МЕЖГОСУДАРСТВЕННЫЙ СТАНДАРТ

НЕФТЕПРОДУКТЫ СВЕТЛЫЕ

Методы определения йодных чисел и содержания непредельных углеводородов

ΓΟCT 2070-82

Light petroleum products. Methods for determination of iodine numbers and content of unsaturated hydrocarbons

MKC 75.080 OKCTY 0209

Дата введения 01.07.83

Настоящий стандарт устанавливает два метода (A и Б) определения йодных чисел и массовой доли непредельных углеводородов в бензинах, топливах для реактивных двигателей, дизельных топливах и других светлых нефтепродуктах.

Сущность методов заключается в обработке испытуемого нефтепродукта спиртовым раствором йода, оттитровывании свободного йода раствором тиосульфата натрия и определении йодного числа в граммах йода, присоединяющегося к 100 г нефтепродукта.

Массовую долю непредельных углеводородов определяют по йодному числу и средней молекулярной массе испытуемого нефтепродукта.

(Измененная редакция, Изм. № 2).

1. МЕТОД А

1.1. Аппаратура, реактивы и растворы

Стаканчики для взвешивания (бюксы) внешним диаметром 10 мм, высотой 15 мм, с притертой пробкой. Вместо стаканчиков используют стеклянные ампулы вместимостью от 0,5 до 1 см² с оттянутыми в капилляр концами.

Капельницы с притертой пробкой по ГОСТ 25336.

Пипетки по ГОСТ 29227

исполнений 4, 5 вместимостью 1, 2 см3;

исполнений 6. 7 вместимостью 5 см3.

Колбы с притертой пробкой по ГОСТ 25336, вместимостью 250, 500 см3.

Цилиндры по ГОСТ 1770, исполнений 1 и 3, вместимостью 25 и 250 см³.

Бюретки 1-2-25 и 1-2-50 по ГОСТ 29251.

Спирт этиловый ректификованный технический по ГОСТ 18300, высший сорт.

Калий йодистый по ГОСТ 4232, х. ч или ч. д. а., 20 %-ный раствор.

Йод квалификации не ниже ч. д. а.

Натрий серноватистокислый (тиосульфат натрия) по ГОСТ 27068, раствор 0,1 моль/дм3 (0,1 н).

Крахмал растворимый по ГОСТ 10163, 0.5 %-ный водный раствор, приготовленный по ГОСТ 4919.1.

Ацетон по ГОСТ 2603.

Кислота серная по ГОСТ 4204, ч. д. а., раствор 1:3.

Вода дистиллированная, рН 5,4-6,6.

Калий двухромовокислый (бихромат калия) по ГОСТ 4220.

Весы лабораторные с погрешностью взвешивания не более 0,0002 г.

Допускается применять реактивы и растворители по другой НД квалификации не ниже указанной в стандарте.

(Измененная редакция, Изм. № 1, 2).

Издание официальное

Перепечатка воспрещена

C. 2 FOCT 2070-82

- 1.2. Подготовка к испытанию
- 1.2.1. Подготовка проб

Отбор проб производят по ГОСТ 2517.

Нефтепродукт, содержащий влагу, фильтруют или высушивают осущающим веществом.

- 1.2.2. Приготовление спиртового раствора йода
- 20,0 г металлического йода растворяют в 1000 см³ этилового спирта.
- 1.2.3. Определение фактора раствора тиосульфата натрия

В конической колбе вместимостью 250 см³ взвешивают от 0,08 до 0,10 г перекристаллизованного бихромата калия с погрешностью не более 0,0002 г. Добавляют 80 см³ дистиллированной воды до растворения и быстро добавляют еще 10 см³ 20 %-ного раствора йодистого калия и 5 см³ разбавленной серной кислоты. Закрывают колбу, хорошо встряхивают и ставят в темное место на 5 мин.

Пробку и стенки колбы промывают водой и титруют раствором тиосульфата натрия в присутствии крахмала.

Фактор раствора тиосульфата натрия вычисляют по формуле

$$F = \frac{m}{0.0049037} \cdot V$$

где m — масса бихромата калия, г;

0,0049037 — масса бихромата калия, эквивалентная 1 см³ раствора точно 0,1 моль/дм³ (0,1 н) тиосульфата натрия, г;

V — объем тиосульфата, израсходованный на титрование, см³.

Фактор раствора тиосульфата натрия проверяют не менее одного раза в месяц.

1.3. Проведение испытания

1.3.1. Взвешивают в стаканчиках необходимое количество нефтепродукта с погрешностью не более 0,0004 г в зависимости от предполагаемого йодного числа, как указано в табл. 1.

Таблица 1

Йодное число, г йода на 100 г нефтепродукта	Масса нефтепродукта, г	
До 5,0	От 2,0 до 4,0	
Св. 5,0 » 10	* 1,0 * 2,0	
» 10	* 0.2 * 0.4	

При взятии массы нефтепродукта с помощью ампулы ее взвешивают и нагревают над пламенем горелки или спиртовки. Кончик капилляра нагретой ампулы быстро погружают в испытуемый нефтепродукт, налитый в стаканчик для взвешивания, а шарик ампулы, в случае необходимости, охлаждают льдом или сухим льдом. После заполнения осторожно запаивают кончик капилляра ампулы и снова взвешивают.

Для взятия массы нефтепродукта при помощи капельницы его наливают в капельницу и взвешивают. В коническую колбу наливают 15 см³ этилового спирта и из капельницы отсчитывают 13—15 капель нефтепродукта. Капельницу снова взвешивают и по разности определяют массу нефтепродукта.

При отсутствии стаканчиков, ампулы или капельницы необходимое количество испытуемого продукта отбирают при помощи пипетки.

При этом предварительно определяют плотность нефтепродукта при температуре испытания и вычисляют массу умножением взятого объема нефтепродукта на его плотность.

1.3.2. Наливают в коническую колбу вместимостью 500 см³ с притертой пробкой 15 см³ этилового спирта и опускают туда стаканчик с нефтепродуктом, слегка приоткрывая крышку стаканчика.

Если масса нефтепродукта взята в ампуле, то в коническую колбу наливают 5 см³ этилового спирта, разбивают в нем стеклянной палочкой ампулу, следя за тем, чтобы капилляр при этом был измельчен, и обмывают палочку и стенки колбы 10 см³ этилового спирта.

При анализе дизельных топлив и топлива Т-6 массу топлива вносят в колбу с 15 см³ ацетона. Из бюретки добавляют 25 см³ спиртового раствора йода, плотно закрывают колбу пробкой, предварительно смоченной раствором йодистого калия, осторожно встряхивают колбу. Прибавляют 150 см³ дистиллированной воды, быстро закрывают колбу пробкой, содержимое колбы встряхивают в течение 5 мин и оставляют в темноте еще на 5 мин. Обмывают пробку и стенки колбы небольшим количеством дистиллированной воды. Добавляют 20—25 см³ раствора йодистого калия и титруют раствором тиосульфата натрия. Когда жидкость в колбе примет светло-желтый цвет, прибавляют от 1 до 2 см³ раствора крахмала и продолжают титровать до исчезновения синевато-фиолетового окрашивания.

(Измененная редакция, Изм. № 1).

 1.3.3. Для вычисления йодного числа проводят контрольный опыт, как указано в п. 1.3.2, но без нефтепродукта.

1.4. Обработка результатов

1.4.1. Йодное число (X) испытуемого нефтепродукта, г йода на 100 г нефтепродукта, вычисляют по формуле

$$X = \frac{(V - V_1) \cdot F \cdot 0.01269}{m} \cdot 100 ,$$

где V — объем раствора тиосульфата натрия 0,1 моль/дм³, израсходованный на титрование в контрольном опыте, см⁵:

 V_1 — объем раствора тиосульфата натрия 0,1 моль/дм³, израсходованный на титрование испытуемого нефтепродукта, см³;

F — фактор раствора тиосульфата натрия 0,1 моль/дм³;

0,01269 — количество йода, эквивалентное 1 см3 раствора тиосульфата натрия точно 0,1 моль/дм3;

т — масса испытуемого нефтепродукта, г.

За результат определения йодного числа испытуемого нефтепродукта принимают среднеарифметическое значение двух последовательных определений, округляя его до первого десятичного знака.

1.4.2. Сходимость

Два результата определений, полученные в одинаковых условиях одним исполнителем на одной и той же аппаратуре и пробе нефтепродукта, признаются достоверными (с 95 %-ной доверительной вероятностью), если расхождение между ними не превышает 10 % от величины меньшего результата.

1.4.3. Воспроизводимость

Два результата испытаний, полученные в двух разных лабораториях на одной и той же пробе нефтепродукта, признаются достоверными (с 95 %-ной доверительной вероятностью), если расхождение между ними не превышает 20 % от величины меньшего результата.

1.4.2, 1.4.3. (Измененная редакция, Изм. № 1, 2).

1.4.4. Массовую долю непредельных углеводородов (X_1) в нефтепродукте вычисляют по формуле

$$X_1 = \frac{X \cdot M}{254},$$

где X — йодное число нефтепродукта, г йода на 100 г нефтепродукта;

 М — средняя молекулярная масса непредельных углеводородов анализируемого нефтепродукта (см. приложение);

254 — молекулярная масса йода.

(Измененная редакция, Изм. № 1).

1.4.5. Расхождение результатов двух последовательных определений массовой доли непредельных углеводородов не должно превышать 0,3 %.

2. МЕТОЛ Б

2.1. Аппаратура, реактивы и растворы

Аппаратура, реактивы и растворы, указанные в п. 1.1.

Хлороформ фармакопейный.

Ртуть (II) хлорная (сулема), ч. д. а.

Кислота соляная по ГОСТ 3118, ч. д. а.

2.2. Подготовка к испытанию

2.2.1. Приготовление раствора ѝода

25 г йода растворяют в 500 см³ этилового спирта. Отдельно растворяют 30 г хлорной ртути (яд!) в 500 см³ этилового спирта. Оба раствора фильтруют, смешивают в склянке и прибавляют 50 см³ соляной кислоты. Растворы хранят в темном месте. Раствор остается стабильным в течение 15 дней.

C. 4 FOCT 2070-82

Допускается приготовление меньшего объема раствора йода с пропорциональным уменьшением массы реактивов.

(Измененная редакция, Изм. № 1).

- 2.3. Проведение испытания
- 2.3.1. Взвешивают необходимое количество нефтепродукта с погрешностью не более 0,0004 г в зависимости от предполагаемого йодного числа, как указано в табл. 2.

Таблица 2

Йодное число, г йода на 100 г нефтепродукта	Масса нефтепродукта, г	
До 1,0	От 5,0 до 10,0	
Св. 1,0 » 5,0	» 1,0 » 5,0	
» 5,0	* 0,5 * 1,0	

2.3.2. В две колбы вместимостью 500 см³ наливают по 10 см³ хлороформа в каждую. В одну из них помещают массу нефтепродукта. Вторая колба служит для контрольного опыта, но без нефтепродукта. В обе колбы с помощью пипетки с одинаковой скоростью по каплям добавляют по 10 см³ раствора йода. Колбы быстро закрывают притертыми пробками, предварительно смоченными раствором йодистого калия, и осторожно встряхивают. Обе колбы оставляют в темном месте на 1 ч, после чего добавляют 20 см³ раствора йодистого калия и 150 см³ дистиллированной воды, обмывая пробку и стенки колбы.

Титруют раствором тиосульфата натрия 0,1 моль/дм³ (0,10 н).

Когда растворы в колбах примут светло-желтый цвет, прибавляют от 1 до 2 см³ раствора крахмала и титруют до исчезновения синевато-фиолетового окращивания.

- 2.4. Обработка результатов
- 2.4.1. Йодное число вычисляют по п. 1.4.1.

За результат определения йодного числа испытуемого нефтепродукта принимают среднеарифметическое значение двух последовательных определений, округляя его до второго десятичного знака.

2.4.2. Сходимость

Два результата определений, полученных в одинаковых условиях одним исполнителем на одной и той же аппаратуре и пробе нефтепродукта, признаются достоверными (с 95 %-ной доверительной вероятностью), если расхождение между ними не превышает 15 % от величины меньшего результата.

2.4.3. Воспроизводимость

Два результата испытаний, полученные в двух разных лабораториях на одной и той же пробе нефтепродукта, признаются достоверными (с 95 %-ной доверительной вероятностью), если расхождение между ними не превышает ± 0.03 г йода на 100 г нефтепродукта от среднего результата.

2.4.2, 2.4.3. (Измененная релакция, Изм. № 1, 2).

ПРИЛОЖЕНИЕ Справочное

Зависимость молекулярной массы непредельных углеводородов от температуры выкипания 50 %-ной фракции (по объему), определяемой по ГОСТ 2177

Температура выкипания 50 % ного отгона фракций, °С	Молекулярная масса непредельных углеводородов	Температура выкипания 50 %-ного отгона фракция, °С	Молекулярная масса непредельных углеводородов
50	77	175	144
75	87	200	161
100	99	225	180
125	113	250	200
150	128	260	208

ПРИЛОЖЕНИЕ. (Введено дополнительно, Изм. № 1).

С. 6 ГОСТ 2070-82

ИНФОРМАЦИОННЫЕ ДАННЫЕ

РАЗРАБОТАН И ВНЕСЕН Министерством химической и нефтеперерабатывающей промышленности СССР

РАЗРАБОТЧИКИ

В.М. Школьников, канд. техн. наук; В.В. Булатников, канд. техн. наук; Н.П. Соснина, канд. техн. наук; Л.Г. Нехамкина, канд. химич. наук; Н.П. Изотова, канд. техн. наук; Л.А. Садовникова, канд. техн. наук; Е.И. Мальшева, В.Д. Милованов, канд. техн. наук; Н.М. Королева

- УТВЕРЖДЕН И ВВЕДЕН В ДЕЙСТВИЕ Постановлением Государственного комитета СССР по стандартам от 20.07.82 № 2755
- 3. B3AMEH FOCT 2070-55
- 4. ССЫЛОЧНЫЕ НОРМАТИВНО-ТЕХНИЧЕСКИЕ ДОКУМЕНТЫ

Обозначение НТД, на который дана ссылка	Номер пункта	
ГОСТ 1770-74	1.1	
ГОСТ 2177—99	Приложение	
ΓΟCT 2517—85	1.2.1	
ΓΟCT 2603-79	1.1	
ГОСТ 3118-77	2,1	
ΓΟCT 4204—77	1,1	
ГОСТ 4220—75	1.1	
ΓΟCT 4232-74	1.1	
ΓΟCT 4919.1—77	1.1	
ΓΟCT 10163-76	1.1	
ΓΟCT 1830087	1.1	
ΓΟCT 25336—82	1.1	
ΓΟCT 27068-86	1.1	
ΓΟCT 29227—91	1.1	
ΓΟCT 29251—91	1.1	

- Ограничение срока действия снято по протоколу № 2—92 Межгосударственного совета по стандартизации, метрологии и сертификации (ИУС 2—93)
- ИЗДАНИЕ с Изменениями № 1, 2, утвержденными в декабре 1987 г., ноябре 1994 г. (ИУС 3—88, 2—95)