

ГОСУДАРСТВЕННЫЙ СТАНДАРТ СОЮЗА ССР

цинк

МЕТОД ОПРЕДЕЛЕНИЯ СВИНЦА И КАДМИЯ

ГОСТ 19251.2—79 (ИСО 713—75, ИСО 1054—75)

Издание официальное

УДК 669.5:543.06:006.354 Группа В59

ГОСУДАРСТВЕННЫЙ СТАНДАРТ СОЮЗА ССР

шинк

ГОСТ 19251.2—79

Метод определения свинца и кадмия

(ИСО 713—75,

Zinc. Method of cadmium and lead determination

ИСО 1054-75)

OKCTY 1709

Дата введения 01.01.80

Настоящий стандарт устанавливает полярографический метод определения свинца (при массовой доле свинца от 0,001 до 2,5 %) и кадмия (при массовой доле кадмия от 0,0005 до 0,3 %).

Метод основан на одновременном полярографическом определении свинца и кадмия в кислом натриево-хлоридном растворе соответственно при потенциалах полуволн минус 0,47 и минус 0,67 В по отношению к насыщенному каломельному электроду.

Чувствительность метода определения свинца на осциллографическом полярографе 0,08 мг/дм³, на переменно-токовом — 0,04 мг/дм³, чувствительность определения кадмия на осциллографическом полярографе 0,05 мг/дм³, на переменно-токовом — 0,02 мг/дм³. При массовой доле кадмия свыше 0,01 % допускается полярографирование кадмия на хлорид-

При массовой доле кадмия свыше 0,01 % допускается полярографирование кадмия на хлоридно-аммиачном фоне при потенциале полуволны минус 0,85 В по отношению к насыщенному каломельному электролу.

Стандарт полностью соответствует стандартам ИСО 713-75 и ИСО 1054-75.

(Измененная редакция, Изм. № 2).

1. ОБШИЕ ТРЕБОВАНИЯ

1.1. Общие требования к методу анализа и требования безопасности — по ГОСТ 19251.0. (Измененная редакция, Изм. № 1).

2. АППАРАТУРА, РЕАКТИВЫ И РАСТВОРЫ

Полярограф осциллографический или полярограф переменного тока.

Кислота азотная по ГОСТ 4461, разбавленная 1:3.

Кислота соляная по ГОСТ 3118 и разбавленная 2:1.

Водорода пероксид по ГОСТ 10929.

Гидразин дигидрохлорид по ГОСТ 22159 или натрий фосфорноватистокислый по ГОСТ 200.

Натрий хлористый по ГОСТ 4233, не содержащий свинца, и раствор 200 г/дм³, в склянку вместимостью 2 дм³ помещают 400 г хлористого натрия, прибавляют 10 см³ соляной кислоты, доводят до объема 2 дм³ водой и перемешивают.

Фоновый электролит: в склянку вместимостью 2 дм 3 помещают 400 г хлористого натрия, 10 г дигидрохлорида гидразина, приливают 10 см 3 соляной кислоты, разбавляют водой до объема 2 дм 3 и перемешивают.

Издание официальное

*

Перепечатка воспрещена

© Издательство стандартов, 1979 © ИПК Издательство стандартов, 1998 Переиздание с Изменениями Допускается применение фонового электролита следующего состава: в склянку вместимостью 2 дм³ помещают 500 г хлористого натрия, 10 г фосфорноватистокислого натрия, приливают 7 см³ соляной кислоты, разбавляют водой до объема 2 дм³ и перемешивают.

Свинец марки С1 по ГОСТ 3778.

Кадмий марки Кд0 по ГОСТ 1467.

Стандартные растворы свинца и кадмия.

Раствор А: навески мелко нарезанного свинца массой 1,0000 г и кадмия 0,2000 г помещают в стакан вместимостью 1 дм³, растворяют при нагревании в 30 см³ азотной кислоты, разбавленной 1:3, и выпаривают досуха; приливают 10 см³ соляной кислоты и выпаривают досуха. Выпаривание с 10 см³ соляной кислоты повторяют еще два раза. К остатку прибавляют 600 см³ раствора хлористого натрия, нагревают до растворения соли, охлаждают, переводят в мерную колбу вместимостью 1 дм³, доводят до метки этим же раствором и перемешивают.

1 см³ стандартного раствора А содержит 1 мг свинца и 0,2 мг кадмия.

Раствор Б: навески мелко нарезанного свинца массой 0,1000 г и 0,0500 г кадмия помещают в стакан вместимостью 1 дм³, растворяют при нагревании в 30 см³ азотной кислоты, разбавленной 1:3, и далее анализ проводят как указано в методике приготовления стандартного раствора А.

1 см3 стандартного раствора Б содержит 0,1 мг свинца и 0,05 мг кадмия.

Аммиак водный по ГОСТ 3760.

Натрий сернистокислый по ГОСТ 195.

Желатин пищевой по ГОСТ 11293, раствор 5 г/дм³.

Стандартный раствор кадмия: навеску кадмия массой 0,2500 г растворяют в 20 см³ азотной кислоты 1:3. Переводят в мерную колбу вместимостью 500 см³, доводят водой до метки и перемешивают.

1 см³ стандартного раствора кадмия содержит 0,5 мг кадмия.

Градуировочные растворы кадмия: в шесть конических колб вместимостью 100 см³ помещают по 2,5 см³ раствора хлористого цинка, 0; 0,2; 0,5; 1,0; 2,0 и 3,0 см³ стандартного раствора кадмия, по 20 см³ соляной кислоты и 0,5 см³ азотной кислоты, нагревают, добавляют по 15 см³ воды и кипятят до удаления окислов азота. Охлаждают и переводят в мерные колбы вместимостью 100 см³. Прибавляют по 40 см³ аммиака, 0,5 г сульфита натрия, 2,5 см³ раствора желатина. Доводят до метки водой и перемешивают.

Градуировочные растворы кадмия содержат 0; 1,0; 2,5; 5; 10 и 15 мг/дм³ кадмия.

Цинк хлористый по ГОСТ 4529 безводный.

Цинк чистотой 99,99 %, металлический порошок или тонкая стружка.

Раствор соли хлористого цинка с содержанием 200 г/дм³ цинка: готовят из хлористого цинка или из цинка.

Приготовление раствора хлористого цинка из соли: 800 г хлористого цинка помещают в колбу вместимостью 3 дм³ и растворяют при перемешивании в 500 см³ воды, соблюдая осторожность (раствор сильно разогревается). Прибавляют 20 см³ соляной кислоты, 35—40 г металлического цинка и перемешивают в течение 30 мин (очистка от примесей свинца и кадмия). Раствор фильтруют через стеклянный фильтр № 2 (на фильтр добавляют около 2 г порошка цинка) без создания разряжения. Фильтрат собирают в склянку вместимостью 1 дм³. 5 см³ фильтрата выпаривают и определяют свинец и кадмий. При наличии этих элементов в растворе фильтрат переливают в колбу, в которой проводили очистку от примесей, прибавляют 10 см³ соляной кислоты и очистку цинком повторяют. После очистки и фильтрования цинковый раствор разбавляют водой до объема 2 дм³ и перемешивают.

Приготовление раствора хлористого цинка из металлического цинка: 400 г цинка в виде порошка (стружки) помещают в колбу вместимостью 3 дм³ и растворяют в 50 см³ соляной кислоты, разбавленной 2:1, а затем (по мере снижения скорости растворения цинка) добавляют порциями по 25—30 см³ концентрированную соляную кислоту при частом перемешивании. На растворение цинка расходуется около 1,2 дм³ соляной кислоты. После того как на дне колбы останется около 25—30 г цинка, прибавляют 25—30 г порошка цинка, 20 см³ соляной кислоты и продолжают очистку до растворения, примерно, половины порошка цинка. Раствор фильтруют и проверяют на чистоту, как указано выше. Фильтрат разбавляют до объема 2 дм³ водой.

Градуировочные растворы свинца и кадмия: в 13 конических колб вместимостью по 100 см³ отмеривают в соответствии с табл. 1 стандартные растворы А или Б, раствор хлористого цинка и выпаривают до влажного остатка. Приливают по 45—50 см³ фонового электролита, нагревают до растворения солей, охлаждают, переводят в мерные колбы вместимостью 200 см³, разбавляют до метки фоновым электролитом и перемешивают.

Содержание свинца и кадмия в градуировочных растворах указано в табл. 1.

Таблица І

Номер градуиро- вочного раствора	Объем раствора, см ³			Содержание в растворе, мг/дм3	
	хлористого цинка	стандартного		евинца	кадмия
	anopaciono ganza	A	Б		RAGATIA
1	50	-	-	-	_
2	50	-	1	0,5	0,25
3	50	_	2	1	0,25 0,5
4	10	-	_	-	_
5	10	_	4	2	1
6	10	_	10	5	2.5
7	10	_	20	10	2,5
8	5	_		<u> </u>	
9	5	5	_	25	5
10	5	10	_	50	10
11	5	15	_	75	15
12	5	20	_	100	20
13	5	25		125	25

Растворы 1—7 применяют при анализе цинка, содержащего 0,02 % и меньше свинца, 0,01 % и меньше кадмия, а растворы 8—13 — для анализа цинка с большим содержанием этих примесей. Градуировочные растворы 1, 4 и 8 являются контрольными опытами с реактивами.

(Измененная редакция, Изм. № 2, 3).

3. ПРОВЕДЕНИЕ АНАЛИЗА

3.1. Навеску цинка, отобранную в зависимости от массовой доли свинца и кадмия, по табл. 2, помещают в коническую колбу вместимостью 100—250 см³, прибавляют небольшими порциями соответствующий объем соляной кислоты, разбавленной 2:1, и ведут растворение вначале без нагревания, а затем при нагревании. После растворения пробы прибавляют около 0,5 см³ пероксида водорода и выпаривают до влажного остатка.

Таблица 2

Массовая доля, Ж		Навеска, г	Объем соляной кислоты,	Вместимость мерной
свинца	кадмия		разбавленной 2:1, см ³	колбы, см3
От 0,001 до 0,005 Св. 0,005 » 0,02 » 0,02 » 2,5	От 0,0005 до 0,002 Св. 0,002 » 0,01 » 0,01 » 0,3	2,5000 1,0000 0,5000	60 20 15	50 100 100

К остатку приливают 25 или 50 см³ фонового электролита, нагревают до растворения солей, охлаждают, переводят в мерную колбу вместимостью 50 или 100 см³ (табл. 2), доводят до метки фоновым электролитом и перемешивают.

Одновременно с этим проводят контрольные пробы на применяемые реактивы: в конические колбы вместимостью 100 см³ помещают по 12,5 см³ раствора хлористого цинка (для навески 2,5000 г), 5 см³ (для навески 1,0000 г) или 2,5 см³ (для навески 0,5000 г), приливают соответственно 60; 20 и 15 см³ соляной кислоты, разбавленной 2:1, затем 0,5 см³ пероксида водорода и выпаривают до начала кристаллизации хлористого цинка. К остатку приливают 25 или 50 см³ фонового электролита; нагревают до растворения солей, охлаждают, переводят в мерную колбу вместимостью 50 или 100 см³, как указано выше.

Часть раствора пробы (аналогично — контрольного опыта) заливают в полярографическую ячейку и проводят полярографирование свинца и кадмия соответственно при потенциалах полуволн минус 0,47 и минус 0,67 В относительно насыщенного каломельного электрода и оптимальных значениях диапазона тока. В аналогичных условиях полярографируют соответствующие градуировочные растворы. Полярографирование с применением полярографа переменного тока проводят при периоде капания ртути из капилляра 1—2.5 с и оптимальных значениях диапазона тока.

Из значений высот волн определяемого элемента вычитают значения высот волн контрольного опыта и рассчитывают содержание свинца и кадмия.

(Измененная редакция, Изм. № 2, 3).

3.2. При массовой доле кадмия более 0,01 % допускается полярографирование кадмия на хлоридно-аммиачном фоне. Навеску цинка массой 0,5000 г помещают в коническую колбу вместимостью 100 см³, осторожно, небольшими порциями, прибавляют 20 см³ соляной кислоты и 0,5 см³ азотной кислоты и ведуг растворение сначала без нагревания, а затем при нагревании. После полного растворения пробы добавляют 15 см³ воды и кипятят до удаления оксидов азота. Охлаждают и переводят в мерную колбу вместимостью 100 см³. Прибавляют 40 см³ аммиака, 0,5 г сульфита натрия, 2,5 см³ раствора желатина. Доводят до метки водой и перемешивают. Полученному раствору дают отстояться до осаждения гидроксида.

Часть раствора пробы (контрольного опыта) заливают в полярографическую ячейку и полярографируют кадмий при потенциале полуволны минус 0,85 В относительно насыщенного каломельного электрода при оптимальных значениях диапазона тока. В аналогичных условиях полярографируют соответствующие градуировочные растворы кадмия. Полярографирование с применением полярографа переменного тока проводят при периоде капания ртути из капилляра 1—2,5 с и оптимальных значениях диапазона тока.

Из значений высот волн кадмия вычитают значения высот волн контрольного опыта и вычисляют содержание кадмия.

(Введен дополнительно, Изм. № 2).

4. ОБРАБОТКА РЕЗУЛЬТАТОВ

4.1. Массовую долю свинца или кадмия (Х), %, вычисляют по формуле

$$X = \frac{H \cdot V \cdot C}{h \cdot m \cdot 10000},$$

где H — высота волны определяемого элемента в растворе пробы, мм;

V — объем мерной колбы, см³;

С — концентрация определяемого элемента в градуировочном растворе, мг/дм3;

h — высота волны определяемого элемента в градуировочном растворе, мм;

т - масса навески, г.

4.2. Абсолютные значения разностей результатов двух параллельных определений (показатель сходимости) и результатов анализов (показатель воспроизводимости) с доверительной вероятностью P = 0,95 не должны превышать значений допускаемых расхождений, указанных в табл. 3.

Таблица 3

Массовая доля элемента, %	Допускаемое расхождение параллельных определений, %		Допускаемое расхождение результатов анализа, %	
	свинца	кадмия	свинца	кадмия
От 0,0005 до 0,0020 включ.	0,0003	0,0003	0,0004	0,0004
Cв. 0,0020 » 0,0060 »	0,0006	0,0006	0,0008	0,0008
» 0,0060 » 0,0100 »	0,0010	0,0010	0,0015	0,0015
* 0,010 * 0,020 *	0,002	0,002	0,003	0,003
» 0,020 » 0,030 »	0.003	0,003	0,004	0,004
» 0,030 » 0,060 »	0,005	0,005	0,007	0,007
» 0,060 » 0,100 »	0.008	0.008	0.012	0,012
» 0,100 » 0,300 »	0,015	0,015	0,022	0,022
» 0,30 » 0,50 »	0,03	0,03	0.04	0,04
» 0,50 » 1,00 »	0,06	0,06	0.08	0,08
» 1,00 » 2,00 »	0,12	0,12	0,18	0,18
» 2,00 » 3,00 »	0.15	0,15	0,22	0,22

(Измененная редакция, Изм. № 2).

ИНФОРМАЦИОННЫЕ ДАННЫЕ

1. РАЗРАБОТАН И ВНЕСЕН Министерством цветной металлургии СССР

РАЗРАБОТЧИКИ

- В.И. Лысенко, Л.И. Максай, Р.Д. Коган, В.А. Колесникова, Н.А. Романенко, Р.А. Пестова
- 2. УТВЕРЖДЕН И ВВЕДЕН В ДЕЙСТВИЕ Постановлением Государственного комитета СССР по стандартам от 09.08.79 № 3077
- Изменение № 3 принято Межгосударственным Советом по стандартизации, метрологии и сертификации (протокол № 7 от 26.04.95)

За принятие проголосовали:

Наименование государства	Наименование национального органа по стандартизации
Республика Азербайджан	Азгоестандарт
Республика Армения	Армгосстандарт
Республика Белоруссия	Госстандарт Белоруссии
Республика Казахстан	Госстандарт Республики Казахстан
Республика Киргизстан	Киргизстандарт
Республика Молдова	Молдовастандарт
Российская Федерация	Госстандарт России
Республика Таджикистан	Таджикгосстандарт
Республика Туркменистан	Главная государственная инспекция Туркменистана
Республика Узбекистан	Узгосстандарт
Украина	Госстандарт Украины

- 4. Стандарт полностью соответствует стандартам ИСО 713-75, ИСО 1054-75
- B3AMEH ΓΟCT 19251.2—73

6. ССЫЛОЧНЫЕ НОРМАТИВНО-ТЕХНИЧЕСКИЕ ДОКУМЕНТЫ

Обозначение НТД, на который дана ссылка	Номер пункта, раздела	
FOCT 195—77	2	
ГОСТ 200—76	2	
ГОСТ 1467—93	2	
ГОСТ 3118—77	2	
FOCT 3760-79	2	
FOCT 3778—77	2	
ГОСТ 4233—77	2	
ΓOCT 4461—77	2	
ΓOCT 4529—78	2	
FOCT 10929—76	5	
FOCT 11293—89	2	
FOCT 19251.0—79	1.1	
ГОСТ 22159—76	2	

- Ограничение срока действия снято по протоколу № 4—93 Межгосударственного Совета по стандартизации, метрологии и сертификации (ИУС 4—94)
- ПЕРЕИЗДАНИЕ (февраль 1998 г.) с Изменениями № 1, 2, 3, утвержденными в октябре 1984 г., апреле 1989 г., июне 1996 г. (ИУС 1—85, 7—89, 9—96)

Редактор М.И.Максимова
Технический редактор В.И.Прусакова
Корректор А.С.Черноусова
Компьютерная верстка А.И.Золотаревой

Изд. лиц. № 021007 от 10.08.95. Сдано в набор 23.02.98. Подписано в печать 20.03.98. Усл.печ.л. 0,93. Уч.-изд.л. 0,70. Тираж 161 экз. С/Д 4476. Зак. 141.