ФЛЮСЫ СВАРОЧНЫЕ ПЛАВЛЕНЫЕ

Методы определения оксида марганца (II)

Издание официальное

Предисловие

РАЗРАБОТАН Межгосударственным техническим комитетом по стандартизации МТК 72;
Институтом электросварки им. Е.О. Патона НАН Украины

ВНЕСЕН Государственным комитетом Украины по стандартизации, метрологии и сертификации

2 ПРИНЯТ Межгосударственным Советом по стандартизации, метрологии и сертификации (протокол № 9 от 12 апреля 1996 г.)

За принятие проголосовали:

Наименование государства	Наименование национального органа по стандартизации		
Азербайджанская Республика	Азгосстандарт		
Республика Беларусь	Госстандарт Беларуси		
Республика Казахстан	Госстандарт Республики Казахстан		
Российская Федерация	Госстандарт России		
Республика Таджикистан	Таджикгосстандарт		
Туркменистан	Главная государственная инспекция Туркменистана		
Республика Узбекистан	Узгосстандарт		
Украина	Госстандарт Украины		

- 3 Постановлением Государственного комитета Российской Федерации по стандартизации и метрологии от 21 апреля 1999 г. № 134 межгосударственный стандарт ГОСТ 22974.3—96 введен в действие непосредственно в качестве государственного стандарта Российской Федерации с 1 января 2000 г.
 - 4 B3AMEH ΓΟCT 22974.3-85

ФЛЮСЫ СВАРОЧНЫЕ ПЛАВЛЕНЫЕ

Методы определения оксида марганца (II)

Melted welding fluxes. Methods of manganous oxide (II) determination

Дата введения 2000-01-01

1 Область применения

Настоящий стандарт устанавливает потенциометрический метод определения оксида марганца (II) (при массовой доле оксида марганца (II) от 2 до 50 %), фотометрический метод определения оксида марганца (П) (при массовой доле оксида марганца (П) от 0,1 до 10 %) и атомно-абсорбционный метод определения оксида марганца (II) (при массовой доле оксида марганца (II) от 0,1 до 50 %).

2 Нормативные ссылки

В настоящем стандарте использованы ссылки на следующие стандарты:

ГОСТ 342-77 Натрий фосфорнокислый пиро. Технические условия

ГОСТ 1277-75 Серебро азотнокислое. Технические условия

ГОСТ 3118-77 Кислота соляная. Технические условия

ГОСТ 3760-79 Аммиак водный. Технические условия

ГОСТ 4204-77 Кислота серная. Технические условия

ГОСТ 4461-77 Кислота азотная. Технические условия

ГОСТ 5457—75 Ацетилен растворенный и газообразный технический. Технические условия

ГОСТ 6008-90 Марганец металлический и марганец азотированный. Технические условия

ГОСТ 6552-80 Кислота ортофосфорная. Технические условия

ГОСТ 18300—87 Спирт этиловый ректификованный технический. Технические условия

ГОСТ 20478—75 Аммоний надсернокислый. Технические условия ГОСТ 20490—75 Калий марганцовокислый. Технические условия

ГОСТ 22974.0-96 Флюсы сварочные плавленые. Общие требования к методам анализа

ГОСТ 22974.1-96 Флюсы сварочные плавленые. Методы разложения флюсов

3 Общие требования

Общие требования к методам анализа — по ГОСТ 22974.0.

4 Потенциометрический метод определения оксида марганца (II)

4.1 Сушность метода

Метод основан на окислении ионов двухвалентного марганца марганцовокислым калием до трехвалентного в нейтральной среде в присутствии пирофосфорнокислого натрия. В эквивалентной точке происходит скачок потенциала, указывающий на окончание реакции.

4.2 Аппаратура, реактивы и растворы

Установка для потенциометрического титрования.

Милливольтметр на 17-20 мВ внутренним сопротивлением 700 Ом.

Электромешалка с частотой вращения 8,3-10,0 с-1 (500-600 об/мин) или магнитная мешалка.

Издание официальное

Электроды: в качестве катода применяют платиновый электрод, в качестве анода — вольфрамовый электрод, диаметр электродов 0,8—1,0 мм, длина 100—120 мм. Перед титрованием электроды очищают мелкой наждачной бумагой.

Кислота азотная по ГОСТ 4461.

Кислота соляная по ГОСТ 3118, разбавленная 1:1.

Аммиак водный по ГОСТ 3760, разбавленный 1:1.

Натрий пирофосфорнокислый по ГОСТ 342, раствор массовой концентрации 0,07 г/см³.

Спирт этиловый ректификованный технический по ГОСТ 18300.

Нейтральный красный, индикатор: 0,1 г индикатора растворяют в 60 см³ этилового спирта и разбавляют до 100 см³ водой.

Марганец металлический по ГОСТ 6008, степень чистоты не менее 99,95 %: 10 г марганца помещают в стакан вместимостью 400 см³, обрабатывают в течение нескольких минут поверхностный слой смесью 50 см³ воды и 5 см³ азотной кислоты до получения блестящей поверхности. Марганец промывают шесть раз водой, затем ацетоном и высушивают при температуре 100 °C в течение 10 мин.

Стандартные растворы оксида марганца (II).

Раствор А: 0,7744 г металлического марганца, очищенного от оксидной пленки, растворяют при нагревании в 20 см³ соляной кислоты, осторожно по каплям приливают 1−2 см³ азотной кислоты и кипятят до удаления оксидов азота. Раствор охлаждают, переносят в мерную колбу вместимостью 1000 см³, доливают водой до метки и перемешивают. Раствор А имеет массовую концентрацию оксида марганца (II) 0,001 г/см³.

Раствор Б: 10 см³ раствора А помещают в мерную колбу вместимостью 100 см³, доливают водой до метки и перемешивают. Раствор Б имеет массовую концентрацию оксида марганца (П) 0,0001 г/см³.

Калий марганцовокислый по ГОСТ 20490 с молярной концентрацией эквивалента 0,05 моль/дм³: 1,6 г марганцовокислого калия растворяют в 1 дм³ воды. Раствор переливают в склянку из темного стекла и оставляют на 8—10 сут, затем его декантируют или фильтруют через асбестовый фильтр в склянку из темного стекла. Массовую концентрацию устанавливают не ранее следующего дня.

Стандартный раствор оксида марганца (II) можно приготовить из калия марганцовокислого.

Раствор А: 2,2279 г марганцовокислого калия, перекристаллизированного и высушенного на воздухе, помещают в стакан вместимостью 300—400 см³, приливают 100 см³ воды, нагревают до полного растворения. Затем приливают соляную кислоту до полного обесцвечивания раствора. Раствор выпаривают досуха. Сухой остаток растворяют в 40 см³ соляной кислоты (1:1), переносят в мерную колбу вместимостью 1000 см³, доливают водой до метки и перемешивают. Раствор А имеет массовую концентрацию оксида марганца (II) 0,001 г/см³.

Раствор Б: 10 см³ раствора А помещают в мерную колбу вместимостью 100 см³, доливают водой до метки и перемешивают. Раствор имеет массовую концентрацию оксида марганца (II) 0,0001 г/см³.

Устанавливают массовую концентрацию раствора марганцовокислого калия: отбирают 20 см³ стандартного раствора А в стакан вместимостью 400—500 см³, содержащий 150 см³ раствора пирофосфорнокислого натрия, прибавляют три капли индикатора нейтрального красного и нейтрализуют аммиаком (1:1) до появления красно-бурой окраски. Объем раствора доводят водой до 250 см³, опускают электроды, включают мешалку и титруют 0,05 моль/дм³ раствором марганцовокислого калия до резкого скачка потенциала.

По окончании работы электроды оставляют погруженными в стакан с водой.

Массовую концентрацию раствора марганцовокислого калия C, г/см³ оксида марганца (II), вычисляют по формуле

$$C = \frac{m}{V},\tag{1}$$

где m — масса навески оксида марганца (II), соответствующая аликвотной части раствора, г;

 V — объем 0,05 моль/дм³ раствора марганцовокислого калия, израсходованный на титрование, см³.

4.3 Проведение анализа

После разложения флюса по ГОСТ 22974.1 25 см³ раствора помещают в стакан вместимостью 400—500 см³, содержащий 150 см³ раствора пирофосфорнокислого натрия, прибавляют три капли

индикатора нейтрального красного и нейтрализуют аммиаком (1:1) до появления красно-бурой окраски. Объем раствора доводят водой до 250 см³, опускают электроды, включают мешалку и титруют 0,05 моль/дм³ раствором марганцовокислого калия до появления резкого скачка потенциала.

4.4 Обработка результатов

Массовую долю оксида марганца (П) Х, %, вычисляют по формуле

$$X = \frac{(V - V_3) C}{m} \cdot 100 , \qquad (2)$$

где V — объем раствора марганцовокислого калия, израсходованный на титрование пробы, см3;

 V₁ — объем раствора марганцовокислого калия, израсходованный на титрование контрольного опыта, см³;

С — массовая концентрация раствора марганцовокислого калия, г/см³ оксида марганца (II);

т — масса навески флюса, соответствующая аликвотной части раствора, г.

4.5 Нормы точности и нормативы контроля точности определения оксида марганца (II) приведены в таблице 1.

Таблица 1 В процентах

Массовая доля оксида доля оксида марганца (II)	Δ	Допускаемое расхождение			δ
		d_{κ}	d_2	d ₃	
От 0,1 до 0,2 включ.	0,03	0.04	0.03	0,04	0.02
Св. 0,2 » 0,4 »	0.04	0.05	0.04	0.05	0,03
» 0,4 » 1,0 »	0.06	0.07	0.06	0.07	0,04
» 1.0 » 2.0 »	0.08	0.10	0.09	0.10	0.05
* 2.0 * 5.0 *	0.13	0.16	0.13	0.16	0,08
» 5,0 » 10,0 »	0,18	0.23	0.19	0.23	0,12
» 10.0 » 25.0 »	0,30	0.40	0.30	0.40	0.20
* 25,0 * 50,0 *	0.40	0,50	0.40	0.50	0,30

5 Фотометрический метод определения оксида марганца (II)

5.1 Сущность метода

Метод основан на окислении двухвалентного марганца в кислой среде до семивалентного надсернокислым аммонием в присутствии азотнокислого серебра или йоднокислым калием в присутствии ортофосфорной кислоты. Оптическую плотность окрашенного раствора измеряют при длине волны 545 нм (зеленый светофильтр).

5.2 Аппаратура, реактивы и растворы

Спектрофотометр или фотоэлектроколориметр.

Кислота азотная по ГОСТ 4461.

Кислота ортофосфорная по ГОСТ 6552.

Кислота серная по ГОСТ 4204, разбавленная 1:1.

Аммоний надсернокислый по ГОСТ 20478, раствор массовой концентрации 0,15 г/см3.

Калий йоднокислый или натрий йоднокислый.

Серебро азотнокислое по ГОСТ 1277, раствор массовой концентрации 0,01 г/см3.

Вода, не содержащая восстановителей: к 1000 см³ воды прибавляют 5 см³ серной кислоты, разбавленной 1:1, нагревают до кипения, прибавляют несколько кристаллов йоднокислого калия и кипятят 10 мин.

Стандартный раствор оксида марганца (II).

Раствор В: 10 см³ раствора А, приготовленного по 4.2, переносят в стакан вместимостью 300—400 см³, приливают 10 см³ серной кислоты и выпаривают до густых паров серной кислоты. Стакан охлаждают, обмывают стенки водой и выпаривание повторяют. После охлаждения раствор переносят в мерную колбу вместимостью 500 см³ и доводят водой до метки. Раствор имеет массовую концентрацию оксида марганца (II) 0,00002 г/см³.

5.3 Проведение анализа

5.3.1 После разложения флюса по ГОСТ 22974.1 50 см³ раствора (100 см³ при массовой доле оксида марганца (II) менее 0,5 %) помещают в стакан вместимостью 300—400 см³, прибавляют 5 см³ азотной кислоты, 10 см³ серной кислоты и выпаривают до густых паров серной кислоты. Стакан

охлаждают, обмывают стенки водой и выпаривание повторяют. Раствор охлаждают, переносят в мерную колбу вместимостью 250 см³, доводят водой до метки и перемешивают.

5.3.2 Окисление марганца надсернокислым аммонием

Отбирают 10 см³ раствора (20 см³ при массовой доле оксида марганца (II) менее 0,5 %) в мерную колбу вместимостью 100 см³, приливают 10 см³ воды, 10 см³ азотнокислого серебра и 20 см³ надсернокислого аммония. Раствор нагревают до кипения, охлаждают, доводят водой до метки, перемешивают и выдерживают 20 мин до полного развития окраски.

Оптическую плотность раствора измеряют на спектрофотометре при длине волны 545 нм или на фотоэлектроколориметре с зеленым светофильтром в кювете толщиной поглощающего слоя 30 мм.

В качестве раствора сравнения служит контрольная проба, проведенная через весь ход анализа. Массу оксида марганца (II) находят по градуировочному графику.

5.3.3 Построение градуировочного графика

В десять мерных колб вместимостью 100 см³ последовательно вносят 1; 2; 4; 6; 8; 10; 12; 14; 16 и 20 см³ стандартного раствора В, что соответствует 0,00002; 0,00004; 0,00008; 0,00012; 0,00016; 0,00020; 0,00024; 0,00028; 0,00032; 0,00040 г оксида марганца (II).

В одиннадцатую колбу вносят 3—5 см³ серной кислоты (1:1), добавляют 10 см³ воды и далее ведут анализ, как указано в 5.3.2. Раствором сравнения служит раствор, в котором отсутствует стандартный раствор оксида марганца.

5.3.4 Окисление марганца йоднокислым калием (натрием)

Отбирают 10 см³ раствора (20 см³ при массовой доле оксида марганца (II) менее 0,5 %), переносят в коническую колбу вместимостью 150 см³ (если бралась аликвотная часть 10 см³, то прибавляют 10 см³ воды), приливают 3 см³ ортофосфорной кислоты, добавляют 0,25 г йоднокислого калия или натрия. Содержимое колбы нагревают до кипения, кипятят 3—5 мин и оставляют на водяной бане при температуре приблизительно 90 °C в течение 40—50 мин. Затем раствор охлаждают, переносят в мерную колбу вместимостью 100 см³, доливают водой, не содержащей восстановителей, до метки и перемешивают.

Оптическую плотность раствора измеряют на спектрофотометре при длине волны 545 нм или на фотоэлектроколориметре с зеленым светофильтром в кювете толщиной поглощающего слоя 30 мм.

В качестве раствора сравнения служит контрольная проба, проведенная через весь ход анализа. Массу оксида марганца (II) находят по градуировочному графику.

5.3.5 Построение градуировочного графика

В десять мерных колб вместимостью 100 см³ последовательно вносят 1; 2; 4; 6; 8; 10; 12; 14; 16 и 20 см³ стандартного раствора В, что соответствует 0,00002; 0,00004; 0,00008; 0,00012; 0,00016; 0,00020; 0,00024; 0,00028; 0,00032 и 0,00040 г оксида марганца (II), в одиннадцатую колбу вносят 3—4 см³ серной кислоты (1:1), добавляют 10 см³ воды и далее ведут анализ, как указано в 5.3.4. Раствором сравнения служит раствор, в котором отсутствует стандартный раствор оксида марганца (II).

5.4 Обработка результатов

Массовую долю оксида марганца (II) X_1 , %, вычисляют по формуле

$$X_1 = \frac{m}{m_i} \cdot 100$$
, (3)

где m — масса оксида марганца (II), найденная по градуировочному графику, г;

т — масса навески флюса, соответствующая аликвотной части раствора, г.

5.5 Нормы точности и нормативы контроля точности определения массовой доли оксида марганца (II) приведены в таблице 1.

6 Атомно-абсорбционный метод определения оксида марганца (II)

6.1 Сущность метода

Метод основан на измерении степени поглощения резонансного излучения свободными атомами марганца, образующимися в результате распыления раствора в пламя воздух-ацетилен. Для определения массовой доли оксида марганца (II) до 5 % используется резонансная линия 279,5 нм. Для определения массовой доли оксида марганца (II) свыше 5 % используется менее чувствительная линия 403,0 нм.

6.2 Аппаратура, реактивы и растворы

Атомно-абсорбционный спектрофотометр с пламенным атомизатором.

Лампа с полым катодом для определения оксида марганца (II).

Ацетилен растворенный и газообразный технический по ГОСТ 5457.

Кислота соляная по ГОСТ 3118, разбавленная 1:1.

Калий марганцовокислый по ГОСТ 20490.

Марганец металлический по ГОСТ 6008.

Стандартные растворы оксида марганца (II) готовят по 4.2.

6.3 Подготовка к анализу

Прибор готовят: настраивают спектрофотометр на резонансную линию 279,5 или 403,0 нм в зависимости от содержания оксида марганца (II) во флюсе (таблица 2).

6.4 Проведение анализа

После разложения флюса по ГОСТ 22974.1 5—20 см³ раствора (в зависимости от массовой доли оксида марганца (II), таблица 2) переносят в мерную колбу вместимостью 100 см³, приливают 5 см³ соляной кислоты (1:1), доливают водой до метки и перемешивают.

Таблица 2

Массовая доля оксида марганца (П), %	Аликвотная часть растворя, см ³	Аналитическая линия, им	
От 0,1 до 0,5 включ.	Без разбавления	279,5	
Св. 0.5 » 5.0 »	10	279,5	
* 5,0 * 10,0 *	20	403,0	
* 10,0 * 50,0 *	5	403,0	

Распыляют в пламя раствор контрольного опыта, а затем анализируемый раствор.

Перед введением в пламя каждого раствора распыляют воду для промывания системы и проверки нулевой точки.

Поскольку диапазон линейки градуировочных графиков зависит от чувствительности применяемых приборов, то предлагаемые массы элементов для определения в пробах и для построения градуировочных графиков следует считать рекомендуемыми.

6.5 Построение градунровочного графика

6.5.1 Построение градуировочного графика для массовой доли оксида марганца (II) от 0,1 до 5,0 % В мерные колбы вместимостью 100 см³ помещают 1; 2; 4; 6; 8 и 10 см³ стандартного раствора оксида марганца (II) Б, приготовленного по 4.2, что соответствует 0,0001; 0,0002; 0,0004; 0,0006; 0,0008; 0,0010 г оксида марганца (II), приливают 5 см³ соляной кислоты (1:1), доливают водой до метки и перемешивают.

Настраивают прибор на резонансиую линию 279.5 им.

Растворы распыляют в порядке увеличения абсорбции. Перед распылением каждого раствора распыляют воду.

6.5.2 Построение градуировочного графика для массовой доли оксида марганца (II) от 5 до 50 % В мерные колбы вместимостью 100 см³ помещают 1; 2; 4; 6; 8 и 10 см³ стандартного раствора оксида марганца (II) А, приготовленного по 4.2, что соответствует 0,001; 0,002; 0,004; 0,006; 0,008 и 0,010 г оксида марганца (II), приливают 5 см³ соляной кислоты (1:1), доливают водой до метки и перемешивают.

Настраивают прибор на резонансную линию 403,0 им.

Растворы распыляют в порядке увеличения абсорбции.

Перед распылением каждого раствора распыляют воду.

6.6 Обработка результатов

6.6.1 Из среднего значения абсорбции каждого из анализируемых растворов вычитают среднее значение абсорбции контрольного опыта.

По градуировочному графику находят массовую долю оксида марганца (II) в граммах.

6.6.2 Массовую долю оксида марганца X₂, %, вычисляют по формуле

$$X_2 = \frac{m}{m_s} 100$$
, (4)

где m — масса оксида марганца (II), найденная по градуировочному графику, г;

т – масса навески флюса, соответствующая аликвотной части раствора, г.

6.7 Нормы точности и нормативы контроля точности определения массовой доли оксида марганца (II) приведены в таблице 1. УДК 621.791.048:006.354

MKC 77.040

B09

OKCTY 0809

Ключевые слова: оксид марганца, потенциометрический метод, фотометрический метод, атомноабсорбционный метод, нормы точности

> Редактор Л.И. Нахимова Техническия редактор Л.А. Кузнецова Корректор М.И. Першина Компьютерная верстка В.И. Грищенко

Изд. лиц. № 021007 от 10.08.95,

Уч.-изд. л. 0,75.

Сдано в набор 06.07.99. Тираж 232 экз. Подписано в печать 188.99. С/Д 3717.

Зак. 807.

Усл. печ. п. 0,93,