

ГОСУДАРСТВЕННЫЙ СТАНДАРТ СОЮЗА ССР

ИЗДЕЛИЯ УГЛЕРОДНЫЕ

МЕТОДЫ ИЗМЕРЕНИЯ УДЕЛЬНОГО ЭЛЕКТРИЧЕСКОГО СОПРОТИВЛЕНИЯ

FOCT 23776-79

Издание официальное

Цена 3 коп.

ГОСУДАРСТВЕННЫЯ КОМИТЕТ СССР ПО СТАНДАРТАМ

ИЗДЕЛИЯ УГЛЕРОДНЫЕ

Методы измерения удельного электрического сопротивления

ГОСТ 23776-79*

Carbonic products. Methods of measuring specific electrical resistance

OKCTY 1909

Постановлением Государственного комитета СССР по стандартам от 8 августа 1979 г. № 3042 срок введения установлен c 01.01.82

Проверен в 1986 г. Постановлением Госстандарта № 2436 от 20.08.86 срок действия продлен

Несоблюдение стандарта преследуется по закону

Настоящий стандарт устанавливает методы измерений удельного электрического сопротивления графитированных и обожженных углеродных изделий при температуре от 5 до 50°C.

Стандарт не распространяется на изделия из композиционных

материалов на углеродной основе.

Сущность методов заключается в измерении удельного электрического сопротивления, основанного на пропускании постоянного тока через изделие и определении на части его длины падения напряжения.

(Измененная редакция, Изм. № 1).

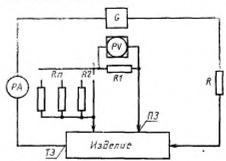
1. МЕТОД ИЗМЕРЕНИЙ УДЕЛЬНОГО ЭЛЕКТРИЧЕСКОГО СОПРОТИВЛЕНИЯ ИЗДЕЛИЯ С ОТНОШЕНИЕМ ДЛИНЫ УЧАСТКА ПОСТОЯННОГО ПОПЕРЕЧНОГО СЕЧЕНИЯ К ДИАГОНАЛИ СЕЧЕНИЯ (ДИАМЕТРУ) БОЛЕЕ ДВУХ

1.1. Аппаратира

1.1.1. Источники стабилизированного постоянного тока: СТ-4, СТ-5 класса стабилизации 0,5; П-138 - класса стабилизации 0,02 по нормативно-технической документации.

Издание официальное

Перепечатка воспрещена


*

Переиздание (декабрь 1986 г.) с Изменением № 1, утвержденным Пост. № 2436 от 20.08.86 (ИУС 11-86).

1.1.2. Амперметр магнитоэлектрической системы постоянного тока по ГОСТ 8711—78, класса точности не более 1,0 или цифровой амперметр постоянного тока класса точности не более 0,5.

1.1.3. Милливольтметр магнитоэлектрической системы для измерения напряжения постоянного тока по ГОСТ 8711—78 класса точности не более 1,0, или цифровой вольтметр для измерения напряжения постоянного тока класса точности не более 0,5, или потенциометр для измерения напряжения постоянного тока по ГОСТ 7164—78 класса точности не более 0,5.

1.1.4. Допускается применять другую аппаратуру, удовлетворяющую требованиям пп. 1.1.1—1.1.3.

G — петочных постоявного токе, РА — прибор для измерения тока, РУ — прибор для измерения капражения; R — ограничивающий резистор; R1—Rn — резисторы длянгеля изпражения; ТЗ — токовый зона; ПЗ — потевщиальный зона.

Черт. 1

- 1.1.5. Схема установки для измерения удельного электрического сопротивления приведена на черт. 1. Схема зонда приведена в рекомендуемом приложении 1.
 - 1.1. (Измененная редакция, Изм. № 1).
 - 1.2. Подготовка к измерению
- 1.2.1. Расстояние между потенциальными зондами не должно превышать длину участка изделия с однородной плотностью тока. Расстояние между потенциальными зондами определяют экспериментально и указывают в нормативно-технической документации на соответствующие виды изделий.
- 1.2.2. Погрешность измерения длины между потенциальными зондами не должна превышать 0,5%.
- 1.2.3. Диапазоны измерений измерительных приборов следует выбирать с таким расчетом, чтобы отсчет показаний проводился во второй половине диапазона измерений.

Измерение должно производиться на изделиях, изолированных от земли и других изделий. Сопротивление изоляции изделия, токовых и потенциальных зондов должно быть не менее 2 кОм.

(Измененная редакция, Изм. № 1).

- 1.3. Проведение измерения
- 1.3.1. Изделие зажимают токовыми зондами с торцов вдоль оси прессования в точках его осевой линии и пропускают по нему ток.
- 1.3.2. Потенциальные зонды накладывают на очищенную боковую поверхность изделия вдоль оси прессования в средней части на участке с однородной плотностью тока и измеряют падение напряжения.
 - 1.3. (Измененная редакция, Изм. № 1).
 - 1.4. Обработка результатов

Удельное электрическое сопротивление (Q) в Ом·м вычисляют по формуле

$$\rho = \frac{U \cdot S}{I \cdot I}, \tag{1}$$

где U — падение напряжения между потенциальными зондами, В;

I — сила тока, А;

S — площадь поперечного сечения, м²;

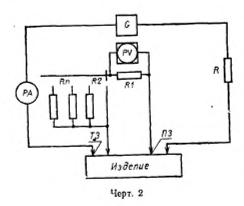
расстояние между потенциальными зондами, м.

Доверительная граница случайного отклонения результата наблюдения при доверительной вероятности 0,95 не превышает 2,0%.

Доверительная граница погрешности результата измерения с многократными наблюдениями оценивается в соответствии с приложениями 2—4 ГОСТ 8.381—80.

(Измененная редакция, Изм. № 1).

2. МЕТОД ИЗМЕРЕНИЯ УДЕЛЬНОГО ЭЛЕКТРИЧЕСКОГО СОПРОТИВЛЕНИЯ ИЗДЕЛИЯ ВСЕХ РАЗМЕРОВ


2.1. Аппаратура

2.1.1. Для проведения измерений применяют средства измерений по пп. 1.1.1—1.1.4 и четырехзондовый датчик, схема которого приведена в рекомендуемом приложении 2.

(Измененная редакция, Изм. № 1).

2.1.2. Потенциальные зонды четырехзондового датчика должны быть расположены по прямой линии, соединяющей токовые зонды, с отклонением не более 3,0 мм.

 2.1.3. Схема установки для измерения удельного электрического сопротивления приведена на черт.

2.2. Подготовка к измерению

 2.2.1. Диапазоны измерений измерительных приборов выбирают в соответствии с п. 1.2.3.

(Измененная редакция, Изм. № 1).

 2.2.2. Если полюса источника постоянного тока изолированы от земли, допускается измерять удельное электрическое сопротивление изделий, уложенных в штабель.

2.3. Проведение измерения

 2.3.1. Четырехзондовый датчик накладывают на очищенную поверхность изделия в средней его части, через изделие пропус-

кают ток и измеряют падение напряжения.

2.3.2. Измерение удельного электрического сопротивления проводят в разных участках изделия. Число и схема наблюдений, зависящие от геометрических размеров изделия, неоднородности материала, указываются в нормативно-технической документации на соответствующие виды продукции.

2.3. (Измененная редакция, Изм. № 1).

2.4. Обработка результатов

2.4.1. Удельное электрическое сопротивление (Q) в Ом·м вычисляют по формуле

$$\rho = K \cdot \frac{U}{I}$$
, (3)*

где U — падение напряжения между потенциальными зондами, B;

I — сила тока, А;

 К — коэффициент, зависящий от геометрических размеров изделия и от расстояния между зондами, м.

Формула 2 исключена.

 Коэффициент К определяют экспериментально и указывают в нормативно-технической документации на отдельные виды продукции.

2.4.3. За результат измерения принимают среднее арифмети-

ческое результатов наблюдений.

(Измененная редакция, Изм. № 1).

2.4.4. Доверительная граница случайной погрешности результата измерения при доверительной вероятности 0,95 не превышает 5,0%.

Доверительная граница погрешности результата измерения с многократными наблюдениями оценивается в соответствии с приложениями 2—4 ГОСТ 8.381—80.

(Введен дополнительно, Изм. № 1).

3. МЕТОД ИЗМЕРЕНИЯ УДЕЛЬНОГО ЭЛЕКТРИЧЕСКОГО СОПРОТИВЛЕНИЯ ИЗДЕЛИЙ СЛОЖНОЙ ФОРМЫ

3.1. Аппаратура

3.1.1. Для проведения измерений применяют средства измерений по пп. 1.1.1—1.1.4, потенциальные зонды, схема которых приведена в рекомендуемом приложении 1 и многозондовый токовый датчик, схема которого приведена в рекомендуемом приложежении 3.

(Измененная редакция, Изм. № 1).

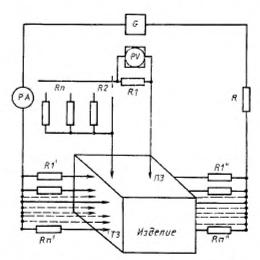
3.1.2. Схема измерения удельного электрического сопротивления изделий сложной формы приведена на черт.
3.

3.2. Подготовка к измерению

3.2.1. Расстояние между потенциальными зондами не должно превышать длину участка изделия с однородной плотностью тока. Расстояние между потенциальными зондами (l) в метрах вычисляют по формуле

$$l=L-2,0\left(l_r+\sqrt{\frac{s}{n}}\right),\tag{5}$$

тде L — длина изделия, м;


S — площадь поперечного сечения изделия, м²;

 п — количество токовых зондов, равномерно расположенных на одной из торцовых плоскостей изделий;

 l_r — глубина ниппельного гнезда (для изделий, в которых ниппельное гнездо отсутствует, величина l_r опускается), м.

 3.2.2. Добавочные резисторы подбирают экспериментально, исходя из уменьшения влияния контактного электросопротивления между зондами и материалом изделия.

Значения добавочных сопротивлений зависят от материала изделия и должны в 102—103 превышать сопротивление самого изделия. Количество токовых зондов с добавочными сопротивлениями выбирается из условия создания равномерной плотности тока по сечению по формуле (5) и зависит от размеров и формы сечения изделия.

G- источник востоямного тока; PA- прибор для взмереняя гока; PV- прибор для намерения пларяжения; R- ограничивающий резистор; PI- RB- резисторы делителя напряжения; RV- PN', RV- RO^2 добавочные резисторы; T3- токовый зонд; $\Pi 3-$ потенцияльный лонд

Черт. 3

Допускается измерение без добавочных резисторов. В этом случае расстояние между потенциальными зондами определяется экспериментально.

(Измененная редакция, Изм. № 1).

3.3. Проведение измерения

3.3.1. Токовыми зондами изделие зажимают с торцов вдоль

оси прессования и пропускают по нему ток.

3.3.2. Потенциальные зонды накладывают на очищенную боковую поверхность изделия вдоль оси прессования в средней части на участке с однородной плотностью тока и измеряют падение напряжения.

(Измененная редакция, Изм. № 1).

3.4. Обработка результатов

Удельное электрическое сопротивление (Q) в Ом·м вычисляют по формуле

$$\rho = \frac{U \cdot S}{I \cdot l}$$
, (6)

где U — падение напряжения между потенциальными зондами, B;

/ - сила тока, А;

S — площадь поперечного сечения изделия, м²;

расстояние между потенциальными зондами, м.

Доверительная граница случайного отклонения результата наблюдения при доверительной вероятности 0,95 не превышает 2.0%.

Доверительная граница погрешности результата измерения с многократными наблюдениями оценивается в соответствии с приложениями 2—4 ГОСТ 8.381—80.

(Измененная редакция, Изм. № 1).

4. МЕТОД ИЗМЕРЕНИЯ УДЕЛЬНОГО ЭЛЕКТРИЧЕСКОГО СОПРОТИВЛЕНИЯ НИППЕЛЕЯ

4.1. Аппаратура

4.1.1. Для проведения измерений применяют средства измерений по пл. 1.1.1—1.1.4 и комбинированный датчик, схема которого

приведена в рекомендуемом приложении 4.

4.1.2. Токовые зонды комбинированного датчика должны быть расположены равномерно по окружности диаметра Д, лежащего в интервале $0.4d_3 \leqslant \mathcal{I} \leqslant 0.9d_3$ (ГОСТ 4426-80) и $0.4d_1 \leqslant \mathcal{I} \leqslant 0.9d_1$ (ГОСТ 4425-72). Потенциальные зонды располагаются в центре окружностей.

4.1.3. Схема измерения удельного электрического сопротивле-

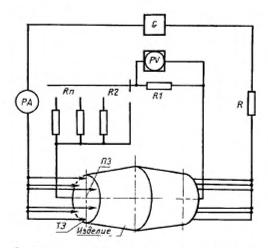
ния ниппелей приведена на черт. 4,

4.2. Подготовка к измерению

4.2.1. Диапазоны измерений приборов следует выбирать в со-

ответствии с п. 1.2.3.

Измерение должно проводиться на ниппелях, изолированных от земли и других ниппелей. Сопротивление изоляции ниппеля, комбинированного датчика не должно быть менее 2 кОм.


4.3. Проведение измерения

4.3.1. Комбинированные датчики поджимают к торцам ниппеля, совмещая потенциальные зонды с центрами торцев. Через ниппель пропускают ток и измеряют падение напряжения между потенциальными зондами.

4.4. Обработка результатов

4.4.1. Удельное электрическое сопротивление (ε) в Ом·м вычисляют по формуле

$$\rho = K \cdot \frac{U}{I}$$
 (7)

G— источняк постоянного тока; РА — прибор для измерения тока, РУ — прибор для измерении вапряжения, Р — ограничизкопций релистор; RI—Rn — резисторы делителя напряжении; ТЗ—токовый зонд; ПЗ -потенциальный зонд

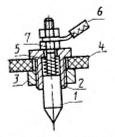
Черт. 4

где U — падение напряжения между потенциальными зондами, В; К — коэффициент, зависящий от геометрических размеров ниппеля и комбинированного датчика, м;

I — сила тока, А.

4.4.2. Қоэффициент К определяют экспериментально и указывают в нормативно-технической документации на каждый типоразмер ниппеля.

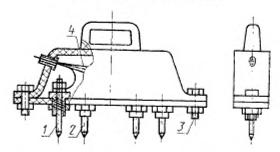
4.4.3. Доверительная граница случайного отклонения результата наблюдения при доверительной вероятности 0,95 не превышает


2,0%.

Доверительная граница погрешности результата измерения с многократными наблюдениями оценивается в соответствии с приложениями 2, 3, 4 ГОСТ 8.381--80.

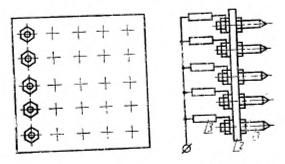
Разд. 4. (Введен дополнительно, Изм. № 1).

ПРИЛОЖЕНИЕ 1 Рекомендуемое


Схема зонда

Г — токопровод;
2 — направляющая атулка;
3 — гайка;
4 — нэоляцнояное основание;
5 — пружина;
6 — электрический провод;
7 — гайка

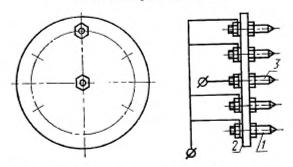
ПРИЛОЖЕНИЕ 2 Рекомендуемое


Схема четырехзондового датчика

f — токовый зонд; 2 — вотенциальный вонд; 3 — штырь упора; 4 — электрический провод

ПРИЛОЖЕНИЕ 3 Рекомендуемов

Схема датчиков токовых зондов



I — токовый донд; 2 — изоляционное основание; 3 — доблючный резистор

(Измененная редакция, Изм. № 1).

ПРИЛОЖЕНИЕ 4 Рекомендуемое

Схема комбилированного датчика

I= токовый вонд; 2- изоляционное основание; 3- потенциальный вонд

(Введено дополнительно, Изм. № 1).

Редактор И. В. Виноградская Технический редактор Н. П. Замолодчикова Корректор Е. И. Евтгева

Сдано в наб. 31.10.86 Подп. к веч. 16.01.87 1,0 усл. н. л. 1,0 усл. кр.-отт. 0,60 уч.-изд. а. Тир. 12.000

Ордена «Знак Почета» Издательство стандартов, 123540, Москва, ГСП, Новопресненский пер., 3 Тип. «Москваский печатии», Москва, Лялия пер., 6. Зак. 3013 Изменение № 2 ГОСТ 23776—79 Изделия углеродные, Методы измерения удельного электрического сопротивления

Утверждено и введено в действие Постановлением Комитета стандартизации и метрологии СССР от 03.10.91 № 1593

Дата введения 01,07.92

Пункты 1.2.1, 1.2.2, 2.1.2 изложить в новой редакции: <1.2.1. Расстенцие между потенциальными зондами устанавливают экспериментально в вависипости от длины участка изделия с однородной плотностью тока и указывают вермативно-техначеской документации на соответствующие виды изделий.

1.2.2. Отклонение расстояния между потенциальными вондами не должво

превышать 0,5 % от установленного.

(Продолжение см. с. 72)

(Продолжение изменения к ГОСТ 23776-79)

2.1.2. Потенциальные зонды четырехзондового датчика должны быть расположены по прямой линни, соединяющей токовые зонды, с отклонением вдоль линии не более 1,0 % и перпекдикулярио к линии— не более 0,5 %».

Пункт 3.2.1 дополнить абзацем; «Отклонение расстояния между потен-

циальными зондами не должно превышать 0,5 % от установленного».

Пункт 4.1.2 дополнять абзацем: «Отклонение расстояния между потенциальным и любым токовым эсидом не должно превышать 1,0 % от уставовленного радиуса расположения токовых зондов»;

заменить ссылки: ГОСТ 4426-80 на ТУ 48-12-52, ГОСТ 4425-72 на

TY 48-12-53.

(HYC № 1 1992 r).