МЕЖГОСУДАРСТВЕННЫЙ СТАНДАРТ

АЛЮМИНИЙ

Методы определения магния

ΓΟCT 12697.2-77

Aluminium.

Methods for determination of magnesium

Взамен ГОСТ 12698—67 в части разд. 2

МКС 77.120.10 ОКСТУ 1709

Постановлением Государственного комитета стандартов Совета Министров СССР от 27.09.77 № 2315 дата введения установлена

01.01.79

Ограничение срока действия сиято по протоколу № 3—93 Межгосударственного совета по стандартизации, метрологии и сертификации (ИУС 5-6—93)

Настоящий стандарт устанавливает фотометрический и атомно-абсорбционный методы определения магния в алюминии (при массовой доле магния от 0,001 до 0,02 %).

(Измененная редакция, Изм. № 2).

1. ОБЩИЕ ТРЕБОВАНИЯ

1.1. Общие требования к методам анализа — по ГОСТ 12697.1—77 и ГОСТ 25086—87. (Измененная редакция, Изм. № 1, 2).

2. ФОТОМЕТРИЧЕСКИЙ МЕТОД ОПРЕДЕЛЕНИЯ МАГНИЯ

2.1. Сущность метода

Метод основан на образовании гидроксидом магния окрашенного абсорбционного соединения с феназо, которое фотометрируют при $\lambda = 560$ нм. Предварительно осаждают примеси, мешающие реакции.

2.2. Аппаратура, реактивы и растворы

Фотоэлектроколориметр типов ФЭК-56M, ФЭК-60, КФК или спектрофотометр типов СФ-16, СФ-26 или аналогичного типа.

Весы лабораторные по ГОСТ 24104—88* 2-го класса точности с погрешностью взвешивания 0,0002 г.

Кислота азотная по ГОСТ 4461-77, разбавленная 1:1.

Кислота соляная по ГОСТ 3118—77, разбавленная 1:1, 1:3 и 0,01 моль/дм³ раствор.

Кислота серная по ГОСТ 4204-77, разбавленная 1:5.

Смесь кислот; готовят следующим образом: смещивают 10 см³ азотной кислоты, разбавленной 1:1, с 300 см³ соляной кислоты, разбавленной 1:3.

Железо металлическое, полученное карбонильным способом.

Раствор железа 1 г/дм³; готовят следующим образом: растворяют при нагревании 0,1 г железа в 10 см³ соляной кислоты, разбавленной 1 : 1, с несколькими каплями азотной кислоты и разбавляют водой до 100 см³.

Натрия гидроксид по ГОСТ 4328—77, растворы с массовой долей 20 %, 2 % и 2 моль/дм³ хранят в полиэтиленовой посуде.

* С 1 июля 2002 г. введен в действие ГОСТ 24104—2001 (здесь и далее).

Издание официальное

Перепечатка воспрещена

Спирт поливиниловый, раствор с массовой долей 0,5 %, готовят следующим образом: 1,25 г реактива помещают в стакан вместимостью 250 см³, приливают 100 см³ воды и нагревают до растворения, раствор фильтруют и после охлаждения разбавляют водой до 250 см³.

Желатин пищевой по ГОСТ 11293—89, раствор с массовой долей 0,5 %; готовят следующим образом: 100 см³ воды помещают в коническую колбу вместимостью 250 см³, нагревают до 70 °C, насыпают при перемешивании 0,5 г желатина и нагревают, перемешивая до растворения. Готовят перед применением.

Натрия диэтилдитиокарбамат по ГОСТ 8864-71, раствор с массовой долей 5 %.

Феназо, раствор с массовой долей 0,005 % в растворе гидроксида натрия 2 моль/дм³.

Индикаторная бумага конго.

Магний по ГОСТ 804-93.

Растворы магния стандартные.

Раствор А; готовят следующим образом: 1 г металлического магния растворяют в 30 см³ соляной кислоты, разбавленной 1:1, раствор переводят в мерную колбу вместимостью 1000 см³, разбавляют до метки водой и перемешивают.

1 см³ раствора А содержит 1 мг магния.

Раствор Б; готовят перед употреблением следующим образом: пипеткой отбирают 5 см³ раствора А в мерную колбу вместимостью 500 см³, доливают до метки водой и перемешивают.

1 см3 раствора Б содержит 0,01 мг магния.

- 2.1, 2.2. (Измененная редакция, Изм. № 2).
- 2.3. Проведение анализа
- 2.3.1. Навеску алюминия массой 2 г помещают в стакан вместимостью 400 см³, приливают 50 см³ раствора гидроксида натрия с массовой долей 20 % и покрывают стакан часовым стеклом. После окончания бурной реакции обмывают стекло и стенки стакана водой и нагревают до растворения навески. Затем приливают 200 см³ горячей воды, 2 см³ раствора железа, перемешивают и нагревают до коагуляции осадка. Теплый раствор фильтруют через фильтр синяя лента, обмывают стакан и промывают осадок на фильтре 5—6 раз горячим раствором гидроксида натрия с массовой долей 2 %. Осадок на фильтре растворяют в 20 см³ горячей смеси кислот и промывают фильтр 5—6 раз горячей водой.

Раствор собирают в стакан, где производилось растворение, и нейтрализуют раствором гидроксида натрия, добавляя его по каплям до сиреневой окраски бумаги конго. Последние капли щелочи добавляют с интервалом 20—30 с, так как цвет бумаги конго изменяется не мгновенно. Затем раствор переводят в мерную колбу вместимостью 100 см³, приливают 30 см³ раствора диэтилдитиокарбамата натрия, разбавляют до метки водой и перемешивают. После коагуляции осадка раствор фильтруют через сухой фильтр в сухую колбу вместимостью 100 см³. Первые порции фильтрата отбрасывают. Отбирают пипеткой 10—50 см³ раствора в зависимости от предполагаемого содержания магния в мерную колбу вместимостью 100 см³.

Разбавляют раствор водой до 50 см³, приливают 5 см³ поливинилового спирта или раствора желатина, пипеткой или из бюретки добавляют 10 см³ феназо, 15 см³ раствора гидроксида натрия с массовой долей 20 %, разбавляют водой до метки и перемешивают. Растворы феназо и гидроксида натрия прибавляют при перемешивании.

Через 20 мин измеряют оптическую плотность раствора на фотоэлектроколориметре или спектрофотометре, учитывая, что максимум светопоглощения растворов соответствует длине волны 560 нм.

Раствором сравнения служит вода.

Одновременно проводят контрольный опыт.

Массу магния определяют по градуировочному графику, учитывая поправку контрольного опыта.

2.3.2. Построение градуировочного графика

В мерные колбы вместимостью по 100 см³ приливают из микробюретки 0, 1, 2, 4, 6, 8, 10, 12 см³ стандартного раствора Б, что соответствует 0, 0,01, 0,02, 0,04, 0,06, 0,08, 0,10, 0,12 мг магния, разбавляют раствор в каждой колбе до 50 см³ водой, приливают по 5 см³ поливинилового спирта или раствора желатина и далее поступают, как указано в п. 2.3.1.

Раствором сравнения служит раствор, в который магний не добавлялся. По полученным значениям оптических плотностей растворов и известным массам магния строят градуировочный график.

2.3.1, 2.3.2. (Измененная редакция, Изм. № 2).

C. 3 FOCT 12697.2-77

2.4. Обработка результатов

2.4.1. Массовую долю магния (Х) в процентах вычисляют по формуле

$$X = \frac{m \cdot V \cdot 100}{V_1 \cdot m_1 \cdot 1000},$$

где m — масса магния, найденная по градуировочному графику, мг;

V — общий объем раствора, см³;

 V_1 — объем аликвотной части раствора, см³;

т. — масса навески алюминия, г.

 2.4.2. Допускаемые расхождения результатов параллельных определений не должны превышать значений, указанных в табл. 1.

Таблица1

Массовая доля магния, %	Допускаемое расхождение, %	
	сходимости, отн.	воспроизводимости, отн
От 0,001 до 0,003 включ.	30	45
CB. 0,003 * 0,01 *	20	30
» 0.01 » 0.02 »	15	25

(Измененная редакция, Изм. № 2).

3. АТОМНО-АБСОРБЦИОННЫЙ МЕТОД ОПРЕДЕЛЕНИЯ МАГНИЯ

3.1. Сущность метода

Сущность метода заключается в измерении атомной абсорбции раствора алюминия, содержащего магний, на атомно-абсорбционном спектрометре в пламени воздух — ацетилен при длине волны 285.2 нм.

3.2. Аппаратура, реактивы и растворы

Спектрофотометр атомно-абсорбционный модели «Перкин-Элмер», «Сатурн» или аналогичного типа.

Лампа полого катода, предназначенная для определения магния.

Весы лабораторные по ГОСТ 24104—88 2-го класса точности с погрешностью взвешивания 0,0002.

Кислота соляная по ГОСТ 3118-77, разбавленная 1:1.

Магний по ГОСТ 804-93.

Апетилен растворенный технический по ГОСТ 5457-75.

Алюминий марки А995 по ГОСТ 11069-2001.

Ртуть по ГОСТ 4658-73.

Никель хлористый по ГОСТ 4038-79, раствор с массовой долей 1 %.

Основной раствор алюминия; готовят следующим образом: 10 г стружки алюминия высокой чистоты помещают в стакан вместимостью 600 см³, приливают порциями 100—150 см³ соляной кислоты и добавляют одну каплю ртути или две-три капли раствора хлористого никеля. После растворения алюминия раствор выпаривают до влажных солей, добавляют 200—250 см³ воды, переносят в мерную колбу вместимостью 500 см³, доливают до метки водой и перемешивают.

Растворы магния стандартные,

Раствор А; готовят следующим образом: 1,0000 г металлического магния растворяют в 30 см³ соляной кислоты, раствор переносят в мерную колбу вместимостью 1000 см³, доливают до метки водой и перемешивают.

1 см3 раствора А содержит 1 мг магния (Mg).

Раствор Б; готовят перед употреблением следующим образом: 5 см³ стандартного раствора А помещают в колбу вместимостью 500 см³, добавляют 10 см³ соляной кислоты, доливают до метки водой и перемешивают.

1 см³ раствора Б содержит 0,01 мг магния (Mg).

(Измененная редакция, Изм. № 2).

3.3. Проведение анализа

3.3.1. Навеску алюминия массой 1 г помещают в стакан вместимостью 400 см³, добавляют 30 см³ соляной кислоты и растворяют, при необходимости слегка подогревая. Полученный раствор выпаривают до выпадения влажных солей, добавляют 40—50 см³ воды, переносят в мерную колбу вместимостью 100 см³ и доводят до метки водой.

Полученный раствор пробы распыляют в пламя атомно-абсорбционного спектрометра и измеряют абсорбцию в пламени воздух — ацетилен при длине волны 285,2 нм. Давление воздуха и ацетилена соответствует конструкции прибора. Одновременно проводят контрольный опыт. Для этого в мерную колбу вместимостью 100 см³ помещают 50 см³ основного раствора алюминия, 20 см³ соляной кислоты, доливают до метки водой и перемещивают.

Массовую долю магния в растворе пробы и растворе контрольного опыта определяют по градуировочному графику, который строят при каждой съемке.

(Измененная редакция, Изм. № 2).

3.3.2. Построение градуировочного графика

В мерные колбы вместимостью по 100 см^3 помещают по 50 см^3 основного раствора алюминия и соответственно 0; 1; 2; 5; 7; 10; 15; 20; 25; 30; 35 и 40 см^3 стандартного раствора B, что соответствует 0; 0,001; 0,002; 0,005; 0,007; 0,010; 0,015; 0,020; 0,025; 0,030; 0,035 и 0,040 % магния B алюминии доводят до метки водой и перемешивают.

Приготовленные растворы фотометрируют на атомно-абсорбционном спектрометре. По полученным значениям абсорбции и известным концентрациям магния в процентах строят градуировочный график.

3.4. Обработка результатов

3.4.1. Массовую долю магния (X) в процентах вычисляют по формуле

$$X = C - C_1$$

где

С — массовая доля магния в пробе, найденная по градуировочному графику, %;

С. - массовая доля магния в контрольном опыте, найденная по градуировочному графику, %.

 3.4.2. Допускаемые расхождения результатов параллельных определений не должны превышать значений, указанных в табл. 1.

3.4.1, 3.4.2. (Введены дополнительно, Изм. № 2).