МАТЕРИАЛЫ НАПЛАВОЧНЫЕ

МЕТОДЫ ОПРЕДЕЛЕНИЯ БОРА

Издание официальное

МЕЖГОСУДАРСТВЕННЫЙ СТАНДАРТ

МАТЕРИАЛЫ НАПЛАВОЧНЫЕ

Методы определения бора

Hard-facing materials. Methods of boron determination ΓΟCT 11930.9-79

МКС 25,160,20 ОКСТУ 1709

Постановлением Государственного комитета СССР по стандартам от 21 марта 1979 г. № 982 дата введения установлена

01.07.80

Ограничение срока действия сиято по протоколу № 4—93 Межгосударственного совета по стандартизации, метрологии и сертификации (ИУС 4—94)

Настоящий стандарт устанавливает объемный метод определения бора (при массовой доле бора от 0,7 до 17 %) и фотоколориметрический метод определения бора (при массовой доле бора от 0,02 до 0,2 %).

1. ОБЩИЕ ТРЕБОВАНИЯ

1.1. Общие требования к методам анадиза — по ГОСТ 11930.0 – 79.

2. ОБЪЕМНЫЙ МЕТОЛ ОПРЕДЕЛЕНИЯ БОРА

2.1. Сущность метода

Метод предназначен для анализа порошков из сплавов для наплавки, смесей порошков для наплавки и борида хрома.

Метод основан на образовании борной кислоты и ее титровании раствором щелочи в присутствии маннита.

2.2. Аппаратура, реактивы и растворы

Весы аналитические ВЛА-200М, АДВ-200 или любого другого типа, обеспечивающие взвешивание с погрешностью не более 0,0002 г.

Иономер ЭВ-74 или другой прибор с пределом погрешности ± 0,05 рН.

Электрод стеклянный типа ЭСЛ-41 Г-05.

Электрод хлоросеребряный ЭВЛ-1.

Магнитная мешалка.

Бюретка стеклянная по ГОСТ 1770-74.

Барий хлорид 8-водный по ГОСТ 4108-72 с массовой долей 5 %.

Кислота соляная по ГОСТ 3118-77, разбавленная 1:1.

Кислота серная по ГОСТ 4204--77, разбавленная 1:4.

Кислота азотная по ГОСТ 4461 - 77.

Натрий сернокислый пиро по ТУ 6-09-5404-88.

Кислота борная по ГОСТ 9656--75 свежеперекристаллизированиая.

Натрия гидроокись по ГОСТ 4328-77, с массовой долей 20,10 % и 0,1 M (фиксанал).

Издание официальное

Перепечатка воспрещена

Издание (август 2011 г.) с Изменениями № 1, 2, утвержденными в декабре 1984 г., декабре 1989 г. (ИУС 3—85, 3—90)

> © Издательство стандартов, 1979 © СТАНДАРТИНФОРМ, 2011

C. 2 FOCT 11930.9-79

При отсутствии фиксанала 0,1 М раствор натрия гидроокиси готовят следующим образом: 4 г гидроокиси натрия в 1 дм³ дистиллированной воды, добавляют 3 см³ раствора гидроокиси бария с массовой долей 5 %, перемешивают и дают отстояться осадку в течение суток. Раствор хранят в закрытой полиэтиленовой посуде.

Массовую концентрацию раствора гидроокиси натрия устанавливают по борному ангидриду следующим образом: перерекристаллизированную борную кислоту прокаливают в платиновой чашке или тигле сначала при температуре 200—250 °C, затем при 800—850 °C в течение 30—40 мин до постоянной массы. Навеску образовавшегося борного ангидрида массой 3,48 г осторожно растворяют в воде при нагревании и переливают раствор в мерную колбу вместимостью І дм³, разбавляют свежепрокипяченной водой до метки и перемешивают.

Отбирают 10 см³ стандартного раствора борного ангидрида в стакан вместимостью 200 см³, приливают 150 см³ прокипяченной воды, устанавливают 0,1 М раствора гидроокиси натрия значение рН — 6,9. Приливают раствор инвертного сахара или маннита и титруют 0,1 М раствором гидроокиси натрия до возвращения стрелки галъванометра до значения рН — 6.9.

Массовую концентрацию 0,1 М раствора гидроокиси натрия по бору вычисляют по формуле

$$T_{\text{NaOH no B}} = \frac{3,48 \cdot 0,31057}{V \cdot 100},$$

где V – количество раствора гидрокиси натрия, израсходованное на титрование, см³; 0,31057 — коэффициент пересчета борного ангидрида на бор.

Конго красный или бумага Конго. Приготовление раствора конго красный: растворяют 0,1 г индикатора в 100 см³ воды.

Метиловый красный с массовой долей 0,1 %: 0,2 г индикатора растворяют в смеси 60 м³ этилового спирта и 40 м³ воды.

Маннит по ТУ 6-09-5484—90 или сахароза по ГОСТ 5833—75. Приготовление раствора сахарозы: растворяют 600 г сахарозы в 200 см³ свежепрокипяченной воды при осторожном нагревании и перемешивании до полного просветления раствора. Горячий раствор фильтруют через стеклянный фильтр, нагревают почти до кипения и прибавляют 5 см³ 3 М серной кислоты, 1—2 мин сильно взбалтывают, приливают 300 см³ воды, в которую добавляют 5 см³ 3 М гидроокиси натрия, свободного от карбонатов. Раствор хорошо перемешивают и по охлаждении проверяют реакцию по метиловому красному. Реакция должна быть нейтральной; раствор содержит 55 % инвертного сахара.

Бария гидроокись 8-водная по ГОСТ 4107-78 с массовой долей 5 %.

Спирт этиловый ректификованный технический по ГОСТ 18300--87.

(Измененная редакция, Изм. № 2).

2.3. Проведение анализа

2.3.1. Навеску массой в соответствии с табл. 1 помещают в коническую колбу с обратным холодильником и растворяют в 40 см³ серной кислоты, разбавленной 1:4, или в 40 см³ соляной кислоты, разбавленной 1:1. Затем приливают 2 см³ азотной кислоты.

Таблица 1

Массовая доля бора, %	Масса навески, г
От 0,7 до 4	0,5
CB. 7 • 9	0,2
» 9 » 17	0,1

Если навеска полностью не растворилась, то раствор фильтруют, промывают водой фильтр (фильтрат и промывные воды сохраняют) и сплавляют навеску с пиросернокислым натрием при 650—700 °С. Плав выщелачивают водой и присоединяют к фильтрату. Анализируемый раствор нейтрализуют раствором с массовой долей 20 % гидроокиси натрия по конго и переносят в мерную колбу вместимостью 250 см³, содержащую 25—30 см³ горячего раствора гидроокиси натрия. Охлажденный раствор разбавляют водой до метки и перемещивают. Содержимое колбы отфильтровывают в сухой стакан и отбирают 150—200 см³ раствора для определения содержания бора. К раствору добавляют соляную кислоту, разбавленную 1:1, до перехода окраски индикатора метилового красного из желтой в красную и еще 1 см³ в избыток. Для удаления углекислого газа раствор кипятят 10 мин, быстро охлаждают и нейтрализуют раствором с массовой долей 10 %, а затем по рН-метру 0,1 М раствором гидроокиси натрия, устанавливая рН 6,9. К раствору добавляют маннит (на 0,01 г бора расходуется 10 г маннита) и начинают титровать борную кислоту 0,1 М раствором гидроокиси натрия до возвра-

щения рН раствора к рН 6.9. Прибавляют еще маннит и, если рН раствора остается равным 6.9, то титрование считают законченным.

Одновременно через все стадии анализа проводят контрольный опыт на содержание бора в реактивах.

2.4. Обработка результатов

2.4.1. Массовую долю бора (X) в процентах вычисляют по формуле

$$X = \frac{250 \cdot T (V_1 - V_2) \cdot 100}{Vm}$$

где T — массовая концентрация 0,1 M раствора гидроокиси натрия, выраженная в г/см³ бора;

– аликвотная часть анализируемого раствора, см³;

 $V_1 =$ объем $0,1\,$ М раствора гидроокиси натрия, затраченный на титрование бора, см³; $V_2 =$ объем $0,1\,$ М раствора гидроокиси натрия, затраченный на титрование раствора контрольного опыта, см³;

т — масса навески, г.

 Разность наибольшего и наименьшего результатов трех параллельных определений и двух результатов анализа при доверительной вероятности P = 0.95 не должна превышать значений допускаемых расхождений, приведенных в табл. 2.

Таблица 2

Массовая доля бора, %	Допускаемые расхождения трех параллельных определений, %	Допускаемые расхождения результатов анализа, %
От 0,70 до 1,00 включ.	0,05	0,10
CB. 1,00 * 4,00 *	0,10	0,15
* 4,00 * 17,00 *	0,15	0,20

2.4.1, 2.4.2. (Измененная редакция, Изм. № 2).

3. ФОТОКОЛОРИМЕТРИЧЕСКИЙ МЕТОД ОПРЕДЕЛЕНИЯ БОРА

3.1. Сущность метода

Метод предназначен для анализа прутков для наплавки.

Метод основан на образовании в сернокислой среде окрашенного внутрикомплексного соединения борной кислоты с кармином.

3.2. Анпаратура, реактивы и растворы

Фотоэлектроколориметры марок ФЭК-56, ФЭК-56М или любого другого типа.

Кислота серная по ГОСТ 4204-77, раствор с массовой долей 20 % и разбавленная 1:4.

Кислота азотная по ГОСТ 4461 - 77.

Натрий углекислый по ГОСТ 83—79, раствор с массовой долей 30 %.

Кислота ортофосфорная по ГОСТ 6552-80.

Кислота карминовая, раствор с массовой долей 0.01 %; готовят растворением реактива в концентрированной серной кислоте.

Борная кислота по ГОСТ 9656-75, стандартный раствор бора; готовят следующим образом: 0,1425 г борной кислоты растворяют в 1000 см³ раствора с массовой долей 20 % серной кислоты.

I см3 раствора содержит 0,000025 г бора.

3.3. Проведение анализа

 З.3.1. Навеску массой 0,3 г растворяют в 10 см³ серной кислоты, разбавленной 1:4, с последующим добавлением 0,5 см3 азотной кислоты. Растворение проводят в конической колбе с обратным холодильником в течение 1,5-2 ч. После разложения пробы колбы снимают, охлаждают и промывают холодильник небольшим количеством воды.

Раствор в колбе нейтрализуют по конго раствором углекислого натрия и вводят в избыток 2—2,5 см³. Содержимое колбы нагревают до кипения, переливают в мерную колбу вместимостью 50 см3, разбавляют до метки водой и перемешивают. Часть раствора отфильтровывают в сухой стакан через сухой фильтр и для определения бора отбирают аликвотную часть 2-5 см3 анализируемого раствора в стакан вместимостью 50 см3. Содержимое стакана выпаривают досуха, затем приливают

C. 4 FOCT 11930.9-79

 $0.5 \, \mathrm{cm}^3$ ортофосфорной кислоты, $20 \, \mathrm{cm}^3$ карминовой кислоты и $4.5 \, \mathrm{cm}^3$ раствора с массовой долей $20 \, \%$ серной кислоты, хорошо перемешивают и оставляют для образования устойчивого окрашенного комплексного соединения. Через $30 \, \mathrm{mu}$ оптическую плотность окрашенных растворов измеряют на фотоэлектроколориметре с желтым светофильтром ($\lambda = 582 \, \mathrm{mm}$) в кювете с толщиной поглощающего слоя $50 \, \mathrm{mm}$.

Содержание бора в граммах находят по градуировочному графику.

Одновременно проводят три контрольных опыта на определение содержания бора в реактивах. Раствор контрольного опыта используют в качестве раствора сравнения.

3.1—3.3. (Измененная редакция, Изм. № 2).

3.3.2. Построение градуировочного графика

В стакан приливают по 0,5 см³ раствора ортофосфорной кислоты и от 0,2 до 1 см³ стандартного раствора борной кислоты с интервалом 0,2 см³ и далее анализ ведут, как указано в п. 3.3.1.

3.4. Обработка результатов

3.4.1. Массовую долю бора (X_i) в процентах вычисляют по формуле

$$X_1 = \frac{50m \cdot 100}{m_1 V},$$

где т - масса бора, найденная по градуировочному графику, г;

— аликвотная часть анализируемого раствора, см³;

т. – масса навески, г.

3.4.2. Разность наибольшего и наименьшего результатов трех параллельных определений и двух результатов анализа при доверительной вероятности P=0.95 не должна превышать значений допускаемых расхождений, приведенных в табл. 3.

Таблина 3

Массовая доля бора, %	Допускаемые расхождения трех параллельных определения, «	Допускаемые расхождения результатов анализа, %
От 0,020 до 0,100 включ.	0,003	0,005
Св. 0,100 » 0,200 »	0,020	0,030

(Измененная редакция, Изм. № 2).