутного манометра выше 380 мм (50, 54 кПа) запорный кран закрывают и через 1 мин снимают показания шкалы. Через 5 мин показания шкалы снимают повторно.

После уравнивания внутреннего и внешнего давлений составной элемент поворачивают по оси на 90° и затем испытание повторяют.

П р и м с ч а н и с — При испытании кернов и муфт, отвечающих этим геометрическим требованиям при условиях, указанных выше, увеличение давления в системе в течение 5 мин не превышает 10 мм рт.ст. (1.33 кПа) при общей емяюети 1,5 дм³. При общих емкостях, отличных от 1,5 дм³, соответствующее максимальное повышение давления обратно пропорционально емкости.