ДРЕВЕСИНА

МЕТОДЫ ОПРЕДЕЛЕНИЯ ПРЕДЕЛА ПРОЧНОСТИ ПРИ СКАЛЫВАНИИ ВДОЛЬ ВОЛОКОН

Издание официальное

E3 1-99

МЕЖГОСУДАРСТВЕННЫЙ СТАНДАРТ

ДРЕВЕСИНА

Методы определения предела прочности при скалывании вдоль волокон

ГОСТ 16483.5—73* Взамен ГОСТ 16483.5—70

Wood. Methods for determination of ultimate shearing strength parallel to grain

ОКСТУ 5309

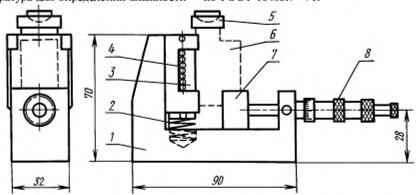
Постановлением Государственного комитета стандартов Совета Министров СССР от 23.10.73 № 2364 дата введения установлена 01.07.74 Ограничение срока действия снято по протоколу № 3—93 Межгосударственного Совета по стандартизации, метрологии и сертификации (ИУС 5-6—93)

Настоящий стандарт распространяется на древесину и устанавливает методы определения предела прочности при скалывании вдоль волокон.

Стандарт соответствует СТ СЭВ 814—77 и ИСО 3347—76 в части определения предела прочности при скалывании вдоль волокон кондиционированных образцов.

Методы не распространяются на авиационные пиломатериалы и заготовки.

МЕТОД ОПРЕДЕЛЕНИЯ ПРЕДЕЛА ПРОЧНОСТИ ПРИ СКАЛЫВАНИИ ВДОЛЬ ВОЛО-КОН


Метод предназначен для определения предела прочности древесины при кондиционировании образцов по ГОСТ 16483.0—89.

I.I. Аппаратура

Машина испытательная по ГОСТ 28840—90 с погрешностью измерения нагрузки не более 1 %. Приспособление к испытательной машине (см. черт. 1).

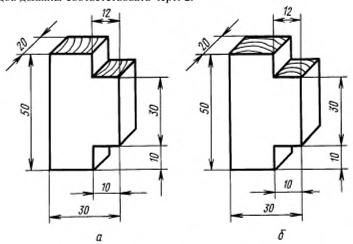
Штангенциркуль по ГОСТ 166-89 с погрешностью измерения не более 0,1 мм.

Аппаратура для определения влажности — по ГОСТ 16483.7—71.

I – корпус; 2 – пружина; 3 – подвижная планка; 4 – ролики; 5 – нажимная призма с шаровой опорой;
 6 – образец; 7 – подвижная опора; 8 – устройство для прижима подвижной опоры
 Черт. 1

Издание официальное

Перепечатка воспрещена


 * Переиздание (сентябрь 1999 г.) с Изменениями № 1, 2, 3, 4, утвержденными в июне 1977 г., январе 1979 г., ноябре 1983 г., октябре 1988 г. (ИУС 8—77, 3—79, 2—84, 1—89)

© ИПК Издательство стандартов, 1999

(Измененная редакция, Изм. № 2, 4).

1.2. Подготовка к испытанию

 1.2.1. Испытание на скалывание проводят по тангентальной и радиальной плоскостям. Форма и размеры образцов должны соответствовать черт. 2.

a — скалывание по тангентальной плоскости; δ — скалывание по радиальной плоскости

Черт. 2

- 1.2.2. Точность изготовления, влажность и количество образцов должны соответствовать ГОСТ 16483.0—89.
 - 1.3. Проведение испытания
- 1.3.1. Толщину образца b и длину скалывания I измеряют штангенциркулем по ожидаемой плоскости скалывания с погрешностью не более 0.1 мм.
- 1.3.2. Образец помещают в приспособление для испытания на скалывание (черт. 1). Подвижную опору 7 подводят до соприкосновения с образцом. Нагрузку на образец передают через нажимную призму с шаровой опорой 5. Образец нагружают равномерно с постоянной скоростью нагружения или постоянной скоростью перемещения нагружающей головки машины. Скорость должна быть такой, чтобы образец разрушился через (1,0±0,5) мин с момента нагружения. При использовании машины с электромеханическим приводом допускается проводить нагружение образца равномерно со скоростью (4000±1000) Н/мин или проводить испытания при скорости перемещения нагружающей головки испытательной машины 4 мм/мин, при условии достижения предела прочности при скалывании вдоль волокон в указанный интервал времени.

Максимальную нагрузку P измеряют с погрешностью не более 1 %.

(Измененная редакция, Изм. № 2, 4).

1.3.3. После испытания определяют влажность образцов в соответствии с ГОСТ 16483.7—71. Пробой для определения влажности является большая часть разрушенного образца.

Минимальное количество испытываемых на влажность образцов должно соответствовать ГОСТ 16483.0—89.

(Измененная редакция, Изм. № 2).

- 1.4. Обработка результатов
- 1.4.1. Предел прочности древесины при кондиционировании образцов (τ_w) в МПа вычисляют по формуле

$$\tau_W = \frac{P_{\text{max}}}{b \cdot I}$$

где P_{\max} — максимальная нагрузка, H; b — толщина образца, мм;

I — длина скалывания, мм.

Вычисление производят с округлением до 0.1 МПа.

1.4.2. Предел прочности (т_и) в МПа пересчитывают на влажность 12 % по формулам: для образцов с влажностью меньше предела гигроскопичности

$$\tau_{i}$$
, = τ_{ii} , [1+ α (W-12)],

где α — поправочный коэффициент на влажность, равный 0,03 для всех пород;

W — влажность образца в момент испытания, %;

для образцов с влажностью, равной или больше предела гигроскопичности

$$\tau_{12} = \frac{\tau_W}{K_{12}^{30}}$$
,

где K_{30}^{30} — коэффициент пересчета при влажности 30 %, равный 0.730 — для акации, вяза и дуба; 0,535 — для березы и ореха; 0,610 — для бука и груши, сосны кедровой и обыкновенной, ели и лиственницы; 0,570 — для граба, ивы, осины и тополя; 0,650 для клена, липы, ольхи, пихты и ясеня.

Вычисление производят с округлением до 0,1 МПа.

- 1.4.3. Статистическую обработку опытных данных выполняют по ГОСТ 16483.0—89.
- 1.4.4. Результаты испытаний и расчетов заносят в протокол испытаний, форма которого приведена в приложении 1.

(Измененная редакция, Изм. № 1).

2. МЕТОЛ ОПРЕДЕЛЕНИЯ ПРЕДЕЛА ПРОЧНОСТИ ПРИ СКАЛЫВАНИИ ВДОЛЬ ВОЛОКОН НЕКОНДИЦИОНИРОВАННЫХ ОБРАЗЦОВ

- 2.1. Аппаратура поп. 1.1.
- 2.2. Подготовка к испытанию
- 2.2.1. Образцы изготавливают по п. 1.2.1.
- 2.2.2. Точность изготовления и количество образцов должны соответствовать требованиям ГОСТ 16483.0—89.
- 2.2.3. Образцы должны находиться до испытания в условиях, исключающих изменение их начальной влажности. Для определения предела прочности без определения влажности допускается увлажнять образцы до влажности более 30 % в воде при температуре 15-25 °C в течение:
- не менее 8 ч образцы из древесины ели, сосны кедровой, заболони сосны обыкновенной, березы и других рессеяннососудистых пород:
- не менее 24 ч образцы из древесины лиственницы, ядра сосны, дуба и других кольцесосудистых пород.
- Проведение испытания по пп. 1.3.1—1.3.3. После испытания определяют влажность каждого образца с погрешностью не более 1 % по ГОСТ 16483.7-71. Пробой для определения влажности является большая часть разрушенного образца. Влажность увлажненных образцов из свежесрубленной древесины не определяют.
 - 2.4. Обработка результатов
- Предел прочности образца с влажностью в момент испытания (т_в) в МПа вычисляют по формуле

$$\tau_W = \frac{P_{\text{max}}}{b \cdot I},$$

где P_{\max} — максимальная нагрузка, Н; b — толщина образца, мм;

/- длина скалывания, мм.

Вычисление производят с округлением до 0,1 МПа.

Предел прочности пересчитывают на влажность 12 % (т,) в МПа по формуле

$$\tau_{12} = \frac{\tau_{W}}{K_{12}^{W}},$$

где К ^W₁₂ — коэффициент пересчета, определяемый по таблице при известной плотности древесины. Если определение плотности не производилось, допускается принимать коэффициент пересчета равным средней величине для исследуемой породы по таблице приложения 2.

Влаж	Коэффициент пересчета K_{12}^{W} при влютности ρ_{12} , κ_1/m^3										
ность, %	400	450	500	550	600	650	700	750	800	850	900
5	1,178	1,172	1,168	1,160	1,157	1,148	1,139	1,130	1,121	1,111	1,102
6	1,160	1,155	1,150	1,145	1,140	1,131	1,125	1,118	1,110	1,101	1,091
7	1,138	1,132	1,128	1,124	1,118	1,115	1,109	1,100	1.094	1,088	1,078
8	1,112	1,108	1,106	1,102	1,100	1,096	1,090	1,085	1,078	1,072	1,058
9	1,086	1,082	1,080	1,078	1,075	1,071	1,069	1,065	1,060	1,058	1,050
10	1,058	1,056	1,054	1,052	1,050	1,048	1,046	1,044	1,041	1,039	1,035
11	1,030	1,029	1,028	1,026	1,025	1,024	1,022	1,021	1,020	1,019	1.018
12	1,000	1,000	1,000	1,000	1,000	1,000	1,000	1,000	1,000	1,000	1,000
13	0.968	0.969	0.970	0.972	0.973	0.975	0.977	0.978	0,980	0,982	0.984
14	0.935	0.938	0.940	0.942	0,944	0.948	0,950	0,954	0,958	0,960	0.964
1.5	0,900	0.905	0,909	0.912	0.915	0,920	0,925	0.930	0,935	0,940	0.945
16	0,874	0,879	0,883	0.888	0,890	0,895	0,900	0,908	0,912	0,920	0.928
17	0,838	0.845	0,849	0,855	0.860	0.869	0,875	0.882	0.890	0,898	0,906
18	0,812	0.818	0,825	0,830	0,835	0,843	0,852	0.866	0,875	0,885	0.892
19	0,782	0,790	0,796	0,805	0,810	0,820	0,830	0,841	0,851	0,866	0.876
20	0,755	0,762	0,770	0,780	0,788	0.798	0,810	0.822	0,835	0.850	0.862
21	0,730	0,738	0,746	0,755	0,763	0,776	0.790	0,805	818,0	0,832	0.846
22	0,702	0,712	0,720	0,730	0,740	0,755	0,770	0.785	0,800	0,818	0.830
23	0,682	0,692	0,700	0,715	0,725	0,740	0,754	0.770	0,785	0,805	0,820
24	0,660	0,672	0,682	0,696	0,705	0,720	0,736	0,752	0,770	0,790	0,808
25	0,643	0,653	0,662	0,678	0,686	0,703	0,718	0,738	0,756	0,776	0,794
26	0,625	0,638	0,648	0,660	0,670	0,690	0,708	0,726	0,745	0,768	0,786
27	0,610	0,620	0,634	0,649	0,658	0,678	0,697	0,715	0,733	0,757	0,776
28	0,596	0,608	0,620	0,637	0.645	0,662	0,682	0,705	0,724	0,748	0,768
29	0,582	0,595	0,610	0,625	0,638	0,655	0,675	0,698	0.718	0,740	0,760
≥30	0.574	0,586	0,600	0,615	0,630	0,645	0,668	0,688	0.710	0,732	0,755

 Π р и м е ч а н и е. Коэффициент пересчета K_{12}^W для промежуточных значений плотности определяют линейным интерполированием коэффициентов K_{12}^{W} для смежных значений плотности.

Пример. Коэффициент пересчета K_{12}^{30} для породы с плотностью 650 кг/м³ равен 0,645. Коэффициент пересчета K_{12}^{30} для породы с плотностью 700 кг/м³ равен 0,668. Коэффициент K_{12}^{30} для породы с плотностью 670 кг/м³ определяется по формуле

$$K_{12}^{30} = 0.645 + (0.668 - 0.645) \cdot \frac{670 - 650}{50} = 0.654.$$

Вычисление производят с округлением до 0,1 МПа.

- Статистическую обработку опытных данных выполняют по ГОСТ 16483.0—89.
- 2.4.4. Результаты испытаний и расчетов заносят в протокол испытаний, форма которого приведена в приложении 3.

(Измененная редакция, Изм. № 1).

ПРИЛОЖЕНИЕ 1 Рекомендуемое

ПРОТОКОЛ определения предела прочности при скалывании вдоль волокон

Порода				Температура воздуха Θ, °С						
Маркировка образца	Плоскость	Размеры площади скалывания, мм		Макси- мальная	Влажность	Предел прочности, МПа		_		
	скалывания	ь	ı	нагрузка _{Ртах} , Н	W. %	τ _{pp}	τ ₁₂	Примечание		
«»	19) r.				Под	пись	l.		

ПРИЛОЖЕНИЕ 2 Справочное

	Средние коэффициенты пересчета К 12 лля пород								
Влажность, %	акация, вяз, дуб	береза, орех	бук, груша, ель, лиственница, сосна кедровая и обыкновенная	граб, ива, осина, гололь	клен, липа, пихта ольха, ясень				
5	1,280	1,235	1,245	1,240	1,260				
6	1,230	1,195	1.212	1,205	1,220				
7	1,180	1,160	1,180	1,175	1,180				
8	1,145	1,125	1,145	1,140	1,145				
9	1,100	1,095	1,105	1,105	1,110				
10	1,070	1,065	1,065	1,065	1.070				
11	1,035	1,035	1.035	1,035	1.035				
12	1,000	1,000	1,000	1,000	1,000				
13	0.970	0.970	1,965	0,970	0.970				
14	0.950	0.945	0.945	0,940	0.940				
15	0.910	0,915	0.915	0,910	0.910				
16	0,885	0,885	0,885	0,880	0.885				
17	0,860	0,855	0,860	0,855	0,860				
18	0,840	0,830	0.830	0,825	0,835				
19	0,815	0,805	0,810	0,800	0.810				
20	0.800	0.775	0.785	0.780	0.790				
21	0.780	0.745	0.765	0,750	0.765				
22	0,770	0,720	0,745	0.730	0.740				
23	0,755	0.695	0,725	0,705	0.730				
24	0,745	0,675	0,705	0,685	0,715				
25	0,740	0,650	0,690	0,660	0,700				
26	0,735	0,625	0,670	0,645	0,690				
27	0,730	0,605	0,655	0,625	0,680				
28	0,725	0,580	0,640	0,610	0,670				
29	0,720	0,560	0,625	0,590	0,660				
≥30	0,720	0.535	0,610	0,570	0,650				

протокол

					Температура воздуха Ө, °С						
Маркировка	Плоскость	ресчета по таблице н Размеры площади скалывания		макен- мальная	стандарта и Влажность	ли по табли Коэффи- циент	ице приложения 2. Предел прочности, МПа		Приме-		
образца	скалыва- иня	ħ	1	нагрузка _{Ртах} , Н	₩, %	пересчета К ^В / ₁₂	τμ	τ,2	чание		

ПРИЛОЖЕНИЕ 4 Справочное

Информационные данные о соответствии ГОСТ 16483.5—73 и СТ СЭВ 814—77. Раздел 1 ГОСТ 16483.5—73 соответствует СТ СЭВ 814—77.

ПРИЛОЖЕНИЕ 4. (Введено дополнительно, Изм. № 2).

Редактор В.Н. Копысов Технический редактор Л.А. Кулиецова Корректор М.С. Кабашова Компьютерная верстка С.В. Рябовой

Изд. лиц. № 021007 от 10.08.95, Сдвио в набор 25.08.99. Подписано в печать 23.09.99, Усл.печ.л. 0,93, Уч.-изд.л. 0,67. Тираж 142 экз. С 3737, Зак. 785.

ИПК Издательство стандартов, 107076, Москва, Колодезный пер., 14.

Набрано в Издательстве на ПЭВМ
Филиал ИПК Издательство стандартов — тип. "Московский печатник", Москва, Лялии пер., 6
Пар № 080102