ТИТАН ГУБЧАТЫЙ

Метод определения ниобия и тантала

Издание официальное

Предисловие

РАЗРАБОТАН Межгосударственным техническим комитетом по стандартизации МТК 105,
 Украинским научно-исследовательским и проектным институтом титана

ВНЕСЕН Государственным комитетом Украины по стандартизации, метрологии и сертифика-

2 ПРИНЯТ Межгосударственным Советом по стандартизации, метрологии и сертификации (протокол № 9 от 12 апреля 1996 г.)

За принятие проголосовали:

Наименование государства	Наименование национального органа по стандартизации	
Азербайджанская Республика	Азгосстандарт	
Республика Беларусь	Госстандарт Беларуси	
Республика Казахстан	Госстандарт Республики Казахстан	
Российская Федерация	Госстандарт России	
Туркменистан	Главная государственная инспекция Туркменистана	
Украина	Госстандарт Украины	

³ Постановлением Государственного комитета Российской Федерации по стандартизации и метрологии от 19 октября 1999 г. № 353-ст межгосударственный стандарт ГОСТ 9853.10—96 введен в действие непосредственно в качестве государственного стандарта Российской Федерации с 1 июля 2000 г.

4 ВВЕДЕН ВПЕРВЫЕ

© ИПК Издательство стандартов, 2000

Настоящий стандарт не может быть полностью или частично воспроизведен, тиражирован и распространен в качестве официального издания на территории Российской Федерации без разрешения Госстандарта России

ТИТАН ГУБЧАТЫЙ

Метод определения ниобия и тантала

Sponge titanium. Method for determination of niobium and tantalum

Дата введения 2000-07-01

1 Область применения

Настоящий стандарт устанавливает фотометрический метод определения ниобия (при массовой доле ниобия от 0,002 % до 0,01 %) и экстракционно-фотометрический метод определения тантала (при массовой доле тантала от 0,001 % до 0,005 %) в губчатом титане по ГОСТ 17746.

Метод основан на отделении ниобия и тантала от титана и сопутствующих примесей двукратиым осаждением ниобия и тантала танином в солянокислой среде, последующем сплавлении осадка с пиросульфатом калия, образовании в присутствии винной кислоты окрашенного в красный цвет комплексного соединения ниобия с цианформазаном-2 с последующим измерением оптической плотности раствора.

Тантал определяют путем экстракции бензолом комплексного соединения тантала с кристаллическим фиолетовым и последующего измерения оптической плотности экстракта.

2 Нормативные ссылки

В настоящем стандарте использованы ссылки на следующие стандарты:

ГОСТ 8.315-97 Государственная система обеспечения единства измерений. Стандартные образцы. Основные положения, порядок разработки, аттестации, утверждения, регистрации и применения

ГОСТ 2603-79 Ацетон. Технические условия

ГОСТ 4204-77 Кислота серная. Технические условия

ГОСТ 4461-77 Кислота азотная. Технические условия

ГОСТ 4463—76 Натрий фтористый. Технические условия

ГОСТ 5712—78 Аммоний щавелевокислый 1-водный. Технические условия

ГОСТ 5817-77 Кислота винная. Технические условия

ГОСТ 5955-75 Бензол. Технические условия

ГОСТ 7172-76 Калий пиросернокислый

ГОСТ 10484—78 Кислота фтористоводородная. Технические условия

ГОСТ 10652—73 Соль динатриевая этилендиамин-N, N, N', N'-тетрауксусной кислоты 2-водная (трилон Б)

ГОСТ 14261-77 Кислота соляная особой чистоты, Технические условия

ГОСТ 17746—96 Титан губчатый. Технические условия ГОСТ 23780—96 Титан губчатый. Методы отбора и подготовки проб

ГОСТ 25086-87 Цветные металлы и их сплавы. Общие требования к методам анализа

3 Общие требования

- Общие требования к методу анализа по ГОСТ 25086.
- Отбор и подготовку проб проводят по ГОСТ 23780.
- Массовую долю ниобия и тантала определяют по двум навескам.

4 Средства измерений и вспомогательные устройства

Спектрофотометр типа СФ-46 или фотометрический колориметр концентрационный типа КФК-2, или аналогичный прибор.

Кислота соляная по ГОСТ 14261, разбавленная 1:1, 1:4, 1:9 и 1:49.

Кислота азотная по ГОСТ 4461, $\rho = 1,35-1,40 \text{ г/см}^3$.

Кислота серная по ГОСТ 4204, $\rho = 1,84 \text{ г/см}^3$.

Кислота фтористоводородная по ГОСТ 10484.

Кислота аскорбиновая по Государственной фармакопее Х.

Кислота винная по ГОСТ 5817, раствор массовых концентраций 200 и 40 г/дм3.

Танин по Государственной фармакопее X, раствор массовых концентраций 30 и 10 г/дм³, последний готовят растворением танина в 1000 см³ раствора соляной кислоты (1:9).

Калия пиросульфат (калий пиросернокислый) по ГОСТ 7172.

Натрия фторид (натрий фтористый) по ГОСТ 4463, раствор массовой концентрации 50 г/дм³. Бензол по ГОСТ 5955.

Аммония гидрооксалата моногидрат (аммоний щавелевокислый) по ГОСТ 5712, раствор массовой концентрации 40 г/дм³.

Цианформазан-2 по действующему нормативному документу, раствор массовой концентрации 1 г/дм³.

Ацетон по ГОСТ 2603.

Кристаллический фиолетовый по действующему нормативному документу, раствор массовой концентрации 2 г/дм³.

Фильтры обеззоленные «красная лента» и «белая лента» по действующему нормативному документу.

Этилендиамин-N, N, N', N'-тетрауксусной кислоты динатриевой соли дигидрат (трилон Б) по ГОСТ 10652, раствор молярной концентрации 0,025 моль/дм³.

Государственные стандартные образцы по ГОСТ 8,315.

Стандартные растворы ниобия.

Раствор А: 0,3575 г оксида ниобия (V) сплавляют с 7 г пиросульфата калия в платиновом тигле при температуре (793±25) К. Плав растворяют в 100 см³ раствора винной кислоты массовой концентрации 200 г/дм³, переносят в мерную колбу вместимостью 500 см³, доливают водой до метки и перемешивают. Годен к применению в течение месяца.

1 см³ раствора А содержит 0,0005 г ниобия.

Раствор Б: 2 см³ раствора A помещают в мерную колбу вместимостью 100 см³, доливают раствором винной кислоты массовой концентрации 40 г/дм³ до метки и перемешивают. Готовят перед применением.

1 см³ раствора Б содержит 0,00001 г ниобия.

Стандартные растворы тантала.

Раствор А: 0,1526 г оксида тантала (V) сплавляют с 5—6 г пиросульфата калия в платиновом тигле при температуре (793±25) К. Плав растворяют в 150 см³ раствора моногидрата гидрооксалата аммония при нагревании, раствор переносят в мерную колбу вместимостью 250 см³ и доливают водой до метки. Раствор годен к применению в течение двух недель.

1 см³ раствора А содержит 0,0005 г тантала.

Раствор Б: 2 см³ раствора A помещают в мерную колбу вместимостью 250 см³, доливают раствором моногидрата гидрооксалата аммония до метки и перемешивают. Готовят перед применением.

1 см3 раствора Б содержит 0,000004 г тантала.

5 Порядок проведения измерений

5.1 Навеску массой 1,0 г помещают в стакан вместимостью 500 см³, приливают 100 см³ раствора соляной кислоты (1:1). Стакан накрывают часовым стеклом или стеклянной воронкой и ведут растворение при умеренном нагревании. Объем раствора поддерживают постоянным, периодически добавляя раствор соляной кислоты (1:1). После полного растворения навески в раствор приливают примерно 1 см³ азотной кислоты до обесцвечивания раствора и кипятят до удаления оксидов азота, после чего добавляют 0,5 г аскорбиновой кислоты и раствор разбавляют водой примерно до 200 см³. В стакан с раствором помещают бумажную массу, приливают 100 см³ раствора

танина массовой концентрации 30 г/дм³, стакан накрывают часовым стеклом и кипятят раствор в течение 40—50 мин, после чего раствор охлаждают и оставляют на 7—8 ч для формирования осадка. Раствор с осадком фильтруют через беззольный фильтр средней плотности «белая лента» и 3—4 раза промывают раствором соляной кислоты (1:49). Фильтр с осадком переносят в платиновую чашку, помещают ее в холодную муфельную печь. Во время нагрева печи осадок высушивают, озоляют и затем прокаливают при температуре (1303±25) К.

Осадок осторожно при отключенной вентиляции вынимают из муфельной печи, добавляют 5—6 капель серной кислоты, 5 см³ фтористоводородной кислоты. Содержимое в платиновой чашке нагревают до выделения паров серной кислоты и далее упаривают до состояния влажного осадка. К остатку в чашке приливают 5 см³ соляной кислоты (1:1) и нагревают в течение нескольких минут до растворения осадка. Раствор переносят в стакан, в котором проводилось первое осаждение, ополаскивают чашку небольшим количеством воды, протирают ее кусочком фильтровальной бумаги, который помещают в тот же стакан, и еще раз ополаскивают небольшим количеством воды. Промывные воды объединяют в стакане с основным раствором. К раствору приливают 100—150 см³ раствора танина массовой концентрации 10 г/дм³, помещают фильтробумажную массу, вносят 0,25 г аскорбиновой кислоты, накрывают стакан часовым стеклом и кипятят раствор около 1 ч. Снимают стакан с электроплитки, приливают к горячему раствору 50—70 см³ раствора соляной кислоты (1:4), раствор охлаждают и оставляют на 3—4 ч.

Раствор с осадком фильтруют через двойной фильтр «белая лента» и «красная лента», промывают его 3—4 раза раствором соляной кислоты (1:49), после чего помещают в кварцевый тигель.

Кварцевый тигель с осадком помещают в холодную муфельную печь. Во время нагрева печи осадок высушивают, озоляют, а затем прокаливают при температуре (1303±25) К.

Осадок в тигле сплавляют с пиросульфатом калия массой 0,75 г при температуре (793±25) К в течение 3—5 мин.

Тигель вынимают из печи, охлаждают, добавляют 10 см³ раствора винной кислоты массовой концентрации 40 г/дм³, нагревают до растворения плава. Раствор переносят в мерную колбу вместимостью 25 см³, доливают до метки раствором той же винной кислоты и перемешивают.

5.2 Для определения ниобия аликвотную часть раствора 10 см³ помещают в мерную колбу вместимостью 50 см³, приливают до объема 40 см³ раствор соляной кислоты (1:9), добавляют 0,5 см³ раствора трилона Б, 2 см³ раствора цианформазана-2 и нагревают до температуры (343±10) К. Спустя 15 мин раствор охлаждают до комнатной температуры, доливают до метки раствором соляной кислоты (1:9) и перемешивают.

Оптическую плотность раствора измеряют на фотоколориметре или спектрофотометре при длине волны 670 нм (красный светофильтр для фотоколориметра) в кювете с толщиной поглощающего слоя 50 мм. В качестве раствора сравнения используют раствор контрольного опыта.

5.3 Для определения тантала аликвотную часть раствора 5 см³ помещают в кварцевую пробирку с притертой пробкой вместимостью 100 см³. Добавляют пипеткой 2 см³ раствора фторида натрия, 1 см³ раствора кристаллического фиолетового, 10 см³ бензола (из бюретки) и экстрагируют окрашенный комплекс в течение 1 мин. После разделения фаз точно отмеренный объем 5 см³ бензольного слоя помещают в сухую пробирку с притертой пробкой, куда предварительно вносят 1 см³ ацетона, и перемешивают. Оптическую плотность экстракта измеряют на фотоколориметре или спектрофотометре при длине волны 590 им (оранжевый светофильтр для фотоколориметра) в кювете с толщиной поглощающего слоя 10 мм. В качестве раствора сравнения используют экстракт раствора контрольного опыта.

5.4 Построение градуировочного графика

5.4.1 Для построения градуировочного графика при массовой доле ниобия от 0,002 % до 0,01 % в шесть из семи мерных колб вместимостью 50 см³ помещают 0,8; 1,0; 2,0; 3,0; 4,0; 5,0 см³ стандартного раствора Б ниобия, что соответствует 0,000008; 0,000010; 0,000020; 0,000030; 0,000040; 0,000050 г ниобия. Во все семь колб приливают раствор соляной кислоты (1:9) до объема примерно 40 см³, 0,5 см³ раствора трилона Б, добавляют 2 см³ раствора цианформазана-2 и далее поступают, как указано в 5.2. В качестве раствора сравнения используют раствор контрольного опыта.

5.4.2 Для построения градуировочного графика при массовой доле тантала от 0,001 % до 0,005 % в шесть из семи кварцевых пробирок для экстрагирования вместимостью 100 см³ помещают 0,5; 1,0; 1,5; 2,0; 2,5; 3,0 см³ стандартного раствора Б тантала, что соответствует 0,000002; 0,000004; 0,000006; 0,000008; 0,000010; 0,000012 г тантала.

Во все семь пробирок приливают по 5 см³ раствора контрольного опыта, по 2 см³ раствора фторида натрия и далее поступают, как указано в 5.3. В качестве раствора сравнения используют

ГОСТ 9853.10-96

экстракт, полученный из раствора в седьмой пробирке, не содержащего стандартный раствор

5.4.3 По полученным значениям оптической плотности и соответствующим им массам ниобия (тантала) строят градуировочный график.

6 Обработка результатов измерений

6.1 Массовую долю ниобия Х, %, вычисляют по формуле

$$X = \frac{m_1 V}{m V_1} \cdot 100, \qquad (1)$$

где m_1 — масса ниобия в растворе пробы, найденная по градуировочному графику, г;

V — общий объем раствора пробы,см³;

т — масса навески, г;

V₁ — объем аликвотной части раствора пробы,см³.

6.2 Массовую долю тантала X, %, вычисляют аналогично.

7 Допустимая погрешность измерений

7.1 Расхождение между результатами измерений и результатами анализа (при доверительной вероятности P = 0.95) не должно превышать допускаемых значений, указанных в таблицах 1 и 2.

Таблица 1 Впроцентах

Массовая доля виобия	Допускаемое расхождение между результатами параллельных измерений	Допускаемое расхождение между результатами анализа	Предел погрешности измерений Δ
От 0,0020 до 0,0100 включ.	0,0007	0,0011	0,0009

Таблица 2 Впроцентах

Массован доля тантала	Допускаемое расхождение между результатами параллельных измерений	Допускаемое расхождение между результатами анализа	Предел погрешности измерений Δ
От 0,0010 до 0,0050 включ.	0.0003	0.0004	0.0003

7.2 Контроль точности результатов анализа проводят по стандартному образцу в соответствии с ГОСТ 25086.

Допускается проводить контроль точности результатов анализа по методу добавок в соответствии с ГОСТ 25086.

Добавками являются стандартные растворы Б.

8 Требования к квалификации

К выполнению анализа допускается химик-аналитик квалификации не ниже 4-го разряда.

УДК 669.295:546.882-546.883.06:006.354

MKC77.120

B59

ОКСТУ 1709

Ключевые слова: титан губчатый, определение ниобия и тантала, фотометрический метод, экстракционно-фотометрический метод

Редактор Л.И. Нахимова
Технический редактор Л.А. Кузнецова
Корректор В.И. Камурхина
Компьютерная верстка С.В. Рабовой

Изд. лиц. № 021007 от 10.08.95, Сдано в набор 08.02.2000. Подписано в печать 21.03.2000. Усл. леч.л. 0,93. Уч. -изд.л. 0,60. Тираж 9кз. С 4736. Зак. 251.

ИПК Издательство стандартов, 107076, Москва, Колодезный пер., 14. Набрано в Издательстве на ПЭВМ Филиал ИПК Издательство стандартов — тип. "Московский печатник", 103062, Москва, Лялии пер., 6. Плр № 080102