МЕЖГОСУЛАРСТВЕННЫЙ СТАНДАРТ

БАББИТЫ КАЛЬЦИЕВЫЕ

Метод атомно-абсорбщионного спектрального анализа

ГОСТ 9519.3—77

Lead-calcium bearing alloys. Method of atomic-absorbing spectral analysis

OKCTY 1709

Дата введения 01.01.78

Настоящий стандарт устанавливает метод атомно-абсорбционного спектрального анализа кальшевых баббитов.

Метод основан на измерении спектров поглощения при введении в пламя градуировочных растворов и растворов анализируемых проб.

Метод устанавливает определение примесей и основных компонентов кальциевых баббитов в диапазоне массовых долей, %:

кальция — от 0,1 до 1,2; натрия — от 0,1 до 1,2; цинка — от 0,001 до 0,06.

(Измененная редакция, Изм. № 2).

1. ОБЩИЕ ТРЕБОВАНИЯ

Общие требования к методу анализа и требования безопасности — по ГОСТ 9519.0.
 Разд. 1. (Измененная редакция, Изм. № 1).

2. АППАРАТУРА И РЕАКТИВЫ

Спектрофотометр атомно-абсорбционный.

Компрессор воздушный, обеспечивающий давление воздуха 1,5-2 ат.

Весы аналитические типа АДВ-200.

Баллоны с ацетиленом.

Источники резонансного излучения: лампы спектральные с полым катодом из кальция, лампы высококачественные, обеспечивающие эмиссию натрия и цинка.

Азотная кислота по ГОСТ 4461, разбавленная 1:3 и 1:1.

Свинца окись по НД.

Кальций углекислый по ГОСТ 4530.

Натрий хлористый по ГОСТ 4233.

Цинк металлический по ГОСТ 3640 марки Ц0.

Вода дистиллированная.

Типовые растворы свинца.

Раствор \hat{A} ; готовят следующим образом: 5 г окиси свинца растворяют без нагревания в 40— 50 см³ азотной кислоты, разбавленной 1:3. Раствор переносят в мерную колбу вместимостью 200 см³, доливают водой до метки и тщательно перемешивают.

Раствор Б; готовят следующим образом: 20 г окиси свинца растворяют без нагревания в 60—80 см³ азотной кислоты, разбавленной 1:3. Раствор переносят в мерную колбу вместимостью 250 см³, доливают водой до метки и тщательно перемещивают.

Типовые растворы кальция.

Раствор A; готовят следующим образом: 0,625 г углекислого кальция, высущенного до постоянной массы, растворяют в азотной кислоте, разбавленной 1:1. Раствор переносят в мерную колбу вместимостью 250 см³, доливают водой до метки и тщательно перемещивают.

1 см³ раствора А содержит 1,0 мг кальция.

Раствор Б; готовят разбавлением в 10 раз раствора А.

1 см³ раствора Б содержит 0,1 мг кальция.

Типовые растворы натрия.

Раствор A; готовят следующим образом: 1,271 г хлористого натрия, высущенного до постоянной массы, растворяют в воде. Раствор переносят в мерную колбу вместимостью 500 см³, доливают водой до метки и тщательно перемешивают.

1 см³ раствора А содержит 1,0 мг натрия.

Раствор Б; готовят разбавлением в 10 раз раствора А.

 1 см^3 раствора E содержит 0.1 мг натрия.

Типовые растворы цинка.

Раствор A; готовят следующим образом: 0,5 г металлического цинка растворяют в азотной кислоте, разбавленной 1:1, переносят в мерную колбу вместимостью 500 см³, доливают до метки водой и тщательно перемешивают.

1 см³ раствора A содержит 1,0 мг цинка.

Раствор E; готовят разбавлением в 10 раз раствора A.

1 см3 раствора Б содержит 0,1 мг цинка.

3. ПОДГОТОВКА К АНАЛИЗУ

- 3.1. Для анализа кальциевых баббитов готовят две серии градуировочных растворов. Содержание определяемых примесей в серии должно соответствовать интервалу содержаний этих примесей в анализируемых пробах.
- 3.2. Первую серию градуировочных растворов для определения кальция и натрия готовят в соответствии с табл. 1.

Таблица 1

Номер градуировочного раствора	Аликвотная часть типового раствора, см ³					Consessor
	окиси свинца	кальция		натрия		 Содержание элементов, по массе
	A	A	Б	A	Б	
1	20	_	_	-	_	0
2	20 20 20 20 20 20 20 20	_	10	_	10	0,2
3	20	-	20	_	20	0.4
4	20	_	30	-	30	0,4 0,6 0,8
5	20	4	_	4	_	0.8
6	20	5	_	5	_	1.0
7	20	6	_	6	_	1.2
8	20	7	-	7	_	1.4

Вторую серию градуировочных растворов для определения цинка готовят в соответствии с табл. 2.

Таблина 2

Номер градуировочного рас-	Аликвотная часть типо	Содержание элементов, %	
твора	окиси свинца Б	цинка Б	по массе
1	25	_	0
2	25	1	0,005
3	25	2	0,01
4	25	4	0,02
5	25	8	0,04
6	25	12	0,06
7	25	16	0,04 0,06 0,07

C. 3 FOCT 9519.3—77

 Аликвотные части типовых растворов первой серии переносят в мерные колбы вместимостью 250 см³, второй серии — вместимостью 100 см³, вводят по 10 см³ азотной кислоты, разбавленной 1:3, доливают водой до метки и тщательно перемешивают.

3.5. Для определения натрия и кальция навеску пробы 0,5 г, взвешенную с погрешностью не более 0,0002 г, растворяют без нагревания в 30—40 см³ азотной кислоты, разбавленной 1:3.

Раствор переносят в мерную колбу вместимостью 250 см3, доливают до метки водой и тщательно перемешивают.

Для определения цинка навеску пробы 2 г. взвешенную с погрешностью 0,0002 г. раство-

ряют без нагревания в 40-50 см3 азотной кислоты, разбавленной 1:3.

Раствор переносят в мерную колбу вместимостью 100 см³, доливают водой до метки и тщательно перемешивают.

4. ПРОВЕДЕНИЕ АНАЛИЗА

4.1. На монохроматоре атомно-абсорбционного спектрофотометра выводят аналитическую линию определяемого элемента, включают лампу с полым катодом, излучающую спектр соответствующего элемента, и устанавливают ширину щели монохроматора.

Условия измерения определяемых элементов приведены в табл. 3.

Таблица 3

Параметр	Условие измерения для определения			
,	кальция	натрия	цинка	
Ширина щели, мм	0,015	0,015	0,07-0,1	
Сила тока в цепи высокочастотного гене- затора, мА Сила тока в цепи питания лампы с полым	-	. 80	140	
сила тока в цени питания лампы с полым атодом из кальция, мА Аналитические линии, нм	12 422,7	589,5	213,8	

4.3. Градуировочные растворы и растворы проб последовательно распыляют в пламя, регистрируя величины фототока на измерительном приборе до и после распыления, находят его среднее значение J_0 , а также среднее значение фототока во время распыления J_i .

4.4. Для каждого раствора измерения производят три раза.

4.5. По измеренным величинам фототока вычисляют значения оптической плотности (D) по формуле

$$D = \lg \frac{I_0}{I_i} = \lg I_0 - \lg I_i$$

и находят средние значения оптической плотности по параллельным измерениям для каждого i-го

раствора D_{i} .

Градуировочный график строят по результатам измерения градуировочных растворов, откладывая на оси ординат значения D_{ii} а на оси абсцисс — значения концентраций определяемого

Для прямолинейного участка градуировочного графика, проходящего через начало координат, концентрацию определяемого элемента в пробе (С) в процентах вычисляют по формуле

$$C = \frac{D}{K}$$

где К — тангенс угла наклона градуировочного графика, вычисляемого методом наименьших квадратов по формуле

$$K = \frac{\sum_{i}^{i} D_{i}}{\sum_{i} C_{i}},$$

где C_i — концентрация определяемого элемента в i-ом стандартном образце предприятия.

Для интервала концентраций с нелинейной зависимостью D = f(c) рекомендуется строить

градуировочные графики в координатах lgD-lgC.

 Контроль положения градуировочного графика проводят по стандартным образцам периодически. Смещение градуировочного графика считают допустимым при выполнении условия

$$|X-X_{\text{arr}}| \le 0.5 \frac{d_{\text{ors}}}{100} \cdot X$$

где \overline{X} — результат анализа, %; $\overline{X}_{\rm err}$ — массовая доля, приведенная в свидетельстве на стандартный образец предприятия, %; $d_{\rm crn}$ — допускаемое расхождение, указанное в табл. 4, %; X— значение аттестуемой характеристики.

4.5, 4.6. (Введены дополнительно, Изм. № 2).

5. ОБРАБОТКА РЕЗУЛЬТАТОВ

5.1. (Исключен, Изм. № 2).

 За результат анализа принимают среднее арифметическое результатов трех параллельных определений. Допускаемые расхождения между наиболее различающимися данными при доверительной вероятности P = 0.95 не должны превыщать величин, указанных в табл. 4.

Числовые значения результатов анализа должны оканчиваться цифрой того же разряда, что и соответствующие нормируемые показатели химического состава, заданные в стандартах на марки

сплавов.

Таблица 4

Определяемый элемент	Диапазон массовых долей, %	Относительное допускаемое расхождение, %	
Кальций	0,1-1,2	2	
Натрий	0,1-1,2	2	
Цинк	0,001-0,06	10	

(Измененная редакция, Изм. № 1, 2).

5.3. Воспроизводимость результатов анализа одной и той же пробы (\overline{X}_1 и \overline{X}_2), выполненных в разное время, в разных лабораториях по данной методике, должны удовлетворять условию

$$|\overline{X}_1 - \overline{X}_2| \le 1.3 \frac{d_{\text{ord}}}{100} \cdot X$$

где $d_{\text{отн}}$ — допускаемое расхождение в %, указанное в табл. 4, %. 5.4. В случае попадания результата анализа в критическую область поля допуска на содержание элемента в сплаве заданной марки $\delta \pm \frac{\delta_{\text{отв}}}{100} \cdot X$ (δ — нормированная граница марочного состава по ГОСТ 1209), пробу анализируют химическими методами по ГОСТ 1219.1—ГОСТ 1219.8.

5.3, 5.4. (Введены дополнятельно, Изм. № 2).

ИНФОРМАЦИОННЫЕ ДАННЫЕ

1. РАЗРАБОТАН И ВНЕСЕН Министерством цветной металлургии СССР

РАЗРАБОТЧИКИ

- В.С. Чумаченко, Л.И. Фунин, В.И. Петров, А.И. Погонина, С.Д. Демченко, Р.П. Петрова
- УТВЕРЖДЕН И ВВЕДЕН В ДЕЙСТВИЕ Постановлением Государственного комитета стандартов Совета Министров СССР от 15.04.77 № 946
- 3. ВВЕДЕН ВПЕРВЫЕ
- 4. ССЫЛОЧНЫЕ НОРМАТИВНО-ТЕХНИЧЕСКИЕ ДОКУМЕНТЫ

Обозначение НТД, на который дана ссылка	Номер пункта, подпункта, перечисления, приложения
ГОСТ 1209—90	5.4
ГОСТ 3640—94	2
ΓΟCT 4233-77	2
ΓΟCT 4461-77	2
ГОСТ 4530—76	2
FOCT 9519.0—82	1.1
FOCT 1219.1-74—FOCT 1219.8-74	5.4
TY 6-09-5382-88	2

- Ограничение срока действия сиято по протоколу № 3—93 Межгосударственного Совета по стандартизации, метрологии и сертификации (ИУС 5-6—93)
- ИЗДАНИЕ (июль 2000 г.) с Изменениями № 1, 2, утвержденными в октябре 1982 г., июне 1987 г. (ИУС 1—83, 10—87)

Редактор М.И. Максимова
Технический редактор Л.А. Кузнецова
Корректор Н.Л. Шпайдер
Компьютерная верстка А.Н. Закотаревой

Изд. лиц. № 02354 от 14.07,2000. Сдано в набор 21.06,2000. Подписано в печать 01.09,2000. Усл.печ.л. 1,86. Уч.-изд.л. 1,57. Тираж 120 экз. С 5773. Зак. 785.