Предисловие

 РАЗРАБОТАН Межгосударственным техническим комитетом 104 «Полупроводниковая и редкометаллическая продукция. Особочистые металлы», Государственным институтом редких металлов (гиредмет)

ВНЕСЕН Госстандартом России

 ПРИНЯТ Межгосударственным Советом по стандартизации, метрологии и сертификации (протокод № 4--93 от 19 октября 1993 г.)

За принятие проголосовали:

Нанменоваеме государства	Наименование национального органа по стандартизация
Республика Армения Республика Беларусь Республика Казахстан Республика Молдова Российская Федерация Туркменистан Республика Узбекистан Украина	Армгооставдарт Бежставдарт Госставдарт Республики Казахстан Молговаставдарт Госставдарт России Туркменгоставдарт Уэгосставдарт Госставдарт Украины

- Постановлением Комитета Российской Федерации по стандартизации, метрологии и сертификации от 02.06.94 № 160 межгосударственный стандарт ГОСТ 13637.2—93 введен в действие непосредственно в качестве государственного стандарта Российской Федерации с 01.01.95
- 4. B3AMEH ΓOCT 13637.2-77

© ИПК Издательство стандартов, 1996

Настоящий стандарт не может быть полностью или частично воспроизведен, тиражирован и распространен в качестве официального издания на территории Российской Федерации без разрешения Госстандарта России

МЕЖГОСУДАРСТВЕННЫЯ СТАНДАРТ

ГАЛЛИЯ

Атомно-эмиссионный метод определения кадмия, свинца, цинка

LOCL

Gallium Atomic-emission method for the determination of cadmium, lead, zinc 13637.2-93

OKCTY 1709

Дата введения 01.01.95

Настоящий стандарт устанавливает прямой атомно-эмиссионный метод определения массовых долей примесей в галлии:

> кадмия свинца цинка

от 3-10-6 до 3-10-4 % от 3-10-6 до 3-10-4 % от3-10-6 до 1-10-2 %

Метод основан на измерении интенсивности линий элементов примесей в спектре, полученном при фракционном испарении примесей из галлия с добавкой порошкового графита из канада графитового анода в дуге постоянного тока.

Примеси в галлии определяют по градуировочным графикам, построенным в координатах: логарифм отношения интенсивности линии определяемого элемента к интенсивности фона $(\lg \frac{I_A}{I_{\Phi}})$ логарифм массовой доли определяемого элемента $(\lg C)$.

1. ОБЩИЕ ТРЕБОВАНИЯ

Общие требования к методам анализа и требования безопасности по ГОСТ 13637.2.

2. АППАРАТУРА, МАТЕРИАЛЫ И РЕАКТИВЫ

Спектрограф дифракционный типа ДФС-8 или аналогичного типа с решеткой 600 штр/мм или спектрограф средней дисперсии типа ИСП-28 или аналогичного типа с двухлинзовой системой освещения (конденсорная линза F-75, диаметром 25 мм).

Генератор дуговой типа ДГ-2 с дополнительным реостатом или аналогичного типа, приспособленный для поджига дуги постоям-

ного тока высокочастотным разрядом.

Выпрямитель 250-300 В, 30-50 А.

Микрофотометр типа МФ-2 или аналогичного типа-

Спектропроектор типа ПС-18 или аналогичного типа.

Весы лабораторные 1-го класса по ГОСТ 24104.

Весы торсионные типа ВТ до 500 мг или весы аналогичного типа.

Ступка и пестик из органического стекла.

Бокс из органического стекла.

Станок для заточки графитовых электродов-

Электроды графитовые фасонные для атомно-эмиссионного анализа ОСЧ-7—4, диаметром 6 мм, заточенные на конус; или графитовые электроды, выточенные из графитовых стержней ОСЧ-7—3, диаметром 6 мм, заточенные на конус, с углом при вершине 15 градусов и с площадкой диаметром 1,5 мм на конце, обожженные в дуге постоянного тока при 15 А в течение 15 с.

Электроды графитовые фасонные для атомно-эмиссионного анализа ОСЧ-7—4, диаметром 6 мм, с каналом глубиной 6 мм и диаметром 4 мм; или графитовые электроды гех же размеров, выточенные из графитовых стержней ОСЧ-7—3, обожженные в дуге постоянного тока при 15 А в течение 15 с.

Очистке обжигом подвергают каждую пару электродов непосредственно перед анализом (электрод, заточенный на конус-ка-

тод, электрод с каналом — анод).

Графит порошковый особой чистоты по ГОСТ 23463.

Галлий металлический, чистый по определяемым примесям, подготовленный, как указано в ГОСТ 13637.0.

Кадмия окись по ГОСТ 11120.

Свинца окись.

Цинка окись по ГОСТ 10262.

Пластники фотографические типа ПФС-04 и типа ПФС-02 размером 9×12 см или аналогичные, обеспечивающие нормальные почернения аналитических линий и близлежащего фона в спектре.

Проявитель, состоящий из двух растворов для фотопластинок, типа ПФС-04.

Раствор А:	
метол (4-метиламинофенолсульфат) по	2 г
ΓOCT 25664	
натрий сернистокислый безводный по	100 г
FOCT 195	
гидрохинон (парадиоксибензол) по ГОСТ	9 г
19627	
вода	до 500 см ³ ,
Раствор Б:	
калий углекислый по ГОСТ 10690	100 r
калий бромистый по ГОСТ 4160	3 r
вода	до 500 см ³ .

Перед применением проявителя смешивают равные объемы растворов A и Б и прибавляют 5 % по объему этилового спирта. Время проявления должно быть в полтора раза больше времени, указанного на упаковке фотопластинок Температура проявления (20±1) °C.

Проявитель для фотопластинок типа ПФС-02 готовят по ГОСТ 13637.1-

Фиксаж:

тносульфат натрий кристаллический по ГОСТ 244 300 г аммоний хлористый по ГОСТ 3773 20 г

вода до 1000 см³. Лампа инфракрасная ИКЗ—500 с регулятором напряжения типа РНО 250—0.5 или регулятором аналогичного типа

типа РНО 250—0,5 или регулятором аналогичного типа. Спирт этиловый ректификованный технический по ГОСТ 18300,

неперегнанный и дважды перегнанный в кварцевом приборе.

Государственный стандартный образец (ГСО) порошка графитового СПГ-27 Пр ГСО 2820—83, разбавленный порошковым графитом в два раза: в ступку из органического стекла помещают 2 г ГСО, добавляют 2 г порошкового графита и тщательно перетирают смесь с этиловым спиртом в течение 50 мин, а затем высушивают под инфракрасной лампой.

3. ПОДГОТОВКА К АНАЛИЗУ

31. Приготовление образцов сравнения (ОС)

3.1.1. Каждый образец сравнения готовят непосредственно перед фотографированием его спектра, помещая, как указано в п. 4.1, в канал графитового электрода 10 мг образца сравнения на порошковом графите (ОСГП) по п. 3.2 и 100 мг галлия, чистого по определяемым примесям В условнях данного метода в соответствии с соотношением масс смешиваемых веществ, массовая доля

примеси ОС (в расчете на массовую долю примеси в галлии) равна одной десятой от массовой доли той же примеси в ОСГП.

3.2 Приготовление образцов сравнения на по-

рошковом графите (ОСГП)

Готовят основной образец сравнения на порошковом графите (ООСГИ), содержащий по 1 % кадмия, свинца и цинка и 97 % углерода в расчете на содержание металла и углерода в смеси металлов и углерода, механически смешивая порошковый графит с окислами соответствующих металлов. Для этого навески массой 0,0114 г окиси кадмия, 0,0108 г окиси свинца, 0,0124 г окиси цинка и 0,9700 г порошкового графита помещают в ступку из органического стекла и тщательно перетирают смесь с этиловым спиртом в течение 50 мин, а затем высущивают под инфракрасной лампой.

Во избежание внесения загрязнений перетирание в ступке и высушивание под инфракрасной лампой ведут в боксе из органи-

ческого стекла.

ООСГП допускается также готовить, вводя определяемые эле-

менты в виде растворов (см. ГОСТ 136373).

ОСГП1—ОСГП8 готовят последовательным разбавлением ООСГП, а затем каждого последующего образца порошковым

графитом-

Массовая доля каждой из определяемых примесей в ОСГП1— ОСГП8 в (расчете на массовую долю металла в смеси металлов и углерода), вводимые в смесь навески порошкового графита и разбавляемого образца, смешиваемые для получения данного образца, приведены в табл. 1.

Таблица 1

		Масса навесок, г		
Обозначение образца	Массовая доля каждой на определяемых при- месей, %	норошкового графита	разбавляемого образ- ца (обозначение)	
ОСГП	1-10-1	1,800	0.200 (OOCTII)	
OCITIZ	3-10-2	1:400	0,600 (OCLUI)	
OCLU3	1,105-7	E333	0.667 (OCTTI2)	
ОСГП4	3.10-3	1.400	0,600 (OCFH3)	
OCTH5	1-10-3	1.333	0.667 (OCT114)	
ОСГП6	3-10-4	1,400	(0,600 (OCTII5)	
OCTI17	1-10-4	1,333	0.667 (OCT[16)	
ОСГП8	3-10-5	1,400	0.600 (OCTH7)	

Приведенные в табл. 1 навески порошкового графита и разбавляемого образца помещают в ступку из органического стекла, тщательно перетирают с этиловым спиртом в течение 30 мин и высушивают под инфракрасной лампой. Для ОСГП4—ОСГП8 употребляют спирт, дважды перегнанный в кварцевом приборе.

Перетирание в ступке и высушивание под инфракрасной лам-

пой ведут в боксе из органического стекла.

При определении цинка от 3-10-4 до 1-10-2 % используют ОСГП1—ОСГП4. При остальных определениях используют ОСГП4—ОСГП8. Массовая доля примесей в приготовляемых из них образцах сравнения ОС (в процентах, в расчете на массовую долю примеси в галлии) приведена в табл. 2.

Таблица 2

Обозначение образца	Обозначение приготовляе мого образца сравнения (ОС)	Массовая доля каждой из оп- ределяемых примесей в обряз- цах сразнения (ОС), %
OCLBI	OC1	4-10-2
OGFT12	OC2	3-10-3
OCLII3	003	1-10-3
ОСГП4	OC4	3-10-4
OCT II5	OC5	1-10-4
осгпе	OC6	3,10-6
OCTI17	OC7	1-10-5
OCLU8	OC8	3-110

Образцы сравнения на порошковом графите хранят в плотно закрытых банках из органического стекла.

4. ПРОВЕДЕНИЕ АНАЛИЗА

41. При съемке спектра анализируемой пробы в канал графитового электрода днаметром 4 мм и глубиной 6 мм помещают последовательно 10 мг порошкового графита и 100 мг анализируемой пробы галлия кусочками размером не более 3 мм в поперечнике (во избежание внесения загрязнений пробу галлия измельчают, не вынимая закристаллизованную пластину из полиэтиленового пакета).

При съемке спектра каждого образца сравнения в канал графитового электрода диаметром 4 мм и глубиной 6 мм помещают последовательно 10 мг образца сравнения на порошковом графите и 100 мг галлия, чистого по определяемым примесям, кусочками размером не более 3 мм в поперечнике.

Нижний электрод с анализируемой пробой галлия (или с образцом сравнения) служит анодом, верхний, заточенный на конус — катодом. Между электродами зажигают дугу постоянного тока силой 15 А и фотографируют спектр с экспозицией 40 с. Во время экспозиции расстояние между электродами поддерживают равным 3 мм. Спектры в области длин воли 200—300 нм фотографируют спектрографом типа ДФС-8 с решеткой 600 штр/мм, работающим в первом порядке, с промежуточной диафрагмой 5 мм, или спектрографом средней дисперсии типа ИСП-28. с промежуточной диафрагмой 5 мм. Ширина щели спектрографа в обоих случаях 15 мкм. В кассету заряжают пластинку типа ПФС-04 (при определении цинка от 3-10-4 до 1-10-2 % спектр фотографируют на фотопластинках типа ПФС-02).

Спектр каждой пробы и спектр каждого из образцов сравнения регистрируют на фотопластинке по три раза Кроме того, на ту же фотопластинку трижды фотографируют спектр основы образцов сравнения; для этого в канал графитового электрода диаметром 4 мм и глубиной 6 мм каждый раз помещают 10 мг порошкового графита и 100 мг галлия, чистого по определяемым при-

месям.

Экспонированную фотопластинку проявляют, промывают водой, фиксируют, промывают в проточной воде в течение 15 мин и сушат.

5. ОБРАБОТКА РЕЗУЛЬТАТОВ

5.1. В каждой спектрограмме фотометрируют почернения аналитической линии определяемого элемента S_x (см. табл. 3) и

Таблица 3

Определяеный элемент	Длина волим аналитичес- кой линии, им	Примечания
Кадмий Свичец Цинк	228,81 283,31 213,85	
Цинк	32/5,2/3	Применяется для массо- вой доли цинка от 3-10-4 до 1-10-2 %

близлежащего фона S_{Φ} (минимальное почернение рядом с аналитической линией определяемого элемента с любой стороны, но с одной и той же стороны во всех спектрах, снятых на одной пластинке) и вычисляют разность почернений $\Delta S = S_{\pi} - S_{\Phi}$.

По трем параллельным значениям ΔS_1 , ΔS_2 , ΔS_3 , полученным

по трем спектрограммам, снятым для каждого образца, находят среднее арифметнческое результатов $\overline{\Delta S}$. По полученным средним значениям переходят к соответствующим значениям логарифмов относительной интенсивности $\lg \frac{I_s}{I_\phi}$, используя таблицу, приведенную в приложении ГОСТ 13637-1

- 5.2. Если аналитическая линия определяемого элемента в спектрах основы образцов сравнения отсутствует, то используя значения $\lg C$ для образцов сравнения (см. табл. 2) и полученные значения $\lg \frac{I_a}{I_{\Phi}}$, строят градунровочный график в координатах ($\lg C$, $\lg \frac{I_a}{I_{\Phi}}$). Массовую долю примесей в анализируемой пробе находят по этому графику по значению $\lg \frac{I_a}{I_{\Phi}}$ для пробы.
- 5.3. Допускаемые расхождения результатов трех параллельных отношений (отношение наибольшего к наименьшему), а также двух результатов анализа (отношение большего к меньшему) приведены в табл. 4.

Таблица 4

	таомица з	
Определяемая примесь	Массовая доля, %	Допускаемое расхождение
Қадмий	3-10-6 1-10-5 B-10-4	3,0 2,5 2,5
Свинец	3-10-5 1-10-4 0-10-4	3,0 2,5 2,5
Цинк (по линия 213,95 им)	3·10-6 4·10-6 3·10-4	4.0 3.0 3.0
Цник (по линии 328,23 нм)	3+10-4 1-10-3 4+10-2	8,0 8,0 8,0

Допускаемые расхождения для промежуточных массовых долей рассчитывают методом линейной интерполяции.

5.4. Если в спектрах основы образцов сравнения имеется слабая линия определяемого элемента, то при построении градуировочного графика в координатах ($\lg C$, $\lg \frac{I_n}{I_n}$) вносят поправку на

массовую долю определяемого элемента в основе образцов сравнения. Внесение поправки допустимо лишь при условии, что мас-совая доля определяемого элемента в основе образцов сравнения совая доля определяемого элемента в основе образцов сравнения не превышает установленного для метода нижнего предела интер-вала определяемых массовых долей. Если это условие не выпол-няется, необходимо подобрать для основы образцов сравнения более чистый по определяемым примесям металлический галлий или порошковый графит и выполнить тщательную поэтапную очи-стку помещения, рабочих мест, применяемой аппаратуры, реактивов и материалов

Получив откорректированный градуировочный график, рассчитывают массовые доли примесей в галлии, как указано в пп. 5.2,

53.

53.
5.5. Контроль правильности анализа проводят по ГОСТ 13637.0 или при налични государственного стандартного образца (ГСО) порошка графитового СПГ-27 Пр ГСО 2820—83, следующим образом: в каналы трех графитовых электродов днаметром 4 мм и глубиной 6 мм вводят по 100 мг металлического галлия, чистого по определяемым примесям, и по 10 мг разбавленного ГСО. Анализ полученной смеси проводят одновременно с анализом проб по пп 4 и 5. Для каждой примеси вычисляют отношение большего к меныпему из значений двух величин — результата анализа полученной смеси разбавленного ГСО и 0,5 аттестованного значения массовой доли примеси в ГСО. Результаты анализа проб считают правильными с доверительной вероятностью Р = 0,95, если это отношение Y < D^{0,7}, где D — регламентированное в п. 5 3 допускаемое расхождение двух результатов анализа пробы галлия с массовой долей примеси, равной результату анализа смеси галлия с разбавленым ГСО. си галлия с разбавленным ГСО.

информационные данные

ССЫЛОЧНЫЕ НОРМАТИВНО-ТЕХНИЧЕСКИЕ ДОКУМЕНТЫ

Обозначение НТД, на который дана ссылка	Номер пункта, раздела
FOOT 195-77	Разд 2
FOCT 244-76	Разд. 2
FOCT 3773-72	Paga 2
FOCT 4160-74	Разд. 2
ΓOCT 10262—73	Разд. 2
FOCT 10690-73	Разд 2
Г9СТ 1/1/20—75	Разд 2
FOCT 136370-93	Разд. 1, 2, п. 5.5
FOCT 13637.1—93	5.1
FOCT 136373—93	3.2
FOCT 18300-87	Разд. 2
FOCT 19627-74	Разд. 2
ГОСТ 23463-79	Разд. 2
ГОСТ 24104-88	Разд. 2
FOCT 25664—83	Разд. 2