ПОДШИПНИКИ СКОЛЬЖЕНИЯ. СВЕРТНЫЕ ВТУЛКИ

КОНТРОЛЬ НАРУЖНОГО ДИАМЕТРА

Издание официальное

Предисловие

- 1 РАЗРАБОТАН Российской Федерацией ВНЕСЕН Госстандартом России
- 2 ПРИНЯТ Межгосударственным Советом по стандартизации, метрологии и сертификации (Протокол № 10 от 4 октября 1996 г.)

За принятие проголосовали:

Наименование государства	Наименование национального органа по стандартизации	
Азербайджанская Республика	Азгосстандарт	
Республика Армения	Армгосстандарт	
Республика Белоруссия	Госстандарт Белоруссии	
Республика Казахстан	Госстандарт Республики Казахстан	
Киргизская Республика	Киргизстандарт	
Республика Молдова	Молдовастандарт	
Российская Федерация	Госстандарт России	
Республика Таджикистан	Таджикгосстандарт	
Туркменистан	Главная государственная инспек- ция Туркменистана	
Украина	Госстандарт Украины	

Настоящий стандарт представляет собой полный аутентичный текст международного стандарта ИСО 12307—1—93 «Подщипники скольжения. Свертные втулки. Контроль наружного диаметра»

3 Постановлением Государственного комитета Российской Федерации по стандартизации, метрологии и сертификации от 28 мая 1997 г. № 197 межгосударственный стандарт ГОСТ ИСО 12307—1—96 введен в действие непосредственно в качестве государственного стандарта Российской Федерации с 1 января 1998 г.

4 ВВЕДЕН ВПЕРВЫЕ

© ИПК Издательство стандартов, 1997

Настоящий стандарт не может быть полностью или частично воспроизведен, тиражирован и распространен в качестве официального издания на территории Российской Федерации без разрешения Госстандарта России

Содержание

1 Область применения
2 Нормативные ссылки
3 Определения
4 Обозначения
5 Цель контроля
6 Методы контроля
7 Выбор метода контроля
8 Метод контроля — по ГОСТ 27672—1: Наружный диа- метр D
9 Метод контроля — по ГОСТ 27672—2: Наружный диа- метр D ₀
 Поверка измерительного оборудования в отношении требований к точности
11 Технические условия на рисунках свертных втулок
12 Технические условия для поверки средств контроля Приложение А Определение погрешности измерения
Приложение Б Определение сравнимости

МЕЖГОСУДАРСТВЕННЫЙ СТАНДАРТ

ПОДШИПНИКИ СКОЛЬЖЕНИЯ. СВЕРТНЫЕ ВТУДКИ

Контроль наружного диаметра

Plain bearings. Wrapped bushes. Checking the outside diameter

Дата введения 1998-01-01

1 ОБЛАСТЬ ПРИМЕНЕНИЯ

Настоящий стандарт распространяется на свертные втулки по ГОСТ 27672 и устанавливает методы контроля наружного диаметра свертных втулок и требования к используемому измерительному оборудованию в соответствии с ГОСТ ИСО 12301.

Контроль толщины стенки втулок - по ГОСТ ИСО 12306.

Свертные втулки являются гибкими и в свободном состоянии не соответствуют цилиндрическому профилю. Поэтому наружный диаметр свертных втулок измеряют при фиксированной нагрузке с помощью специального измерительного оборудования.

Требования настоящего стандарта являются обязательными.

2 НОРМАТИВНЫЕ ССЫЛКИ

В настоящем стандарте использованы ссылки на следующие стандарты:

ГОСТ 2789—73 Шероховатость поверхности. Параметры и характеристики

ГОСТ 24853—81 (ИСО/Р 1938—71) Калибры гладкие для размеров до 500 мм. Допуски

Издание официальное

2-1811

ГОСТ 25346—89 (ИСО 286—88) Основные нормы взаимозаменяемости. ЕСДП. Общие положения, ряды допусков и основных отклонений

ГОСТ 27672—88 (ИСО 3547—76) Подшипники скольжения. Втулки свертные. Размеры, допуски и методы контроля

ГОСТ ИСО 12301—95 Подшипники скольжения. Методы контроля геометрических показателей и показателей качества материалов

ГОСТ ИСО 12306—96 Подшипники скольжения. Измерение толщины стенок тонкостенных вкладышей и тонкостенных сплошных и свертных втулок

3 ОПРЕДЕЛЕНИЯ

В настоящем стандарте применяют следующий термин. Наружный диаметр — диаметр D_0 свертной втулки (рисунок 1).

П р и м е ч а н и е — Диаметр свертной втулки непосредственно не измеряют вследствие гибкого характера детали.

Рисунок 1 — Наружный диаметр свертной втулки

4 ОБОЗНАЧЕНИЯ

В настоящем стандарте применяют обозначения и единицы измерения в соответствии с таблицей 1.

Т а б л и ц а 1 — Обозначения и единицы измерения

Обозначение	Параметр	Единицы измерения СИ
a _e	Расстояние между полувкладышами конт- рольного блока	ММ
В	Ширина втулки	мм
b., 1	Ширина контрольного блока	MM
b	Ширина калибра-пробки $(b_{c,2} = b_{c,1} + 5)$	MM
D. 2	Наружный диаметр свертной втулки	MM
d _{e. 1}	Диаметр отверстия контрольного блока (со- гласно ГОСТ 27672)	ММ
$d_{j,2}$	Диаметр калибра-пробки	MM
$d_{g,x,1}$	Фактический диаметр контрольного блока	MM
d	Фактический диаметр калибра-пробки	MM
F.	Контрольная нагрузка	H
d, 1, 2 F, Č	Корректирующий размер	MM
n	Число образцов	
Pre	Доверительный уровень на обеих сторонах	96
n Pro R _s	Шероховатость поверхности (согласно ГОСТ 2789)	МКМ
σ	Среднее квадратическое отклонение	MM
σ _{Δx} T	Среднее квадратическое отклонение Δx	ММ
T	Допуск на диаметр D_{o}	MM
t_1, \ldots, t_6	Допуски формы и расположения	ММ
u	Погрещность измерения при доверительной вероятности 95 %	ММ
$u_{\rm g}$	Предельная погрешность измерительного оборудования	мм
E_{red}	Упругое сжатие наружного диаметра при кон- трольной нагрузке F _c	ММ
Δχ	Разность между первым и вторым измере- ниями	ММ
$\overline{\Delta x}$	Среднее арифметическое Δx	MM

5 ЦЕЛЬ КОНТРОЛЯ

Гарантировать заданный натяг при монтаже (неподвижную посадку) свернутых втулок в отверстии корпуса.

6 МЕТОДЫ КОНТРОЛЯ

6.1 Метод контроля 1 — по ГОСТ 27672: Измерение наружного

диаметра D_{\perp} .

Наружный диаметр свертной втулки контролируют в измерительном оборудовании (рисунок 2) с помощью контрольного блока, состоящего из верхнего и нижнего полувкладышей (рисунки 3 и 4), и калибров-пробок (рисунки 5 и 6) при определенной контрольной нагрузке F_c.

Наружный диаметр измеряют косвенно, как разность величин а

 (Δa_c) .

Контрольную нагрузку вычисляют таким образом, чтобы наружный диаметр изменялся упруго и не имел остаточной деформации.

6.2 Метод контроля 2 — по ГОСТ 27672: Оценка наружного диаметра D₋.

Наружный диаметр свертной втулки контролируют в «проходных» и «непроходных» кольцевых калибрах.

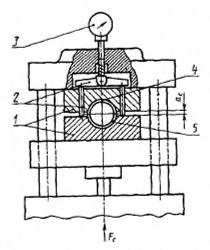
Результат контроля носит атрибутный характер, т. е. «проход» или «непроход».

7 ВЫБОР МЕТОДА КОНТРОЛЯ

Свертные втулки можно контролировать любым методом по согласованию между изготовителем и заказчиком.

Метод 1 является точным методом, основанным на использовании комплексной оснастки, а метод 2 — атрибутным методом, связанным с применением более простой оснастки. Метод 1 предпочтителен для втулок с наружным диаметром более 10 мм.

8 МЕТОД КОНТРОЛЯ — по ГОСТ 27672—1: НАРУЖНЫЙ ДИАМЕТР D_a


8.1 Измерительное оборудование

Типичное измерительное оборудование для измерения D_{\circ} свертной втулки (рисунок 2) состоит из следующих основых элементов и узлов:

базовой плиты, используемой в качестве фиксирующего и направляющего устройства для разъемных контрольных блоков;

 приводного двигателя для генерирования контрольной нагрузки;

- верхней плиты;

I — контрольный блок; 2 — система передачи величины измерения; 3 — измерительный прибор с круговой шкалой; 4 — разъем; 5 — втулка

Примечания

- 1 Показано гидравлическое оборудование, однако можно использовать оборудование с пневматическим или механическим приводом. Усилие $F_{\rm c}$ может быть приложено как сверху, так и снизу.
- Разъем втулки должен быть расположен в вертикальном направлении и направлен к верхнему полувкладышу контрольного блока.

Рисунок 2 — Типичное измерительное оборудование для измерения наружного диаметра

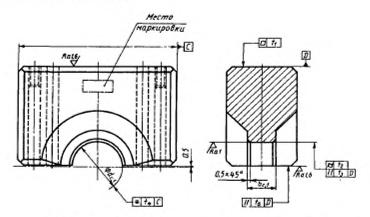


Рисунок 3 — Верхний полувкладыш контрольного блока

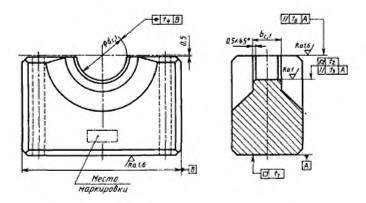


Рисунок 4 — Нижний полувкладыш контрольного блока

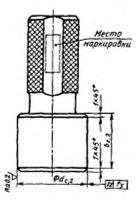


Рисунок 5 — Калибр-пробка сплошная для $d_{\rm c,2} \le 80$ мм

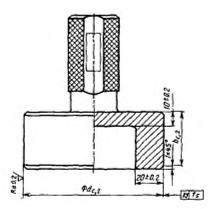


Рисунок 6 — Калибр-пробка с глухим отверстием для $|d_{c,2}>$ 80 мм

- системы передачи измерения расстояния a_e измерительной головке (рисунок 2);
 - измерительной головки с индикаторным прибором;
 - контрольного блока (рисунок 3 и 4);
 - калибра-пробки (рисунки 5 и 6);
 - стола коррекции сжимающей нагрузки.
- 8.2 Требования к измерительному оборудованию

Требования к измерительному оборудованию для измерения наружного диаметра свертной втулки приведены на рисунках 3—6.

Примечание

$$\begin{array}{l} d_{c,1} = D_{o,\,\,\mathrm{max}} - E_{\mathrm{col}}; \\ E_{\mathrm{red}} = \,\,\mathrm{ynpyroe}\,\,\mathrm{cx}$$
 сжатие — по ГОСТ 27672;
$$E_{\mathrm{red}} = 0,006\,\,\mathrm{mm}\,\,\mathrm{для}\,\,D_{o} < 12\,\,\mathrm{mm}; \\ E_{\mathrm{red}} = 0,012\,\,\mathrm{mm}\,\,\mathrm{для}\,\,D_{o} \ge 12\,\,\mathrm{mm}; \\ b_{o,1} \ge B + 2; \\ b_{o,2} = b_{c,1} + 5. \end{array} \tag{2}$$

Полувкладыши контрольного блока (рисунки 3 и 4) и калибры-

пробки (рисунки 5 и 6) должны быть изготовлены из закаленной (60 — 64 HRC,) и нестареющей стали.

Полувкладыши контрольного блока должны иметь жесткую конструкцию, чтобы усилия, возникающие в процессе измерения втулок, вызывали только незначительные деформации.

Отверстие полувкладышей контрольного блока и контрольная поверхность калибра-пробки не подлежат хромированию.

Контрольный блок и калибр-пробку следует маркировать своим номинальным диаметром $d_{c,1}$.

Калибр-пробка может иметь дополнительную маркировку, касающуюся корректирующего размера ${\it C}$.

Предельная нагрузка, предельные отклонения, скорость приложения нагрузки и температура должны соответствовать таблице 2.

Таблица2 — Контрольная нагрузка, предельные отклонения, скорость приложения нагрузки, температура

Контрольная нагрузка F_{ϵ} , Н	Допустимые предельные отклонения, %	Максимальная скорость приложе- ния контрольной нагрузки F_c без удара, мм/с	Температура контроля", "С
F _c ≤ 2000	c ≤ 2000 ±1,25		
2000 < F _c ≤ 5000	±1,00	1 10 10	20 — 25
5000 < F _e ≤ 10000	±0,75	10 ± 2	20 25
10000 < F _c ≤ 50000	±0,50		

Разность в температуре между контрольным блоком и измеряемой втулкой не должна превышать 1 °C

Отклонения для измерительного прибора с круговой шкалой и электронного измерительного прибора должны соответствовать таблице 3.

Таблица 3 — Отклонения для измерительного прибора с круговой шкалой и электронного измерительного прибора

В миллиметрах

	Цена деле	ния шкалы	Общее отклонение*9		
Наружный диаметр <i>D</i> ₀	Прибор с круговой шкалой	Электронный прибор	Прибор с круговой шкалой	Электронный прибор, % диапазона измерения	
$D_o \le 80$	0,001	0,001	0,0012	0,5	
D ₀ > 80	0,005	0,001	0,0060	0,3	

 ⁴⁾ Индикация максимальной измеряемой величины (полная шкала ±500 мкм)

Допуски на изготовление для верхней и нижней поверхностей зажима измерительного оборудования должны соответствовать таблице 4.

Т а б л и ц а 4 — Допуски на изготовление для верхней и нижней поверхностей зажима измерительного оборудования

Допуск на параллель- ность между поверхнос- тями зажима, мм	Допуск на плоско- стность, мм	Шероховатость поверх- ности <i>Ra</i> , мкм
0,01/100	0,005	0,2

Допуски на изготовление и пределы износа для контрольного блока и калибра-пробки должны соответствовать таблице 5.

Таблица 5 — Допуски на изготовление и пределы износа для контрольного блока и калибра-пробки

Наружный	Пределы допусков на	d _c ;	d _{c 1}	4	4	5	4	4,	4
диаметр D_{o} , мм	изготовление или пределы износа	unu .							
	Изготовление	-0,003	+0,003	0,002	0,002	0,003	0,05	0,002	0,03
D _o ≤ 80	Износ	-0,005	+0,005	0,004	0,004	0,005	0,05	0,004	0,05
	Изготовление	-0,005	+0,005	0,003	0,003	0,004	0,05	0,003	0,03
≤ 150*	Износ	-0,007	+0,007	0,005	0,005	0,006	0,05	0,005	0,05

 $8.3\,\mathrm{O}\,\mathrm{п}\,\mathrm{p}\,\mathrm{e}\,\mathrm{д}\,\mathrm{e}\,\mathrm{n}\,\mathrm{e}\,\mathrm{t}\,\mathrm{u}\,\mathrm{e}$ корректирующего размера C

Корректирующий размер С рассчитывают по формуле

$$C = \frac{\pi}{2} (d_{c,a,l} - d_{c,l}) - (d_{c,a,l} - d_{c,a,2}).$$
 (4)

Пример:
$$d_{c,1} = 20,050$$
 мм; $d_{c,3,1} = 20,052$ мм; $d_{c,3,2} = 20,048$ мм,

следовательно

$$C = (20,052 - 20,050) \frac{\pi}{2} - (20,052 - 20,048);$$

C = -0.001 MM.

При отклонении фактического диаметра $d_{c,a,l}$ контрольного блока от диаметра $d_{c,l}$ контрольные блоки можно использовать при условии, если отклонение $|d_{c,a,l} - d_{c,l}| \le 0.03$ мм.

вии, если отклонение $|d_{c,a,1}-d_{c,1}| \le 0,03$ мм. На допуски калибров-пробок, согласно таблице 5, это не влияет.

На допуски калибров-пробок, согласно та Пример:
$$d_{c,1}=20,062$$
 мм; $d_{c,a,1}=20,052$ мм; $d_{c,a,2}=20,048$ мм; $|d_{c,a,2}=20,048$ мм; $|d_{c,a,2}-d_{c,1}|=0,010<0,030$ мм, следовательно

$$C = (20,052 - 20,062) \frac{\pi}{2} - (20,052 - 20,048);$$

C = -0.020 мм.

8.4 Методика контроля

Для идеального расположения полувкладышей контрольного блока относительно друг друга нижний полувкладыш вводят первым и фиксируют центрально относительно оборудования для измерения втулки. Затем запрессовывают свободно смонтированный верхний полувкладыш при заданной нагрузке относительно нижнего полувкладыша с помощью калибра-пробки. Устройство фиксируют в таком состоянии, регулируют на корректирующий размер С согласно 8.3 и снимают показание Δa. Затем втулки вставляют центрально.

8.5 Погрешности измерения

- 8.5.1 Погрешности, обусловленные измерительным оборудованием:
- верхние и нижние полувкладыши контрольного блока расположены нелинейно относительно друг друга;
- полувкладыши контрольного блока неправильно зафиксированы в измерительном оборудовании;
- разболтанность (большой зазор, повреждение трансмиссионной системы (рисунок 2), измерительного прибора с круговой шкалой, измерительной головки и т. д.);

- повреждение или износ контрольного блока или калибра-пробки;
- ширина отверстия контрольного блока b_{с.} меньше ширины втул-
 - контрольная нагрузка F_e не соответствует расчетной нагрузке.
 - 8.5.2 Погрешности, обусловленные втулкой:
- смазка, загрязнения, повреждения, заусенцы и т. д. на наружном диаметре (посадочной поверхности) и в разъеме.
 - 8.5.3 Погрешности, обусловленные человеческими факторами:
 - неправильная установка контрольной нагрузки;
- втулку измеряют эксцентрично к ширине отверстия контрольного блока $b_{c,i}$;
- разъем втулки, вставленной в контрольный блок, направлен невертикально к верхнему полувкладышу контрольного блока;
- неправильное считывание при измерении фактических диаметров d_{с. в. 1} и d_{с. в. 2};
 - неправильный расчет и/или установка коррекции;
 - неправильный пересчет наружного диаметра.
- 8.6 Общие основы при измерении наружного диаметра втулки
 - Контрольную нагрузку F_e рассчитывают согласно ГОСТ 27672.
- 8.6.2 Диаметр $d_{c,1}$ контрольного блока рассчитывают по формуле (1).
 - 8.6.3 Определяют верхнюю и нижнюю предельные величины Δа;:
 - верхняя предельная величина равна 0;
- нижняя предельная величина равна $T(\frac{\pi}{2})$ (округляют до 0,005 мм), где $T=D_{\text{o,max}}-D_{\text{o,min}}$. 8.6.4 Корректирующий размер C определяют согласно 8.3.
- 8.6.5 Соотношение показания индикатора Δa_{μ} и измеряемого наружного диаметра втулки рассчитывают по формуле

$$D_{o} = d_{c,1} + E_{red} + \Delta a_{c}(\frac{2}{\pi}).$$
 (5)

9 МЕТОД КОНТРОЛЯ — по ГОСТ 27672—2: НАРУЖНЫЙ ДИАМЕТР D.

9.1 Контрольно-измерительные средства

Контроль проводят с помощью двух кольцевых калибров: калибра, соответствующего максимальной предельной величине (проходной кольцевой калибр), и калибра, соответствующего минимальной предельной величине (непроходной кольцевой калибр) наружного диаметра $D_{\rm c}$ свертной втулки.

Кольцевые калибры должны иметь направляющую фаску с малым углом (рисунок 7) или радиусом для исключения повреждения и отказа во время проведения контроля.

9.2 Требования к измерительным средствам

Кольцевые калибры должны быть изготовлены из закаленной (60—64 HRC₂) и нестареющей стали.

Ширина кольцевого калибра (без фаски) должна быть не меньше максимальной ширины втулки.

Предельный внутренний диаметр проходного и непроходного кольцевых калибров должен соответствовать JS3 согласно ГОСТ 25346.

Износ кольцевых калибров не должен превышать Y_i (эталонный предел износа) для рабочих деталей IT 8 согласно ГОСТ 24853.

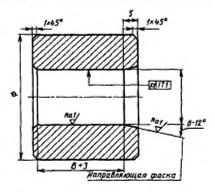


Рисунок 7 — Кольцевой калибр.

9.3 Методика контроля

Контролируемую втулку вводят в калибры со стороны, имеющей направляющую фаску.

Втулка должна входить в проходной кольцевой калибр от руки (максимальное усилие 250 H) и не входить в непроходной кольцевой калибр (при том же усилии).

Достоверность контроля уменьшается, если втулка не является круглой или зазор не закрывается, тогда предпочтительным является контроль по методу 1.

9.4 Погрешности измерения

К наиболее часто встречающимся погрешностям относятся:

- повреждение или износ кольцевых калибров;
- отсутствие на кольцевых калибрах направляющей фаски;
- втулки вводят в кольцевые калибры в наклонном положении;
- втулки запрессовываются в кольцевые калибры путем приложения значительного усилия;
 - ширина кольцевых калибров меньше ширины втулки;
- отклонение от округлости и открытый зазор втулки в свободном состоянии;
- наличие грязи, консистентной смазки, заусенцев, повреждений и деформирования наружного диаметра (посадочной поверхности) и в разъеме.

10 ПОВЕРКА ИЗМЕРИТЕЛЬНОГО ОБОРУДОВАНИЯ В ОТНОШЕНИИ ТРЕБОВАНИЙ К ТОЧНОСТИ

10.1 Общие требования

Качество измерительного оборудования должно быть таким, чтобы случайная составляющая погрешности измерения u одного отдельно взятого результата измерения, определенного с помощью измерительного инструмента в отношении типичного объекта (втулки), была меньше предельного значения u_E , приведенного в таблице 6.

Таблица 6 — Предельные погрешности для измерительного оборудования

Наружный диаметр D_o .	u _E	į Δx į _g
D _a ≤ 80	0,008	0,003
$80 < D_o \le 150^{*}$	0,010	0,005

Погрешность измерения определяют согласно 10.2.

Качество измерительного оборудования должно быть таким, чтобы разность $|\overline{\Delta x}|$ между средними значениями двух серий измерений, выполненных согласно 10.3 для двух различных периодов времени, или, из-за применяемого измерительного инструмента, в двух аналогичных или различных типах измерительного оборудования не превышала предельного значения $|\overline{\Delta x}|_{\rm E}$, приведенного в таблице 6.

10.2 Определение погрешности измерения и (приложение A)

Измеряют 24 втулки дважды (после каждого ввода втулки) при одинаковых условиях (тот же экспериментатор, то же измерительное оборудование, то же место контроля и те же интервалы времени).

По разности Δx между двумя измерениями, определенными с соответствующими знаками, вычисляют (с помощью ЭВМ) среднее квадратическое отклонение σ по формуле

$$\sigma_{\Delta x} = \sqrt{\left(\frac{1}{24-1}\right)} \sum_{i=1}^{24} (\Delta x_i - \overline{\Delta x})^2. \quad (6)$$

При условии, что значения определяют из нормального распределения и что σ рассматривают как несмещенную величину для среднего квадратического отклонения σ партии, случайную составляющую погрешности измерения u для отдельного результата, полученного с помощью данного измерительного инструмента, рассчитывают (для доверительного уровня 95 %) по формуле

$$u = \frac{4\sigma_{\Delta x}}{\sqrt{2}}.$$
 (7)

Значение и сравнивают с предельным значением ие.

10.3 Определение сравнимости | Δx | (приложение Б).

Измеряют 24 втулки на двух подобных или различных типах оборудования различными экспериментаторами в различных местах и в различное контрольное время.

Измеряемыми величинами для двух условий 1 и 2 являются $x_{1,1}$ и $x_{2,1}$

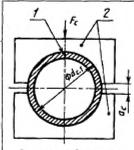
Рассчитывают средние величины по формулам:

$$\overline{x_1} = \left(\frac{1}{24}\right) \sum_{i=1}^{24} x_{1,i};$$
 (8)

$$\overline{x}_2 = \left(\frac{1}{24}\right) \sum_{i=1}^{24} x_{2,i}$$
 (9)

Рассчитывают модуль разности между средними величинами двух серий измерения по формуле

$$|\widetilde{\Delta x}| = |\widetilde{x}_1 - \widetilde{x}_2|.$$
 (10)


Значение $|\overline{\Delta x}|$ сравнивают с предельным значением $|\overline{\Delta x}|_{E'}$

11 ТЕХНИЧЕСКИЕ УСЛОВИЯ НА РИСУНКАХ СВЕРТНЫХ ВТУЛОК

Предпочтительный способ выбора метода контроля указывают на рисунках втулок в соответствии с 11.1 и 11.2.

11.1 Метод контроля 1

Пример обозначения на рисунке втулки

 I — разъем; 2 — контрольный блок

Метод контроля - по ГОСТ 27672-1

Диаметр отверстия контрольного блока $d_{\epsilon_{-1}}$ и диаметр калибра-пробки $d_{\epsilon_{-2}}$ равны 34,072 мм.

Контрольная нагрузка F_c равна 9500 Н. Предельные величины Δa_c равны 0 и 0,065 мм.

Наружный диаметр D_o равен 34,045 мм вплоть до 34,085 мм

11.2 Метод контроля 2 Пример обозначения на рисунке втулки

Метод контроля — по ГОСТ 27672—2

Диаметр проходного кольцевого калибра равен 34,095 мм. Диаметр непроходного кольцевого калибра равен 34,045 мм.

12 ТЕХНИЧЕСКИЕ УСЛОВИЯ ДЛЯ ПОВЕРКИ СРЕДСТВ КОНТРОЛЯ

- 12.1 Измерительные средства подлежат периодической поверке, повреждения устраняют и любые изменения размеров указывают на них.
- 12.2 Измерительное оборудование поверяют на точность в установленные интервалы времени (в соответствии со статистическими методами).

ПРИЛОЖЕНИЕ А (рекомендуемое)

определение погрешности измерения

Табуляцию результатов испытания для контроля наружного диаметра свертных втулок по ГОСТ 27672 с целью определения погрешности измерения и в соответствиии с 10.2 приводят согласно таблице A.1

Таблица А.1 — Результаты испытания

В микрометрах

Номер втулки п	Первое измерение	Второе измерение	Разность Ах между первым и вторым измерением
1			
2			
3			
4			
5			
6			
7			
8			
9 .			
10			
11			
12			
13			
14			
15			
16			
17			
18			
19			
20			
21			
22			
23			
24			
-	-	_	σ _{δx} =
$u = \frac{4\sigma_{\Delta x}}{\sqrt{2}} =$			

ПРИЛОЖЕНИЕ Б (рекомендуемое)

ОПРЕДЕЛЕНИЕ СРАВНИМОСТИ

Табуляцию результатов испытания для контроля наружного диаметра свертных втулок по ГОСТ 27672 с целью определения сравнимости с $|\Delta x|$ в соответствии с 10.3 приводят согласно таблице Б.1.

Номер втудки п	Первое измерение	Второе измерение
	Liepase Hamepolitie	Diopor Hoseptime
1		
2		
3		
4		
5		
6		
7		
8		
9		
10		
11		
12		
13		
14		
15		
16		
17		
18		
19		
20		
21		
22		
23		
24		
$\overline{x} = \frac{\sum x}{24}$	'x ₁ =	~ x₂ =

УДК 621.822.5:531.717.1:006.354 ОКС 21.100.10 Г16 ОКП 41 8210

Ключевые слова: подшипники, подшипники скольжения, качество, контроль качества, подшипниковые втулки, свертные втулки, определение размеров, диаметры, измерение диаметра, измерительные средства

> Редактор Р. Г. Говердовская Технический редактор Н. С. Гришанова Корректор Н. И. Гаврищук Компьютерная верстка Л. В. Леоновой

Изд. лиц. № 021007 от 10.08.95. Сдано в набор 10.09.97. Подписано в печать 12.11 97 Усл. печ. д. 1,40. Уч.-изд. л. 1,10. Тираж 267 жд. С 993. Зак. 1811.

ИПК Издательство стандартов, 107076, Москва, Колоденкай пер., 14. Набрано в Калужской типогрофии стандартов из ПЭВМ. Клаужская типогрофия стандартов, ул. Московская, 256. ПЛР № 040138