к ГОСТ 12697.3—77 Алюминий. Методы определения марганца [см. Издание (июнь 1999 г.) с Изменениями № 1, 2, 3, 4 и сборник «Алюминий. Методы химического анализа». Издание 2002 г.]

В каком месте	Напсчатано	Должно быть
Первая страница стандарта. Дата вве-		
дения	18.11.80 № 5881	27.09.77 № 2315

(ИУС № 1 2005 г.)

МЕЖГОСУДАРСТВЕННЫЙ СТАНДАРТ

АЛЮМИНИЙ

Методы определения марганца

ΓΟCT 12697.3-77

Aliminium.

Methods for determination of manganese

Взамен ГОСТ 12699—67 в части разд. 2

MKC 77.120.10 OKCTY 1709

Постановлением Государственного комитета СССР по стандартам от 18.11.80 № 5881 дата введения установлена

01.01.79

Ограничение срока действия снято по протоколу № 3—93 Межгосударственного совета по стандартизации, метрологии и сертификации (ИУС 5-6—93)

Настоящий стандарт устанавливает методы определения марганца в алюминии: фотометрический при массовой доле от 0,001 до 0,015 % и атомно-абсорбционный при массовой доле от 0,005 до 0,015 %. (Измененная редакция, Изм. № 3, 4).

1. ОБЩИЕ ТРЕБОВАНИЯ

1.1. Общие требования к методу анализа — по ГОСТ 12697.1—77 и ГОСТ 25086—87. (Измененная редакция, Изм. № 4).

А. Фотометрический метод

Сущность метода состоит в окислении марганца в кислой среде до семивалентного состояния с помощью периодата калия или натрия и фотометрировании окраски марганцовой кислоты при $\lambda = 528$ нм.

(Измененная редакция, Изм. № 3).

2. АППАРАТУРА, РЕАКТИВЫ И РАСТВОРЫ

Фотоэлектроколориметр типов ФЭК-56M, ФЭК-60, КФК или спектрофотометр типов СФ-16, СФ-26, или аналогичного типа.

Весы лабораторные по ГОСТ 24104-88* 2-го класса точности с погрешностью взвешивания 0,0002 г.

Кислота серная по ГОСТ 4204-77 и разбавленная 1 : 1.

Кислота азотная по ГОСТ 4461-77.

Кислота ортофосфорная по ГОСТ 6552-80, разбавленная 1:1.

Водорода пероксид по ГОСТ 10929-76.

Натрия гидроксид по ГОСТ 4328—77, раствор с массовой долей 20 % хранят в полиэтиленовой посуде.

Смесь кислот; готовят следующим образом: к 525 см³ воды приливают при перемешивании 100 см³ концентрированной серной кислоты и 250 см³ концентрированной азотной кислоты.

Издание официальное

Перепечатка воспрещена

Издание с Изменениями № 1, 2, 3, 4, утвержденными в ноябре 1981 г., ноябре 1985 г., мае 1987 г., мае 1988 г. (ИУС 1—82, 2—86, 8—87, 8—88).

^{*} С 1 июля 2002 г. введен в действие ГОСТ 24104—2001.

Калий йоднокислый (периодат) или натрий йоднокислый, свежеприготовленный раствор с массовой долей 5 %.

5 г периодата калия или натрия растворяют в воде при нагревании, добавляют 20 см³ азотной кислоты и доводят объем водой до 100 см³.

Вода без восстановителей; готовят следующим образом: к 1000 см³ дистиллированной воды добавляют 5 см³ серной кислоты, разбавленной 1:1, нагревают до кипения, добавляют несколько кристаллов йоднокислого калия или натрия и кипятят в течение 10 мин.

Калий марганцовокислый по ГОСТ 20490-75.

Растворы марганца стандартные.

Натрий сернистокислый,

Натрий азотистокислый по ГОСТ 4197—74, раствор 20 г/дм3.

Марганец металлический, предварительно очищают следующим образом: несколько граммов металла помещают в стакан вместимостью 250 см³, добавляют около 80 см³ серной кислоты, разбавленной 1:1, и 100 см³ воды, перемешивают и через несколько минут сливают раствор.

Металл промывают два раза водой, затем ацетоном, сущат в сущильном шкафу при 100 °C в течение 2 мин и охлаждают в эксикаторе.

Раствор А; готовят следующим образом: 0,2877 г марганцовокислого калия растворяют в воде, добавляют 20 см³ серной кислоты, разбавленной 1:1, нагревают, добавляют по каплям раствор пероксида водорода или несколько кристаллов сернистокислого натрия до обесцвечивания и выпаривают раствор до выделения паров серной кислоты. Остаток после охлаждения растворяют в воде и переносят раствор в мерную колбу вместимостью 1000 см³, доливают до метки водой и перемешивают или 0,1000 г марганца растворяют в стакане вместимостью 600 см³ под часовым стеклом в 20 см³ концентрированной серной кислоты с добавлением 100 см³ воды. Раствор кипятят несколько минут, охлаждают, переносят в мерную колбу вместимостью 1000 см³, доливают до метки водой и перемешивают.

1 см1 раствора А содержит 0,1 мг марганца (Mn).

Раствор Б; готовят перед употреблением следующим образом: отбирают пипеткой 50 см³ раствора А в мерную колбу вместимостью 500 см³, доливают водой до метки и перемешивают.

1 см³ раствора Б содержит 0,01 мг марганца (Mn).

Марганец металлический в виде стружки.

Ацетон по ГОСТ 2603—79.

(Измененная редакция, Изм. № 1, 3, 4).

3. ПРОВЕДЕНИЕ АНАЛИЗА

3.1. Навеску алюминия массой 1 г помещают в коническую колбу вместимостью 250 см³ и приливают 20 см³ раствора гидроксида натрия. После окончания бурной реакции обмывают стенки колбы водой и нагревают до растворения навески. К охлажденному раствору добавляют 30 см³ воды, и, перемешивая, приливают 40 см³ смеси кислот. Стенки колбы обмывают водой и нагревают до полного растворения гидроксида алюминия и получения прозрачного раствора. К горячему раствору приливают 3 см³ ортофосфорной кислоты, нагревают до кипения и прибавляют 10 см³ раствора периодата калия или натрия, кипятят 5 мин до появления розовой окраски, затем выдерживают 30 мин при температуре, близкой к температуре кипения, поддерживая объем раствора около 50 см³.

Окрашенный раствор переносят в мерную колбу вместимостью 50 см³, предварительно обмытую водой, не содержащей восстановителей, и разбавляют до метки такой же водой. Раствором сравнения служит вода. Оптическую плотность испытуемого раствора измеряют на фотоэлектроколориметре или на спектрофотометре, учитывая, что максимум светопоглощения растворов соответствует длине волны 528 нм. В присутствии окрашенных ионов после измерения оптической плотности раствора марганцевую кислоту разрушают двумя каплями раствора азотистокислого натрия и повторяют измерение оптической плотности. Разница между двумя полученными значениями соответствует оптической плотности действительной массы марганца в пробе.

Одновременно проводят контрольный опыт, для этого 15 см³ смеси кислот выпаривают досуха. К остатку приливают небольшое количество горячей воды, 25 см³ смеси кислот и нагревают. После этого приливают 20 см³ раствора гидроксида натрия, 3 см³ ортофосфорной кислоты и проводят анализ, как указано выше.

C. 3 FOCT 12697.3-77

Массу марганца определяют по градуировочному графику, учитывая поправку контрольного опыта.

(Измененная редакция, Изм. № 1, 3, 4).

3.2. Построение градуировочного графика

В конические колбы вместимостью по 250 см³ приливают из микробюретки 0; 1; 2; 4; 6; 8; 10; 12; 15 и 18 см³ раствора Б, что соответствует 0; 0,01; 0,02; 0,04; 0,06; 0,08; 0,10; 0,12; 0,15 и 0,18 мг марганца. В каждую колбу добавляют по 20 см³ смеси кислот, 3 см³ ортофосфорной кислоты и далее поступают, как указано в п. 3.1. Раствором сравнения служит раствор, в который марганец не добавляют.

По полученным значениям оптических плотностей растворов и известным массам марганца строят градуировочный график.

(Измененная редакция, Изм. № 1, 4).

4. ОБРАБОТКА РЕЗУЛЬТАТОВ

4.1. Массовую долю марганца (Х) в процентах вычисляют по формуле

$$X = \frac{(m_1 - m_2) \cdot 100}{m \cdot 1000}$$
,

где m₁ — масса марганца в растворе пробы, найденная по градуировочному графику, мг;

 m_2 — масса марганца в растворе контрольного опыта, найденная по градуировочноиу графику, мг; m — масса навески, г.

(Измененная редакция, Изм. № 3).

4.2. Допускаемые расхождения результатов параллельных определений не должны превышать значений, указанных в таблице.

Массовая доля мартанца, %	Допускаемое расхождение, %	
	сходимости, отн.	воспроизводимости, отн.
От 0,001 до 0,003 включ.	30	45
Св. 0,003 » 0,008 »	20	30
* 0,008 * 0,0015 *	15	25

(Измененная редакция, Изм. № 3, 4).

Б. Атомно-абсорбционный метод

Сущность метода состоит в растворении пробы алюминия в соляной кислоте в присутствии пероксида водорода и последующем измерении атомной абсорбции марганца при длине волны 279,5 нм в пламени ацетилен-воздух.

5. АППАРАТУРА, РЕАКТИВЫ И РАСТВОРЫ

Атомно-абсорбционный спектрофотометр со всеми принадлежностями и с источником излучения для марганца.

Ацетилен в баллонах технический по ГОСТ 5457—75.

Кислота соляная по ГОСТ 3118-77, разбавленная 1:1.

Кислота серная по ГОСТ 4204-77, разбавленная 1:1.

Натрий сернистокислый по НД.

Водорода пероксид по ГОСТ 10929-76.

Ацетон по ГОСТ 2603-79.

Никель двухлористый (NiCl₂ · 6H₂O) по ГОСТ 4038-79, раствор 2 г/дм³.

Алюминий в виде стружки с массовой долей марганца не более 0,001 %. При необходимости стружку перед употреблением промывают ацетоном, высушивают в сушильном шкафу при температуре 100 °C в течение 2—3 мин и охлаждают в эксикаторе.

Раствор алюминия 20 г/дм³: 10 г алюминия помещают в стакан вместимостью 600 см³, приливают 300 см³ раствора соляной кислоты и растворяют при нагревании, добавляя 1 см³ раствора двухлористого никеля. Раствор охлаждают, переносят в мерную колбу вместимостью 500 см³; доливают до метки водой и перемешивают.

Марганец металлический в виде стружки.

Если поверхность металла покрыта оксидной пленкой, то ее очищают, как указано в разд. 2.

Калий марганцовокислый по ГОСТ 20490—75.

Стандартные растворы марганца.

Раствор A — по разд. 2.

Раствор Б: 250 см³ раствора А переносят в мерную колбу вместимостью 500 см³, доливают до метки водой и перемешивают. Готовят перед употреблением.

1 см³ раствора Б содержит 0,05 мг марганца.

6. ПРОВЕДЕНИЕ АНАЛИЗА

6.1. Навеску пробы массой 1,0 г помещают в стакан вместимостью 250 см³, приливают 30 см³ раствора соляной кислоты, при необходимости для ускорения растворения добавляют 0,5 см³ раствора двухлористого никеля. Стакан накрывают часовым стеклом. После прекращения бурной реакции раствор осторожно нагревают и добавляют несколько капель раствора пероксида водорода. После растворения избыток пероксида водорода удаляют кипячением, часовое стекло и стенки стакана ополаскивают горячей водой.

Полученный раствор, при необходимости, упаривают, охлаждают, переносят в мерную колбу вместимостью 100 см³, доливают до метки водой и перемешивают.

Раствор контрольного опыта готовят согласно п. 6.1, используя вместо навески пробы навеску алюминия, с содержанием марганца не более 0,001 %.

Измеряют атомную абсорбцию марганца в растворе пробы, в растворе контрольного опыта и в растворах для построения градуировочного графика при длине волны 279,5 нм в пламени ацетиленвоздух. Концентрацию марганца в растворе пробы и в растворе контрольного опыта определяют по градуировочному графику.

6.2. Для построения градуировочного графика в пять мерных колб вместимостью по 100 см³ отмеряют по 50 см³ раствора алюминия, затем в четыре из них приливают 1,0; 2,0; 3,0; 4,0 см³ стандартного раствора Б, что соответствует 0,05, 0,10, 0,15, 0,20 мг марганца.

Растворы в колбах доливают до метки водой, перемешивают и измеряют атомную абсорбцию марганца, как указано в п. 6.1.

Из полученных значений атомной абсорбции растворов, содержащих стандартный раствор, вычитают значение атомной абсорбции раствора, не содержащего стандартного раствора, и по полученным значениям атомной абсорбции и соответствующим им массам марганца строят градуировочный график.

7. ОБРАБОТКА РЕЗУЛЬТАТОВ

7.1. Массовую долю марганца (X) в процентах вычисляют по формуле

$$X_1 = \frac{(m_1 - m_2) \cdot 100}{m \cdot 1000}$$
,

где m. — масса марганца в растворе пробы, найденная по градуировочному графику, мг;

 \dot{m}_2 — масса марганца в растворе контрольного опыта, найденная по градуировочному графику, мг; m — масса навески пробы, г.

7.2. Расхождения результатов параллельных определений не должны превышать значений, указанных в таблице.

Разд. Б. (Введен дополнительно, Изм. № 3).

к ГОСТ 12697.3—77 Алюминий. Методы определения марганца [см. Издание (июнь 1999 г.) с Изменениями № 1, 2, 3, 4 и сборник «Алюминий. Методы химического анализа». Издание 2002 г.]

В каком месте	Напсчатано	Должно быть
Первая страница стандарта. Дата вве-	54 - (0) v A .]	
дения	18.11.80 № 5881	27.09.77 № 2315

(ИУС № 1 2005 г.)