ТАБАЧНЫЕ ИЗДЕЛИЯ

Методы испытаний Упаковка. Маркировка

Издание официальное

Москва ИПК ИЗДАТЕЛЬСТВО СТАНДАРТОВ 2000

ОТ ИЗДАТЕЛЬСТВА

Сборник «Табачные изделия. Методы испытаний, Упаковка. Маркировка» содержит стандарты, утвержденные до 1 сентября 2000 г.

В стандарты внесены изменения, принятые до указанного срока.

Текущая информация о вновь утвержденных и пересмотренных стандартах, а также о принятых к ним изменениях публикуется в выпускаемом ежемесячно информационном указателе «Государственные стандарты».

СИГАРЕТЫ

Определение степени вентиляции

Издание официальное

МЕЖГОСУДАРСТВЕННЫЙ СОВЕТ ПО СТАНДАРТИЗАЦИИ, МЕТРОЛОГИИ И СЕРТИФИКАЦИИ М и н с к

ГОСТ ИСО 9512-96

1 РАЗРАБОТАН МТК 153 «Табак и табачные изделия», НПО «Табак»

ВНЕСЕН Госстандартом России

2 ПРИНЯТ Межгосударственным Советом по стандартизации, метрологии и сертификации (протокол № 10 от 4 октября 1996 г.)

За принятие проголосовали:

Наименование государства	Наименование национального органа по стандартизации
Азербайджанская Республика	Азгосстандарт
Республика Армения	Армгосстандарт
Республика Беларусь	Госстандарт Беларуси
Республика Казахстан	Госстандарт Республики Казахстан
Киргизская Республика	Киргизстандарт
Республика Молдова	Молдовастандарт
Российская Федерация	Госстандарт России
Республика Таджикистан	Таджиктосстандарт
Туркменистан	Главная Государственная инспекция Туркменистана
Республика Узбекистан	Узгосстандарт
Украина	Госстандарт Украины

Настоящий стандарт представляет собой полный аутентичный текст ИСО 9512—91 «Сигареты. Определение степени вентиляции»

- 3 Постановлением Государственного комитета Российской Федерации по стандартизации и метрологии от 23 марта 1999 г. № 85 межгосударственный стандарт ГОСТ ИСО 9512—96 введен в действие непосредственно в качестве государственного стандарта Российской Федерации с 1 июля 2000 г.
 - 4 ВВЕДЕН ВПЕРВЫЕ
 - 5 ПЕРЕИЗДАНИЕ

Настоящий стандарт не может быть полностью или частично воспроизведен, тиражирован и распространен в качестве официального издания на территории Российской Федерации без разрешения Госстандарта России

ГОСТ ИСО 9512-96

Содержание

I	Область применения
2	Нормативные ссылки
3	Термины и определения
4	Сущность метода
5	Аппаратура и стандартные условия
6	Методика измерений
7	Обработка результатов измерений
8	Точность результатов измерений4
9	Отчет об испытаниях

II III

СИГАРЕТЫ

Определение степени вентиляции

Cigarettes. Determination of ventilation

Дата введения 2000-07-01

1 Область применения

Стандарт устанавливает метод определения степени вентиляции сигарет. Стандарт применим для определения степени вентиляции круглых и овальных сигарет, изготовленных из обычной или пористой сигаретной и ободковой бумаги, а также с нанесенной на сигаретную или ободковую бумагу искусственной перфорацией.

2 Нормативные ссылки

ГОСТ ИСО 3308—97 Машина обычная лабораторная для прокуривания сигарет (курительная машина). Определения и стандартные условия

ГОСТ ИСО 6565—97 Табачные изделия. Сопротивление затяжке сигарет и фильтров. Термины, стандартные условия и основные определения

ГОСТ 30039-98 (ИСО 8243-91) Сигареты, Отбор проб

ГОСТ 30571—98 (ИСО 4387—91) Сигареты. Определение содержания влажного и не содержащего никотин сухого конденсата (смолы) в дыме сигарет с помощью лабораторной курительной машины

ГОСТ Р 50021—92 (ИСО 3402—91) Табак и табачные изделия. Атмосфера для кондиционирования и испытания*

3 Термины и определения

В настоящем стандарте применяют следующие термины с соответствующими определениями:

- 3.1 Вентилирование та часть воздуха, которая попадает через любую часть сигареты, кроме конца, предназначенного для зажигания.
 - 3.2 Передняя зона конец сигареты, предназначенный для зажигания.
 - Разбавление эффект вентилирования на выходе воздуха из сигареты.
- 3.4 Общее вентилирование общее количество воздуха, попадающее в сигарету при вентилировании.
- 3.5. Составляющие общего вентилирования воздух, проходящий через сигаретную бумагу, ободковую бумагу и другие части сигареты. Эти составляющие представлены на рисунках 16, 1в, 1г. Каждая составляющая может измеряться и изучаться самостоятельно.
 - 3.5.1 Основные составляющие общего вентилирования
- 3.5.1.1 Вентилирование фильтра воздух, поступающий в сигарету через ободковую бумагу, между концом сигареты, находящимся во рту, и началом табачного штранга (рисунок 16).
- 3.5.1.2 Вентилирование штранга воздух, поступающий в сигарету через сигаретную бумагу, покрывающую весь табачный штранг (рисунок 16).
 - 3.5.2 Другие составляющие общего вентилирования
- 3.5.2.1 Вентилирование окурка воздух, поступающий в сигарету между концом, находящимся во рту, и отметкой длины окурка (рисунок 1в).

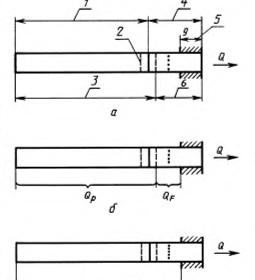
Действует на территории Российской Федерации.

3.5.2.2 Вентилирование сжигаемой части штранга — воздух, поступающий в сигарету между концом, предназначенным для зажигания, и отметкой длины окурка (рисунок 1в).

3.5.2.3 Вентилирование ободковой бумаги — воздух, поступающий в сигарету между концом, находящимся во рту, и концом табачного штранга, покрытого

ободковой бумагой (рисунок 1г).

3.5.2.4 Вентилирование сигаретной бумаги — воздух, поступающий в сигарету между концом, предназначенным для зажигания, и началом ободковой бумаги (рисунок 1г).


3.6 Степень вентиляции — отношение потока вентилированного воздуха к общему потоку воздуха через конец сигареты, находящийся во рту, измеренное при одних и тех же давлении, температуре и гигрометрических условиях и выраженное в процентах.

4 Сущность метода

Через незажженную сигарету пропускают воздух в направлении от конца, предназначенного для зажигания, к концу, вставляемому в рот курильщика. Количество воздуха, выходящего из конца сигареты, вставленного в рот, стандартизовано, а индивидуальные составляющие вентилирования измеряют. Вычисляют степень вентиляции как отношение индивидуальных составляющих вентилирования к общему потоку воздуха, выходящему из сигареты.

5 Аппаратура и стандартные условия

- 5.1 Измерения проводят в лабораторных условиях с окружающей атмосферой, соответствующей ГОСТ Р 50021.
- 5.2 Сигареты кондиционируют в течение не менее 48 ч в атмосфере по ГОСТ Р 50021.
- Успользуемые приборы должны обеспечивать индивидуальное измерение каждой из составляющих вентилирования.

I — сигаретная бумага, Z — отметка окурка, J — табачный штранг, J — ободжовая бумага, S — глубина вставки сигареты, δ — фильтр

В

a₂

Рисунок 1 — Составляющие общего вентилирования

Глубина вставки сигареты в держатель должна быть равна (9 ± 0.5) мм в соответствии с ГОСТ ИСО 3308 (рисунок la).

5.3.1 Сигареты должны удерживаться в приборе с помощью сигаретодержателя по ГОСТ ИСО 3308.

5.3.2 Конструкция прибора должна учитывать следующее:

любые части сигареты, зажатые в приборе, могут влиять на вентилирование,

внешнее давление и давление вокруг сигареты в держателе не должны отличаться более чем на 10 Па.

5.3.3 Измерения проводят на незажженной сигарете.

- 5.3.4 Направление воздушного потока должно быть таким же, как у прокуриваемой сигареты.
- 5.3.5 Воздушный поток, выходящий из сигареты, должен быть постоянным и соответствовать объемному расходу 17,5 см³/с, установленному для прокуривания сигарет по ГОСТ 30571.

5.3.6 Используют три конструкции прибора для измерения вентилирования.

5.3.6.1 Расходомеры с мыльной пленкой

Перепад давления, создаваемый этими приборами, не должен превышать 10 Па при расходе 17,5 см³/с.

5.3.6.2 Датчики расхода:

измерители с известной взаимосвязью между потоком и измеряемым перепадом давления. Падение давления при 17,5 см³/с не должно превышать 10 Па,

тепловые анемометры. При их калибровке нужно убедиться, что воздушный поток, регистрируемый ими, представляет собой общий поток в трубке.

5.3.6.3 Ротационные расходомеры (ротаметры)

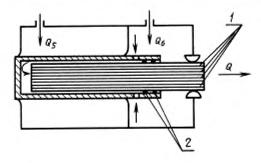
При применении этих расходомеров необходимо вносить физическую компенсацию большой разницы давлений для того, чтобы обеспечить разность между атмосферным давлением и давлением вокруг сигареты не более 10 Па. Теоретические поправки неприемлемы, т. к. в связи с перепадом давления внутри сигареты и вне ее происходит значительное изменение воздушного потока.

6 Методика измерений

- 6.1 Отбор проб сигарет проводят по ГОСТ 30039.
- 6.2. Кондиционирование проб проводят по ГОСТ Р 50021.

П р и м е ч а н и е — Если для измерения воздушного потока используется расходомер с мыльной пленкой, то из-за наличия влаги в расходомере может измениться влажность сигарет, т. к. через них продувается этот воздух.

6.3 Подготовка прибора


Прибор подвергают осмотру, чтобы убедиться, что уплотнения в местах соединений не пропускают воздух. Проверяют прибор при двух-трех величинах степени вентиляции. Для этого используют микрокапиллярные калибры перепада давления с известной степенью вентиляции. Измеренное значение степени вентиляции должно отличаться от стандартного не более чем на 0,5 %.

6.4 Измерение массового или объемного расхода

Измерение проводят с помощью приборов, описанных в 5.3.6, при расходе воздуха, выходящем из сигареты, 17,5 см³/с.

- 6.4.1 Если для измерения воздушного потока вентилирования используется массовой расходомер, то он должен быть калиброван для потока, выходящего из сигареты, при установленном объемном расходе.
- 6.4.2 Если для измерения воздушного потока вентилирования применяют объемный расходомер, то проводят компенсацию перепада давления воздушных потоков, входящих и выходящих из сигареты, для того, чтобы объемные расходы измерялись при одном и том же давлении.

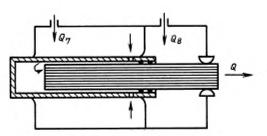
 Π р и м е ч а н и е - В обоих случаях можно исключить неточность измерения и колебания атмооферного давления калиброванием измеряющего устройства путем использования калибра вентилирования с таким же перспадом

давления, как и исследуемая проба, а затем так отрегулировать расходомер, чтобы получить значения 0 % и 100 % для различных направлений потока вентилирования (рисунок 2), которые рассчитывают по следующим формулам для двух положений держателя калибров.

Для первого положения:

$$V_{\rm I} = \frac{Q_{\rm S}}{Q} \cdot 100 = 0$$
 при $Q_{\rm S} = 0$, (1)

- где V_1 степень вентиляции первой зоны держателя, %;
 - Q_5 поток воздуха, поступающий в первую зону держателя, см 3 /с;
 - Q поток воздуха, выходящий из сигареты, cm^3/c .


$$V_2 = \frac{Q_6}{Q} \cdot 100 = 100 \%$$
 при $Q_6 = 17.5$ см³/с , (2)

- где V_2 степень вентиляции второй зоны держателя, %;
 - Q_6 поток воздуха, поступающий во вторую зону держателя, см 3 /с.

Для второго положения:

$$V_1 = \frac{Q_1}{Q} \cdot 100 = 100 \%$$
 при $Q_2 = 17,5$ см³/с , (3)

где Q_7 — поток воздуха, поступающий в первую зону держателя, см 3 /с;

И — микрокапиллярный калибр перепада давления;
2 — уплотнительные кольца

Рисунок 2 — Схема настройки прибора с помощью калибра перепада давления

$$V_2 = \frac{Q_s}{Q} \cdot 100 = 0 \text{ при } Q_s = 0$$
, (4)

где Q_8 — поток воздуха, поступающий во вторую зону держателя, см³/с.

7 Обработка результатов измерений

Расчет степени вентиляции зависит от вида проведенного измёрения, исходя из определений, данных в 3.5. Степень вентиляции выражают в процентах.

Степень вентиляции рассчитывают по следующим формулам (рисунок 1):

$$V_F = \frac{Q_F}{Q} \cdot 100, \qquad (5)$$

где V_F — степень вентиляции фильтра, %; Q_F — поток воздуха, поступающий в сигарету через фильтр, см³/с; Q — поток воздуха, выходящий из сигареты, см³/с.

$$V_{\rho} = \frac{Q_{\rho}}{Q} \cdot 100 , \qquad (6)$$

где V_{ρ} — степень вентиляции штранга, %; Q_{ρ} — поток воздуха, поступающий в сигарету от зажигаемого конца до начала фильтра, см³/с.

$$V = \frac{Q_F + Q_p}{Q} \cdot 100,$$

(7)

где V — степень общей вентиляции сигареты, %.

$$V_{\alpha} = \frac{Q_1}{Q} 100, \qquad (8)$$

где V_a — степень вентиляции сгораемой части штранга, %;

 Q_1 — поток воздуха, поступающий в сигарету через сгораемую часть сигаретной бумаги, см 3 /с.

$$V_{\alpha} = \frac{Q_2}{Q} \cdot 100, \qquad (9)$$

где V_a — степень вентиляции окурка, %; Q_2 — поток воздуха, поступающий в сигарету через бумагу окурка, см³/с.

$$V_c = \frac{Q_1}{Q} \cdot 100, \qquad (10)$$

где V_{ϵ} — степень вентиляции сигаретной бумаги, %; Q_3 — поток воздуха, поступающий в сигарету через сигаретную бумагу от зажигаемого конца до начала ободковой бумаги, см³/с.

$$V_{\tau} = \frac{Q_4}{Q} \cdot 100, \qquad (11)$$

где V_1 — степень вентиляции ободковой бумаги, %;

 Q_4 — поток воздуха, поступающий в сигарету через ободковую бумагу, см³/с.

8 Точность результатов измерений

Оценивают повторяемость.

4

ГОСТ ИСО 9512-96

8.2 Оценивают воспроизводимость.

9 Отчет об испытаниях

В отчете подробно описывают метод измерения потока и указывают все необходимые сведения для идентификации испытываемых изделий и проведенных испытаний.

MKC 65.160 H89 OKCTY 9193

Ключевые слова: сигареты, определение, степень вентиляции, вентилирование, разбавление, ободковая бумага